from ultralytics import YOLO # Load the exported NCNN model onnx_model = YOLO("best.pt") # Run inference results = onnx_model(r'img_test1.jpg') # Save results to disk results[0].save(filename=f"result_pt1.jpg")(yolo) root@unihiker:~/ultralytics# python pt_predict.py 非法指令

时间: 2025-07-11 16:52:54 浏览: 10
<think>好的,我现在需要帮用户解决他们在运行YOLO模型时遇到的“非法指令”错误。用户使用的是从best.pt加载的模型,然后进行推理,但执行时系统报错。首先,我得分析可能的原因。 首先,“非法指令”通常与CPU不支持的指令集有关。比如,如果模型是用AVX2等较新指令集编译的,而用户的CPU不支持这些指令,就会触发这个错误。用户的环境是YOLO在Unihiker设备上运行,这可能是一个嵌入式设备,使用的CPU可能比较老旧,不支持某些指令集。 接下来,我需要检查用户代码中的潜在问题。用户导入了YOLO,然后通过YOLO("best.pt")加载模型。这里可能的问题是,直接加载.pt模型并运行推理时,PyTorch可能会编译一些依赖本地CPU架构的代码。如果PyTorch版本或编译时启用了特定的指令集,而设备不支持,就会出错。 可能的解决步骤包括: 1. 确认PyTorch是否针对旧CPU编译。用户可能需要安装不依赖高级指令集的PyTorch版本,比如使用CPU-only版本或者针对特定架构编译的版本。 2. 导出模型到ONNX或其他格式时可能优化过度。用户提到导出的是NCNN模型,但代码中却使用了ONNX模型?需要检查是否正确导出和加载。例如,用户加载的是.pt文件,但变量名是onnx_model,可能存在混淆。 3. 使用NCNN或其他推理引擎时,需要确保正确配置,支持目标设备的CPU架构。可能需要重新编译NCNN库,禁用高级指令集。 4. 检查Unihiker设备的CPU型号和支持的指令集,比如通过lscpu命令,确认是否缺少AVX、SSE4等指令。 5. 用户代码中是否有其他依赖库的问题,比如Ultralytics YOLO版本是否兼容当前环境。 另外,用户代码中的注释提到加载的是NCNN模型,但实际代码是加载.pt文件,这可能是误解。正确的流程应该是将.pt模型导出为NCNN格式,然后用NCNN的库加载。如果用户直接使用YOLO加载.pt,可能并没有使用NCNN优化,导致PyTorch运行时出现指令问题。 因此,解决方案可能包括: - 确保PyTorch安装正确,适合旧CPU。 - 正确导出模型到ONNX或NCNN格式,并使用对应的推理引擎。 - 重新编译依赖库,禁用不支持指令集。 需要用户提供更多环境信息,如PyTorch版本、CPU型号、导出命令等,才能更准确诊断。但根据现有信息,先建议用户安装CPU优化的PyTorch版本,检查导出步骤是否正确,并考虑使用NCNN进行推理。</think>遇到运行YOLO模型时出现`非法指令`错误,这通常与CPU指令集不兼容相关。以下是分步解决方案: --- ### **第一步:定位问题根源** 1. **CPU指令集不匹配**(常见原因) - 当PyTorch或ONNXRuntime等库使用`AVX/AVX2`等高级指令集编译时,若你的设备CPU不支持这些指令(常见于老旧设备/嵌入式设备如Unihiker),就会触发`Illegal instruction`错误。 2. **模型导出方式问题** - 直接加载`.pt`文件时,PyTorch可能自动编译依赖本地指令集的优化代码。 --- ### **第二步:验证CPU支持的指令集** 通过SSH登录设备后执行: ```bash cat /proc/cpuinfo | grep flags ``` 检查输出是否包含`avx`、`avx2`、`sse4`等关键词。若缺失,则确认是CPU指令集问题。 --- ### **第三步:安装兼容的PyTorch版本** 卸载当前PyTorch后安装**无AVX指令集**的版本: ```bash pip uninstall torch torchvision pip install torch==1.8.0+cpu torchvision==0.9.0+cpu -f https://download.pytorch.org/whl/torch_stable.html ``` --- ### **第四步:正确导出模型为NCNN格式** 你的代码中混合了ONNX和NCNN的概念,正确流程应为: ```python from ultralytics import YOLO # 加载原始PyTorch模型 model = YOLO("best.pt") # 导出为ONNX格式(先过渡) model.export(format="onnx") # 生成 best.onnx # 使用NCNN工具转换ONNX到NCNN格式 # 需要安装ncnn工具链:https://github.com/Tencent/ncnn # 命令行执行:./onnx2ncnn best.onnx best.param best.bin ``` --- ### **第五步:使用NCNN部署模型** 1. **编译NCNN时禁用AVX** 在设备上重新编译NCNN库: ```bash git clone https://github.com/Tencent/ncnn cd ncnn && mkdir build && cd build cmake -DCMAKE_CXX_FLAGS="-march=armv7-a" .. # 根据设备架构调整 make -j4 ``` 2. **编写NCNN推理代码** 参考NCNN官方示例加载`best.param`和`best.bin`进行推理。 --- ### **替代方案:强制PyTorch使用基础指令** 在代码开头添加环境变量限制指令集: ```python import os os.environ["ATEN_CPU_CAPABILITY"] = "default" # 禁用高级优化 os.environ["OMP_NUM_THREADS"] = "1" # 减少多线程冲突 from ultralytics import YOLO model = YOLO("best.pt") results = model('img_test1.jpg') results[0].save(filename="result_pt1.jpg") ``` --- ### **附加建议** - 检查设备架构:执行`uname -a`确认是否为32位系统(需对应安装32位PyTorch)。 - Ultralytics版本:尝试`pip install ultralytics==8.0.20`降级。 - 测试纯CPU模式:确保代码未错误调用GPU。 --- 通过以上步骤,可逐步排查并解决因CPU指令集不兼容导致的非法指令错误。
阅读全文

相关推荐

import cv2 import numpy as np import time import torch import threading from ultralytics import YOLO class VideoStream: def __init__(self, src=0): self.stream = cv2.VideoCapture(src) self.grabbed, self.frame = self.stream.read() self.stopped = False self.frame_count = 0 self.last_results1 = [] self.last_results2 = [] def start(self): threading.Thread(target=self.update, args=()).start() return self def update(self): while True: if self.stopped: return if self.frame_count % 5 == 0: # 每5帧检测一次 self._load_image() time.sleep(0.01) def _load_image(self): if not self.stream.isOpened(): self.stopped = True return self.grabbed, self.frame = self.stream.read() if not self.grabbed: self.stopped = True return self.frame_count += 1 def read(self): return self.frame def stop(self): self.stopped = True self.stream.release() # 检查 GPU 是否可用 device = 'cuda' if torch.cuda.is_available() else 'cpu' # 加载模型 model1 = YOLO('FALL.pt', device=device, imgsz=320) model2 = YOLO('best.pt', device=device, imgsz=640) # 将模型转换为ONNX model1.export('model1.onnx') model2.export('model2.onnx') # 加载ONNX模型 model1_onnx = YOLO('model1.onnx', device=device, imgsz=320) model2_onnx = YOLO('model2.onnx', device=device, imgsz=640) vs = VideoStream().start() prev_time = 0 skip_frames = 5 # 每5帧进行一次检测 # 使用ONNX runtime加速 model1_onnx.model = model1_onnx.model.to_onnx() model2_onnx.model = model2_onnx.model.to_onnx() while True: current_time = time.time() frame = vs.read() if frame is None: break if frame_count % skip_frames == 0: results1 = model1_onnx(frame, imgsz=320, conf=0.5, device=device) results2 = model2_onnx(frame, imgsz=640, conf=0.5, device=device) # 处理结果1 for result in result

最新推荐

recommend-type

vetur-0.37.3.vsix

1. 插件名称:Vetur 2. Marketplace地址:https://marketplace.visualstudio.com/items?itemName=octref.vetur 3. Github地址:https://github.com/vuejs/vetur.git 4. 插件功能:Vue tooling for VS Code 5. 插件介绍:New official vue editor support: Volar(新扩展用Volar!!!) 6. 插件领域:Vue开发
recommend-type

电子商务中工业发展趋势思索(1).docx

电子商务中工业发展趋势思索(1).docx
recommend-type

开发过程和测试结果的软件质量评价研究.docx

开发过程和测试结果的软件质量评价研究.docx
recommend-type

基于Django的学生信息管理系统.zip

基于Django的学生信息管理系统
recommend-type

FREUDE弗莱德FP-6和6A和6A Pro电脑调音软件下载

FREUDE弗莱德FP-6和6A和6A Pro电脑调音软件下载
recommend-type

全面掌握Oracle9i:基础教程与实践指南

Oracle9i是一款由甲骨文公司开发的关系型数据库管理系统,它在信息技术领域中占据着重要的地位。Oracle9i的“i”代表了互联网(internet),意味着它具有强大的网络功能,能够支持大规模的网络应用。该系统具有高度的数据完整性和安全性,并且其强大稳定的特点使得它成为了企业级应用的首选数据库平台。 为了全面掌握Oracle9i,本教程将从以下几个方面详细讲解: 1. Oracle9i的安装与配置:在开始学习之前,您需要了解如何在不同的操作系统上安装Oracle9i数据库,并对数据库进行基本的配置。这包括数据库实例的创建、网络配置文件的设置(如listener.ora和tnsnames.ora)以及初始参数文件的设置。 2. SQL语言基础:SQL(Structured Query Language)是用于管理和操作关系型数据库的标准语言。您需要熟悉SQL语言的基本语法,包括数据查询语言(DQL)、数据操纵语言(DML)、数据定义语言(DDL)和数据控制语言(DCL)。 3. PL/SQL编程:PL/SQL是Oracle公司提供的过程化语言,它是SQL的扩展,增加了过程化编程的能力。学习PL/SQL可以让您编写更复杂、更高效的数据库程序,包括存储过程、函数、包和触发器等。 4. Oracle9i的数据管理:这部分内容涉及数据表的创建、修改、删除以及索引、视图、同义词、序列和分区等高级特性。 5. 数据库性能优化:为了确保数据库的高效运行,需要对数据库进行性能调优。这包括了解Oracle9i的内存管理、锁定机制、SQL语句优化和数据库设计原则等。 6. 数据库备份与恢复:为防止数据丢失或损坏,需要了解Oracle9i的备份和恢复机制。您将学习到如何使用RMAN(Recovery Manager)进行数据备份和恢复,并且熟悉数据库的逻辑备份和恢复策略。 7. 安全管理:安全管理是保护数据库不受非法访问和操作的重要环节。Oracle9i提供了丰富的安全特性,如用户权限管理、审计和加密等,您需要学习如何实施这些安全措施来保证数据库的安全性。 8. Oracle9i网络管理:由于Oracle9i对网络的特别设计,您还需要掌握如何管理Oracle网络,包括监听器的配置、网络故障的诊断等。 9. 高级特性介绍:Oracle9i提供了很多高级功能,如高级复制、流复制、高级安全性、Oracle Data Guard等,这些内容将帮助您掌握Oracle9i的高级特性,从而在面对复杂业务需求时有更多解决方案。 在学习Oracle9i教程的过程中,您将通过大量实例练习加深理解,同时也会了解到最佳实践和常见问题的解决方法。本教程的目的是让您全面掌握Oracle9i数据库管理系统的使用,并具备解决实际问题的能力,无论您是数据库管理员、开发人员还是系统分析师,本教程都将成为您提升技能的有力工具。
recommend-type

【数据融合技术】:甘肃土壤类型空间分析中的专业性应用

# 摘要 数据融合技术作为一种集成多源数据信息的方法,在土壤类型空间分析中发挥着关键作用。本文介绍了数据融合技术的基本概念及其理论基础,阐述了数据预处理、同步整合及冲突解决等关键技术,并详细描述了甘肃土壤类型数据准备的流程,包括数据采集、质量评估、空间化处理及融合实践准备。通过具体案例分析,展示了数据融合在土壤类型空间分布分析、土壤质量评估及土壤保护规划中的应用。同时,文
recommend-type

模糊大津法

<think>首先,用户查询是关于“模糊大津法”的,我需要理解这个术语。从引用中,我知道大津法(Otsu's method)是一种图像二值化的全局阈值算法。用户提到“模糊大津法”,这可能是大津法与模糊理论结合的一种变体。我需要基于提供的引用和自己的知识来回答。关键引用:- [^1]:讨论了大津法在图像处理中的应用,特别是二值化。- [^2]:解释了大津法的原理和实现。- [^3]:提到大津法是全局阈值算法。- [^4]:讨论了高斯模糊对大津二值化算法的影响,指出高斯模糊可以减少噪声,提高阈值计算的准确性。用户的问题是:“我想查找关于模糊大津法的技术资料或实现方法请问模糊大津法原理实现方法技术文
recommend-type

SOA服务设计原则:2007年7月版原理深入解析

由于提供的文件信息是相同的标题、描述和标签,且压缩包中仅包含一个文件,我们可以得出文件“Prentice.Hall.SOA.Principles.of.Service.Design.Jul.2007.pdf”很可能是一本关于面向服务架构(SOA)的书籍。该文件的名称和描述表明了它是一本专门讨论服务设计原则的出版物,其出版日期为2007年7月。以下是从标题和描述中提取的知识点: ### SOA设计原则 1. **服务导向架构(SOA)基础**: - SOA是一种设计原则,它将业务操作封装为可以重用的服务。 - 服务是独立的、松耦合的业务功能,可以在不同的应用程序中复用。 2. **服务设计**: - 设计优质服务对于构建成功的SOA至关重要。 - 设计过程中需要考虑到服务的粒度、服务的生命周期管理、服务接口定义等。 3. **服务重用**: - 服务设计的目的是为了重用,需要识别出业务领域中可重用的功能单元。 - 通过重用现有的服务,可以降低开发成本,缩短开发时间,并提高系统的整体效率。 4. **服务的独立性与自治性**: - 服务需要在技术上是独立的,使得它们能够自主地运行和被管理。 - 自治性意味着服务能够独立于其他服务的存在和状态进行更新和维护。 5. **服务的可组合性**: - SOA强调服务的组合性,这意味着可以通过组合不同的服务构建新的业务功能。 - 服务之间的交互应当是标准化的,以确保不同服务间的无缝通信。 6. **服务的无状态性**: - 在设计服务时,最好让服务保持无状态,以便它们可以被缓存、扩展和并行处理。 - 状态信息可以放在服务外部,比如数据库或缓存系统中。 7. **服务的可发现性**: - 设计服务时,必须考虑服务的发现机制,以便服务消费者可以找到所需的服务。 - 通常通过服务注册中心来实现服务的动态发现和绑定。 8. **服务的标准化和协议**: - 服务应该基于开放标准构建,确保不同系统和服务之间能够交互。 - 服务之间交互所使用的协议应该广泛接受,如SOAP、REST等。 9. **服务的可治理性**: - 设计服务时还需要考虑服务的管理与监控,确保服务的质量和性能。 - 需要有机制来跟踪服务使用情况、服务变更管理以及服务质量保障。 10. **服务的业务与技术视角**: - 服务设计应该同时考虑业务和技术的视角,确保服务既满足业务需求也具备技术可行性。 - 业务规则和逻辑应该与服务实现逻辑分离,以保证业务的灵活性和可维护性。 ### SOA的实施挑战与最佳实践 1. **变更管理**: - 实施SOA时需要考虑到如何管理和适应快速变更。 - 必须建立适当的变更控制流程来管理和批准服务的更改。 2. **安全性**: - 安全是SOA设计中的一个关键方面,需要确保服务交互的安全。 - 需要实现身份验证、授权、加密和审计机制以保护数据和服务。 3. **互操作性**: - 服务应设计为可与不同平台和技术实现互操作。 - 必须确保服务之间可以跨平台和语言进行通信。 4. **质量保证**: - 对服务进行持续的质量监控和改进是实施SOA不可或缺的一部分。 - 服务质量(QoS)相关的特性如性能、可靠性、可用性等都应被纳入设计考量。 5. **投资回报(ROI)和成本效益分析**: - 从经济角度评估实施SOA的合理性。 - 在设计服务时考虑长期成本节约和ROI。 根据以上知识点的总结,可以看出“Prentice.Hall.SOA.Principles.of.Service.Design.Jul.2007.pdf”这本书很可能是系统地介绍SOA设计原则和最佳实践的专业著作,对于想要深入了解SOA设计的读者来说是一本宝贵的参考资料。
recommend-type

【空间分布规律】:甘肃土壤类型与农业生产的关联性研究

# 摘要 本文对甘肃土壤类型及其在农业生产中的作用进行了系统性研究。首先概述了甘肃土壤类型的基础理论,并探讨了土壤类型与农业生产的理论联系。通过GIS技术分析,本文详细阐述了甘肃土壤的空间分布规律,并对其特征和影响因素进行了深入分析。此外,本文还研究了甘肃土壤类型对农业生产实际影响,包括不同区域土壤改良和作物种植案例,以及土壤养分、水分管理对作物生长周期和产量的具体影响。最后,提出了促进甘肃土壤与农业可持续发展的策略,包括土壤保护、退化防治对策以及土壤类型优化与农业创新的结合。本文旨在为