AttributeError: 'Config' object has no attribute '_metadata'

时间: 2023-08-05 14:05:18 浏览: 337
引用[1]:根据你提供的信息,报错信息是"AttributeError: 'Config' object has no attribute '_metadata'"。这个错误通常是由于代码中使用了一个没有定义的属性或方法导致的。要解决这个问题,你可以检查一下代码中是否有拼写错误或者是否正确引用了相关的模块。此外,你还可以查看一下相关的文档或者在开发者社区中寻求帮助,以获取更详细的解决方案。 问题:AttributeError: 'Config' object has no attribute '_metadata'的解决方法是什么? 回答:要解决"AttributeError: 'Config' object has no attribute '_metadata'"的问题,你可以检查一下代码中是否有拼写错误或者是否正确引用了相关的模块。此外,你还可以查看一下相关的文档或者在开发者社区中寻求帮助,以获取更详细的解决方案。
相关问题

pytest AttributeError: 'Config' object has no attribute '_metadata'

### 解决方案 `pytest` 中出现 `AttributeError: 'Config' object has no '_metadata' attribute` 的问题通常是因为版本不兼容或者某些插件未正确更新所致。以下是可能的原因分析以及解决方案: #### 原因分析 1. **版本冲突** 如果使用的 `pytest` 版本较新,而某些依赖插件(如 `pytest-remotedata`)尚未完全适配最新版,则可能导致此类错误[^1]。 2. **插件行为变化** 插件升级可能会改变其内部实现逻辑。例如,在 `pytest-remotedata` 升级过程中,可能存在对 `_metadata` 属性的移除或重构操作。 3. **测试脚本命名冲突** 测试脚本名称如果与 Python 预留关键字或其他模块重名(如命名为 `pytest.py`),也可能引发类似的属性访问异常[^2]。 --- #### 解决方法 ##### 方法一:确认并同步插件版本 确保所安装的 `pytest` 和相关插件版本一致且相互兼容。可以尝试以下命令重新安装指定版本的插件: ```bash pip install --upgrade pytest pytest-remotedata==<compatible_version> ``` 其中 `<compatible_version>` 是指与当前 `pytest` 版本匹配的具体版本号。可以通过查阅官方文档获取推荐组合。 ##### 方法二:回滚至稳定版本 如果无法找到合适的兼容版本,可考虑降级到之前的稳定版本组合: ```bash pip install pytest==6.x pytest-remotedata==0.3.0 ``` ##### 方法三:检查测试脚本命名 验证是否存在文件名与保留字或模块重复的情况。例如,避免将测试脚本命名为 `pytest.py` 或其他敏感名称。建议更改为更具描述性的名字,比如 `test_example.py`。 ##### 方法四:调试元数据配置 若上述调整仍未能解决问题,可通过自定义方式修复缺失的 `_metadata` 属性。在项目根目录下的 `conftest.py` 文件中添加如下代码片段: ```python def pytest_configure(config): if not hasattr(config, "_metadata"): config._metadata = {} ``` 此代码会在每次会话初始化时动态补充缺少的 `_metadata` 字段[^3]。 --- ### 总结 针对 `AttributeError: 'Config' object has no '_metadata' attribute` 错误,优先排查版本兼容性和插件行为变更的影响,并适当调整环境配置或引入补丁措施来规避该类问题。 ---

INTERNALERROR> AttributeError: 'Config' object has no attribute '_metadata'

这个错误通常是由于缺少元数据(metadata)导致的。元数据是指描述数据的数据,例如数据库表的列名、数据类型等信息。在Flask中,通常使用SQLAlchemy来处理数据库操作,而SQLAlchemy中的模型类需要定义元数据。如果没有定义元数据,就会出现类似于'Config' object has no attribute '_metadata'的错误。 解决这个问题的方法是在模型类中定义元数据。例如: ```python from flask_sqlalchemy import SQLAlchemy db = SQLAlchemy() class User(db.Model): __tablename__ = 'users' id = db.Column(db.Integer, primary_key=True) name = db.Column(db.String(50)) email = db.Column(db.String(120), unique=True) def __repr__(self): return '<User %r>' % self.name ``` 在这个例子中,我们使用SQLAlchemy定义了一个User模型类,并在类中定义了元数据__tablename__,用于指定数据库表名。这样就可以避免出现缺少元数据的错误了。
阅读全文

相关推荐

/home/shuo/VLA/openpi/.venv/lib/python3.11/site-packages/tyro/_parsers.py:332: UserWarning: The field model.action-expert-variant is annotated with type typing.Literal['dummy', 'gemma_300m', 'gemma_2b', 'gemma_2b_lora'], but the default value gemma_300m_lora has type <class 'str'>. We'll try to handle this gracefully, but it may cause unexpected behavior. warnings.warn(message) 19:07:30.004 [I] Running on: shuo-hp (10287:train.py:195) INFO:2025-05-12 19:07:30,228:jax._src.xla_bridge:945: Unable to initialize backend 'rocm': module 'jaxlib.xla_extension' has no attribute 'GpuAllocatorConfig' 19:07:30.228 [I] Unable to initialize backend 'rocm': module 'jaxlib.xla_extension' has no attribute 'GpuAllocatorConfig' (10287:xla_bridge.py:945) INFO:2025-05-12 19:07:30,228:jax._src.xla_bridge:945: Unable to initialize backend 'tpu': INTERNAL: Failed to open libtpu.so: libtpu.so: cannot open shared object file: No such file or directory 19:07:30.228 [I] Unable to initialize backend 'tpu': INTERNAL: Failed to open libtpu.so: libtpu.so: cannot open shared object file: No such file or directory (10287:xla_bridge.py:945) 19:07:30.500 [I] Wiped checkpoint directory /home/shuo/VLA/openpi/checkpoints/pi0_ours_aloha/your_experiment_name (10287:checkpoints.py:25) 19:07:30.500 [I] Created BasePyTreeCheckpointHandler: pytree_metadata_options=PyTreeMetadataOptions(support_rich_types=False), array_metadata_store=None (10287:base_pytree_checkpoint_handler.py:332) 19:07:30.500 [I] Created BasePyTreeCheckpointHandler: pytree_metadata_options=PyTreeMetadataOptions(support_rich_types=False), array_metadata_store=None (10287:base_pytree_checkpoint_handler.py:332) 19:07:30.500 [I] [thread=MainThread] Failed to get flag value for EXPERIMENTAL_ORBAX_USE_DISTRIBUTED_PROCESS_ID. (10287:multihost.py:375) 19:07:30.500 [I] [process=0][thread=MainThread] CheckpointManager init: checkpointers=None, item_names=None, item_handlers={'assets': <openpi.training.checkpoints.CallbackHandler object at 0x72e5cae0ff50>, 'train_state': <orbax.checkpoint._src.handlers.pytree_checkpoint_handler.PyTreeCheckpointHandler object at 0x72e5cafa0e90>, 'params': <orbax.checkpoint._src.handlers.pytree_checkpoint_handler.PyTreeCheckpointHandler object at 0x72e5cafa05d0>}, handler_registry=None (10287:checkpoint_manager.py:622) 19:07:30.501 [I] Deferred registration for item: "assets". Adding handler <openpi.training.checkpoints.CallbackHandler object at 0x72e5cae0ff50> for item "assets" and save args <class 'openpi.training.checkpoints.CallbackSave'> and restore args <class 'openpi.training.checkpoints.CallbackRestore'> to _handler_registry. (10287:composite_checkpoint_handler.py:239) 19:07:30.501 [I] Deferred registration for item: "train_state". Adding handler <orbax.checkpoint._src.handlers.pytree_checkpoint_handler.PyTreeCheckpointHandler object at 0x72e5cafa0e90> for item "train_state" and save args <class 'orbax.checkpoint._src.handlers.pytree_checkpoint_handler.PyTreeSaveArgs'> and restore args <class 'orbax.checkpoint._src.handlers.pytree_checkpoint_handler.PyTreeRestoreArgs'> to _handler_registry. (10287:composite_checkpoint_handler.py:239) 19:07:30.501 [I] Deferred registration for item: "params". Adding handler <orbax.checkpoint._src.handlers.pytree_checkpoint_handler.PyTreeCheckpointHandler object at 0x72e5cafa05d0> for item "params" and save args <class 'orbax.checkpoint._src.handlers.pytree_checkpoint_handler.PyTreeSaveArgs'> and restore args <class 'orbax.checkpoint._src.handlers.pytree_checkpoint_handler.PyTreeRestoreArgs'> to _handler_registry. (10287:composite_checkpoint_handler.py:239) 19:07:30.501 [I] Deferred registration for item: "metrics". Adding handler <orbax.checkpoint._src.handlers.json_checkpoint_handler.JsonCheckpointHandler object at 0x72e5cad7fd10> for item "metrics" and save args <class 'orbax.checkpoint._src.handlers.json_checkpoint_handler.JsonSaveArgs'> and restore args <class 'orbax.checkpoint._src.handlers.json_checkpoint_handler.JsonRestoreArgs'> to _handler_registry. (10287:composite_checkpoint_handler.py:239) 19:07:30.501 [I] Initialized registry DefaultCheckpointHandlerRegistry({('assets', <class 'openpi.training.checkpoints.CallbackSave'>): <openpi.training.checkpoints.CallbackHandler object at 0x72e5cae0ff50>, ('assets', <class 'openpi.training.checkpoints.CallbackRestore'>): <openpi.training.checkpoints.CallbackHandler object at 0x72e5cae0ff50>, ('train_state', <class 'orbax.checkpoint._src.handlers.pytree_checkpoint_handler.PyTreeSaveArgs'>): <orbax.checkpoint._src.handlers.pytree_checkpoint_handler.PyTreeCheckpointHandler object at 0x72e5cafa0e90>, ('train_state', <class 'orbax.checkpoint._src.handlers.pytree_checkpoint_handler.PyTreeRestoreArgs'>): <orbax.checkpoint._src.handlers.pytree_checkpoint_handler.PyTreeCheckpointHandler object at 0x72e5cafa0e90>, ('params', <class 'orbax.checkpoint._src.handlers.pytree_checkpoint_handler.PyTreeSaveArgs'>): <orbax.checkpoint._src.handlers.pytree_checkpoint_handler.PyTreeCheckpointHandler object at 0x72e5cafa05d0>, ('params', <class 'orbax.checkpoint._src.handlers.pytree_checkpoint_handler.PyTreeRestoreArgs'>): <orbax.checkpoint._src.handlers.pytree_checkpoint_handler.PyTreeCheckpointHandler object at 0x72e5cafa05d0>, ('metrics', <class 'orbax.checkpoint._src.handlers.json_checkpoint_handler.JsonSaveArgs'>): <orbax.checkpoint._src.handlers.json_checkpoint_handler.JsonCheckpointHandler object at 0x72e5cad7fd10>, ('metrics', <class 'orbax.checkpoint._src.handlers.json_checkpoint_handler.JsonRestoreArgs'>): <orbax.checkpoint._src.handlers.json_checkpoint_handler.JsonCheckpointHandler object at 0x72e5cad7fd10>}). (10287:composite_checkpoint_handler.py:508) 19:07:30.501 [I] orbax-checkpoint version: 0.11.1 (10287:abstract_checkpointer.py:35) 19:07:30.501 [I] [process=0][thread=MainThread] Using barrier_sync_fn: <function get_barrier_sync_fn.<locals>.<lambda> at 0x72e5cacb85e0> timeout: 7200 secs and primary_host=0 for async checkpoint writes (10287:async_checkpointer.py:80) 19:07:30.501 [I] Found 0 checkpoint steps in /home/shuo/VLA/openpi/checkpoints/pi0_ours_aloha/your_experiment_name (10287:checkpoint_manager.py:1528) 19:07:30.501 [I] Saving root metadata (10287:checkpoint_manager.py:1569) 19:07:30.501 [I] [process=0][thread=MainThread] Skipping global process sync, barrier name: CheckpointManager:save_metadata (10287:multihost.py:293) 19:07:30.501 [I] [process=0][thread=MainThread] CheckpointManager created, primary_host=0, CheckpointManagerOptions=CheckpointManagerOptions(save_interval_steps=1, max_to_keep=1, keep_time_interval=None, keep_period=5000, should_keep_fn=None, best_fn=None, best_mode='max', keep_checkpoints_without_metrics=True, step_prefix=None, step_format_fixed_length=None, step_name_format=None, create=False, cleanup_tmp_directories=False, save_on_steps=frozenset(), single_host_load_and_broadcast=False, todelete_subdir=None, enable_background_delete=False, read_only=False, enable_async_checkpointing=True, async_options=AsyncOptions(timeout_secs=7200, barrier_sync_fn=None, post_finalization_callback=None, create_directories_asynchronously=False), multiprocessing_options=MultiprocessingOptions(primary_host=0, active_processes=None, barrier_sync_key_prefix=None), should_save_fn=None, file_options=FileOptions(path_permission_mode=None), save_root_metadata=True, temporary_path_class=None, save_decision_policy=None), root_directory=/home/shuo/VLA/openpi/checkpoints/pi0_ours_aloha/your_experiment_name: <orbax.checkpoint.checkpoint_manager.CheckpointManager object at 0x72e5cadffd10> (10287:checkpoint_manager.py:797) 19:07:30.553 [I] Loaded norm stats from s3://openpi-assets/checkpoints/pi0_base/assets/trossen (10287:config.py:166) Returning existing local_dir /home/shuo/VLA/lerobot/aloha-real-data as remote repo cannot be accessed in snapshot_download (None). 19:07:30.553 [W] Returning existing local_dir /home/shuo/VLA/lerobot/aloha-real-data as remote repo cannot be accessed in snapshot_download (None). (10287:_snapshot_download.py:213) Returning existing local_dir /home/shuo/VLA/lerobot/aloha-real-data as remote repo cannot be accessed in snapshot_download (None). 19:07:30.554 [W] Returning existing local_dir /home/shuo/VLA/lerobot/aloha-real-data as remote repo cannot be accessed in snapshot_download (None). (10287:_snapshot_download.py:213) Returning existing local_dir /home/shuo/VLA/lerobot/aloha-real-data as remote repo cannot be accessed in snapshot_download (None). 19:07:30.555 [W] Returning existing local_dir /home/shuo/VLA/lerobot/aloha-real-data as remote repo cannot be accessed in snapshot_download (None). (10287:_snapshot_download.py:213) Traceback (most recent call last): File "/home/shuo/VLA/openpi/scripts/train.py", line 273, in <module> main(_config.cli()) File "/home/shuo/VLA/openpi/scripts/train.py", line 226, in main batch = next(data_iter) ^^^^^^^^^^^^^^^ File "/home/shuo/VLA/openpi/src/openpi/training/data_loader.py", line 177, in __iter__ for batch in self._data_loader: File "/home/shuo/VLA/openpi/src/openpi/training/data_loader.py", line 257, in __iter__ batch = next(data_iter) ^^^^^^^^^^^^^^^ File "/home/shuo/VLA/openpi/.venv/lib/python3.11/site-packages/torch/utils/data/dataloader.py", line 708, in __next__ data = self._next_data() ^^^^^^^^^^^^^^^^^ File "/home/shuo/VLA/openpi/.venv/lib/python3.11/site-packages/torch/utils/data/dataloader.py", line 1480, in _next_data return self._process_data(data) ^^^^^^^^^^^^^^^^^^^^^^^^ File "/home/shuo/VLA/openpi/.venv/lib/python3.11/site-packages/torch/utils/data/dataloader.py", line 1505, in _process_data data.reraise() File "/home/shuo/VLA/openpi/.venv/lib/python3.11/site-packages/torch/_utils.py", line 733, in reraise raise exception KeyError: Caught KeyError in DataLoader worker process 0. Original Traceback (most recent call last): File "/home/shuo/VLA/openpi/.venv/lib/python3.11/site-packages/torch/utils/data/_utils/worker.py", line 349, in _worker_loop data = fetcher.fetch(index) # type: ignore[possibly-undefined] ^^^^^^^^^^^^^^^^^^^^ File "/home/shuo/VLA/openpi/.venv/lib/python3.11/site-packages/torch/utils/data/_utils/fetch.py", line 52, in fetch data = [self.dataset[idx] for idx in possibly_batched_index] ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/home/shuo/VLA/openpi/.venv/lib/python3.11/site-packages/torch/utils/data/_utils/fetch.py", line 52, in data = [self.dataset[idx] for idx in possibly_batched_index] ~~~~~~~~~~~~^^^^^ File "/home/shuo/VLA/openpi/src/openpi/training/data_loader.py", line 47, in __getitem__ return self._transform(self._dataset[index]) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/home/shuo/VLA/openpi/src/openpi/transforms.py", line 70, in __call__ data = transform(data) ^^^^^^^^^^^^^^^ File "/home/shuo/VLA/openpi/src/openpi/transforms.py", line 101, in __call__ return jax.tree.map(lambda k: flat_item[k], self.structure) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/home/shuo/VLA/openpi/.venv/lib/python3.11/site-packages/jax/_src/tree.py", line 155, in map return tree_util.tree_map(f, tree, *rest, is_leaf=is_leaf) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/home/shuo/VLA/openpi/.venv/lib/python3.11/site-packages/jax/_src/tree_util.py", line 358, in tree_map return treedef.unflatten(f(*xs) for xs in zip(*all_leaves)) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/home/shuo/VLA/openpi/.venv/lib/python3.11/site-packages/jax/_src/tree_util.py", line 358, in <genexpr> return treedef.unflatten(f(*xs) for xs in zip(*all_leaves)) ^^^^^^ File "/home/shuo/VLA/openpi/src/openpi/transforms.py", line 101, in <lambda> return jax.tree.map(lambda k: flat_item[k], self.structure) ~~~~~~~~~^^^ KeyError: 'observation.images.cam_low'

sy@ubuntu:~/Workspace/P4/staint-cc-main/staint-cc-main/train-code/rllib/single$ python3 train.py 2025-03-03 22:32:54,469 INFO worker.py:1528 -- Started a local Ray instance. 2025-03-03 22:32:55,097 INFO ppo.py:379 -- In multi-agent mode, policies will be optimized sequentially by the multi-GPU optimizer. Consider setting simple_optimizer=True if this doesn't work for you. 2025-03-03 22:32:55,098 INFO algorithm.py:457 -- Current log_level is WARN. For more information, set 'log_level': 'INFO' / 'DEBUG' or use the -v and -vv flags. Traceback (most recent call last): File "train.py", line 45, in <module> algo = ppo.PPO( File "/home/sy/.local/lib/python3.8/site-packages/ray/rllib/algorithms/algorithm.py", line 414, in __init__ super().__init__(config=config, logger_creator=logger_creator, **kwargs) File "/home/sy/.local/lib/python3.8/site-packages/ray/tune/trainable/trainable.py", line 161, in __init__ self.setup(copy.deepcopy(self.config)) File "/home/sy/.local/lib/python3.8/site-packages/ray/rllib/algorithms/algorithm.py", line 524, in setup self.workers = WorkerSet( File "/home/sy/.local/lib/python3.8/site-packages/ray/rllib/evaluation/worker_set.py", line 139, in __init__ self.add_workers( File "/home/sy/.local/lib/python3.8/site-packages/ray/rllib/evaluation/worker_set.py", line 490, in add_workers self.foreach_worker(lambda w: w.assert_healthy()) File "/home/sy/.local/lib/python3.8/site-packages/ray/rllib/evaluation/worker_set.py", line 620, in foreach_worker remote_results = ray.get([w.apply.remote(func) for w in self.remote_workers()]) File "/home/sy/.local/lib/python3.8/site-packages/ray/_private/client_mode_hook.py", line 105, in wrapper return func(*args, **kwargs) File "/home/sy/.local/lib/python3.8/site-packages/ray/_private/worker.py", line 2283, in get values, debugger_breakpoint = worker.get_objects(object_refs, timeout=timeout) File "/home/sy/.local/lib/python3.8/site-packages/ray/_private/worker.py", line 682, in get_objects self.deserialize_objects(data_metadata_pairs, object_refs), File "/home/sy/.local/lib/python3.8/site-packages/ray/_private/worker.py", line 639, in deserialize_objects context = self.get_serialization_context() File "/home/sy/.local/lib/python3.8/site-packages/ray/_private/worker.py", line 537, in get_serialization_context context_map[job_id] = serialization.SerializationContext(self) File "/home/sy/.local/lib/python3.8/site-packages/ray/_private/serialization.py", line 135, in __init__ serialization_addons.apply(self) File "/home/sy/.local/lib/python3.8/site-packages/ray/util/serialization_addons.py", line 56, in apply register_pydantic_serializer(serialization_context) File "/home/sy/.local/lib/python3.8/site-packages/ray/util/serialization_addons.py", line 19, in register_pydantic_serializer pydantic.fields.ModelField, AttributeError: module 'pydantic.fields' has no attribute 'ModelField'

sy@ubuntu:~/Workspace/P4/staint-cc-main/staint-cc-main/rlcc-playground-mininet$ python3 -c "import ray; print(ray.__version__)" 2.1.0 sy@ubuntu:~/Workspace/P4/staint-cc-main/staint-cc-main/rlcc-playground-mininet$ pip show pydantic | grep Version Version: 2.10.6 sy@ubuntu:~/Workspace/P4/staint-cc-main/staint-cc-main/train-code/rllib/single$ python3 train.py 2025-03-03 22:32:54,469 INFO worker.py:1528 – Started a local Ray instance. 2025-03-03 22:32:55,097 INFO ppo.py:379 – In multi-agent mode, policies will be optimized sequentially by the multi-GPU optimizer. Consider setting simple_optimizer=True if this doesn’t work for you. 2025-03-03 22:32:55,098 INFO algorithm.py:457 – Current log_level is WARN. For more information, set ‘log_level’: ‘INFO’ / ‘DEBUG’ or use the -v and -vv flags. Traceback (most recent call last): File “train.py”, line 45, in <module> algo = ppo.PPO( File “/home/sy/.local/lib/python3.8/site-packages/ray/rllib/algorithms/algorithm.py”, line 414, in init super().init(config=config, logger_creator=logger_creator, **kwargs) File “/home/sy/.local/lib/python3.8/site-packages/ray/tune/trainable/trainable.py”, line 161, in init self.setup(copy.deepcopy(self.config)) File “/home/sy/.local/lib/python3.8/site-packages/ray/rllib/algorithms/algorithm.py”, line 524, in setup self.workers = WorkerSet( File “/home/sy/.local/lib/python3.8/site-packages/ray/rllib/evaluation/worker_set.py”, line 139, in init self.add_workers( File “/home/sy/.local/lib/python3.8/site-packages/ray/rllib/evaluation/worker_set.py”, line 490, in add_workers self.foreach_worker(lambda w: w.assert_healthy()) File “/home/sy/.local/lib/python3.8/site-packages/ray/rllib/evaluation/worker_set.py”, line 620, in foreach_worker remote_results = ray.get([w.apply.remote(func) for w in self.remote_workers()]) File “/home/sy/.local/lib/python3.8/site-packages/ray/_private/client_mode_hook.py”, line 105, in wrapper return func(*args, **kwargs) File “/home/sy/.local/lib/python3.8/site-packages/ray/_private/worker.py”, line 2283, in get values, debugger_breakpoint = worker.get_objects(object_refs, timeout=timeout) File “/home/sy/.local/lib/python3.8/site-packages/ray/_private/worker.py”, line 682, in get_objects self.deserialize_objects(data_metadata_pairs, object_refs), File “/home/sy/.local/lib/python3.8/site-packages/ray/_private/worker.py”, line 639, in deserialize_objects context = self.get_serialization_context() File “/home/sy/.local/lib/python3.8/site-packages/ray/_private/worker.py”, line 537, in get_serialization_context context_map[job_id] = serialization.SerializationContext(self) File “/home/sy/.local/lib/python3.8/site-packages/ray/_private/serialization.py”, line 135, in init serialization_addons.apply(self) File “/home/sy/.local/lib/python3.8/site-packages/ray/util/serialization_addons.py”, line 56, in apply register_pydantic_serializer(serialization_context) File “/home/sy/.local/lib/python3.8/site-packages/ray/util/serialization_addons.py”, line 19, in register_pydantic_serializer pydantic.fields.ModelField, AttributeError: module ‘pydantic.fields’ has no attribute ‘ModelField’

(base) hxwang@raspberrypi:~/realsense_build/librealsense-master/build/wrappers/python $ sudo pip install . --break-system-packages Looking in indexes: https://pypi.org/simple, https://www.piwheels.org/simple Processing /home/hxwang/realsense_build/librealsense-master/build/wrappers/python Preparing metadata (setup.py) ... done Building wheels for collected packages: pyrealsense2 Building wheel for pyrealsense2 (setup.py) ... done Created wheel for pyrealsense2: filename=pyrealsense2-2.55.1-py3-none-any.whl size=520734 sha256=539e7b9fff0c8de7d6eb732ae8a7755de26c5f44367fabf225fdaeee429075ef Stored in directory: /tmp/pip-ephem-wheel-cache-90lin6tz/wheels/c2/26/b6/af813fa561492a8526f6a535300afb985818e02a66048d71f2 Successfully built pyrealsense2 Installing collected packages: pyrealsense2 Attempting uninstall: pyrealsense2 Found existing installation: pyrealsense2 2.55.1 Uninstalling pyrealsense2-2.55.1: Successfully uninstalled pyrealsense2-2.55.1 Successfully installed pyrealsense2-2.55.1 WARNING: Running pip as the 'root' user can result in broken permissions and conflicting behaviour with the system package manager. It is recommended to use a virtual environment instead: https://pip.pypa.io/warnings/venv (base) hxwang@raspberrypi:~/realsense_build/librealsense-master/build/wrappers/python $ python -c "import pyrealsense2 as rs; print(dir(rs))" ['BufData', 'D400', 'D500', 'DEPTH', 'L500', 'SR300', 'STAEControl', 'STAFactor', 'STCensusRadius', 'STColorControl', 'STColorCorrection', 'STDepthControlGroup', 'STDepthTableControl', 'STHdad', 'STRauColorThresholdsControl', 'STRauSupportVectorControl', 'STRsm', 'STSloColorThresholdsControl', 'STSloPenaltyControl', 'T200', 'TRACKING', '__doc__', '__file__', '__full_version__', '__loader__', '__name__', '__package__', '__spec__', '__version__', 'align', 'any', 'any_intel', 'auto_calibrated_device', 'calib_target_type', 'calibration_change_device', 'calibration_status', 'calibration_type', 'camera_info', 'color_sensor', 'colorizer', 'composite_frame', 'config', 'context', 'debug_protocol', 'debug_stream_sensor', 'decimation_filter', 'depth_frame', 'depth_sensor', 'depth_stereo_sensor', 'device', 'device_calibration', 'device_list', 'disparity_frame', 'disparity_transform', 'distortion', 'enable_rolling_log_file', 'event_information', 'extension', 'extrinsics', 'filter', 'filter_interface', 'firmware_log_message', 'firmware_log_parsed_message', 'firmware_logger', 'fisheye_sensor', 'format', 'frame', 'frame_metadata_value', 'frame_queue', 'frame_source', 'hdr_merge', 'hole_filling_filter', 'intrinsics', 'l500_visual_preset', 'log', 'log_message', 'log_severity', 'log_to_callback', 'log_to_console', 'log_to_file', 'matchers', 'max_usable_range_sensor', 'motion_device_intrinsic', 'motion_frame', 'motion_sensor', 'motion_stream', 'motion_stream_profile', 'non_intel', 'notification', 'notification_category', 'option', 'option_from_string', 'option_range', 'option_type', 'option_value', 'options', 'options_list', 'pipeline', 'pipeline_profile', 'pipeline_wrapper', 'playback', 'playback_status', 'pointcloud', 'points', 'pose', 'pose_frame', 'pose_sensor', 'pose_stream', 'pose_stream_profile', 'processing_block', 'product_line', 'quaternion', 'recorder', 'region_of_interest', 'reset_logger', 'roi_sensor', 'rs2_deproject_pixel_to_point', 'rs2_fov', 'rs2_project_color_pixel_to_depth_pixel', 'rs2_project_point_to_pixel', 'rs2_transform_point_to_point', 'rs400_advanced_mode', 'rs400_visual_preset', 'save_single_frameset', 'save_to_ply', 'sensor', 'sequence_id_filter', 'serializable_device', 'software_device', 'software_motion_frame', 'software_notification', 'software_pose_frame', 'software_sensor', 'software_video_frame', 'spatial_filter', 'stream', 'stream_profile', 'sw_only', 'syncer', 'temporal_filter', 'terminal_parser', 'texture_coordinate', 'threshold_filter', 'timestamp_domain', 'units_transform', 'updatable', 'update_device', 'vector', 'vertex', 'video_frame', 'video_stream', 'video_stream_profile', 'wheel_odometer', 'yuy_decoder'] (base) hxwang@raspberrypi:~/realsense_build/librealsense-master/build/wrappers/python $ cd (base) hxwang@raspberrypi:~ $ cd yolov5 (base) hxwang@raspberrypi:~/yolov5 $ python 3D_rappy.py Traceback (most recent call last): File "/home/hxwang/yolov5/3D_rappy.py", line 16, in <module> pipeline = rs.pipeline() ^^^^^^^^^^^ AttributeError: module 'pyrealsense2' has no attribute 'pipeline' (base) hxwang@raspberrypi:~/yolov5 $

最新推荐

recommend-type

新版青岛奥博软件公司营销标准手册.docx

新版青岛奥博软件公司营销标准手册.docx
recommend-type

网站安全管理制度(1).doc

网站安全管理制度(1).doc
recommend-type

基于AVR单片机的自动语音欢迎系统-本科毕业论文(1)(1).doc

基于AVR单片机的自动语音欢迎系统-本科毕业论文(1)(1).doc
recommend-type

本科毕设论文-—电子商务在中小企业中的应用探析(1).doc

本科毕设论文-—电子商务在中小企业中的应用探析(1).doc
recommend-type

2014阿里巴巴校园招聘软件研发工程师笔试真题及答案(1).doc

2014阿里巴巴校园招聘软件研发工程师笔试真题及答案(1).doc
recommend-type

500强企业管理表格模板大全

在当今商业环境中,管理表格作为企业运营和管理的重要工具,是确保组织高效运作的关键。世界500强企业在管理层面的成功,很大程度上得益于它们的规范化和精细化管理。本文件介绍的“世界500强企业管理表格经典”,是一份集合了多种管理表格模板的资源,能够帮助管理者们更有效地进行企业规划、执行和监控。 首先,“管理表格”这个概念在企业中通常指的是用于记录、分析、决策和沟通的各种文档和图表。这些表格不仅仅局限于纸质形式,更多地是以电子形式存在,如Excel、Word、PDF等文件格式。它们帮助企业管理者收集和整理数据,以及可视化信息,从而做出更加精准的决策。管理表格可以应用于多个领域,例如人力资源管理、财务预算、项目管理、销售统计等。 标题中提及的“世界500强”,即指那些在全球范围内运营且在《财富》杂志每年公布的全球500强企业排行榜上出现的大型公司。这些企业通常具备较为成熟和先进的管理理念,其管理表格往往经过长时间的实践检验,并且能够有效地提高工作效率和决策质量。 描述中提到的“规范化”是企业管理中的一个核心概念。规范化指的是制定明确的标准和流程,以确保各项管理活动的一致性和可预测性。管理表格的使用能够帮助实现管理规范化,使得管理工作有据可依、有章可循,减少因个人经验和随意性带来的风险和不确定性。规范化管理不仅提高了企业的透明度,还有利于培养员工的规则意识,加强团队之间的协调与合作。 “经典”一词在这里强调的是,这些管理表格模板是经过实践验证,能够适用于大多数管理场景的基本模式。由于它们的普适性和高效性,这些表格模板被广泛应用于不同行业和不同规模的企业之中。一个典型的例子是SWOT分析表,它可以帮助企业识别内部的优势(Strengths)、弱点(Weaknesses)以及外部的机会(Opportunities)和威胁(Threats)。SWOT分析表就是一个在世界500强企业中普遍使用的管理表格。 标签中的“表格模板”则是对上述管理工具的具体描述。这些模板通常是预先设计好的,能够帮助企业管理者快速开始工作,无需从零开始制作新的表格。它们包含了一些必备的字段和格式,用户可以根据自己的具体需求对模板进行调整和填充。 文件名称列表中的“index.html”可能是压缩包内的一个网页文件,用于展示管理表格的索引或介绍。如果这是一个在线资源,它将允许用户通过网页界面访问和下载各种表格模板。而“menu”可能是一个导航文件,用来帮助用户在多个表格模板之间进行选择。“data”文件夹可能包含了实际的表格模板文件,它们可能以Excel、Word等格式存在。 总的来说,管理表格是企业成功管理不可或缺的工具。通过使用世界500强企业所采纳的管理表格模板,其他企业可以借鉴这些顶级企业的管理经验,帮助自己在管理实践中达到更高的效率和质量。通过规范化和模板化的管理表格,企业可以确保其管理活动的一致性和标准化,这对于保持竞争力和实现长期发展至关重要。
recommend-type

YOLOv8目标检测算法深度剖析:从零开始构建高效检测系统(10大秘诀)

# 1. YOLOv8目标检测算法概述 ## 1.1 YOLOv8的简介与定位 YOLOv8(You Only Look Once version 8)作为一种前沿的目标检测算法,是由YOLO系列算法演化而来。该算法特别强调快速与准确的平衡,它被设计用于实时图像识别
recommend-type

mclmcrrt9_8.dll下载

<think>我们正在处理用户关于"mclmcrrt9_8.dll"文件的下载请求。根据引用内容,这个文件是MATLAB运行时库的一部分,通常与特定版本的MATLABRuntime相关联。用户需求:下载mclmcrrt9_8.dll的官方版本。分析:1.根据引用[2]和[3],mclmcrrt9_0_1.dll和mclmcrrt9_13.dll都是MATLABRuntime的文件,版本号对应MATLAB的版本(如9_0对应R2016a,9_13对应2022b)。2.因此,mclmcrrt9_8.dll应该对应于某个特定版本的MATLAB(可能是R2016b?因为9.8版本通常对应MATLABR
recommend-type

林锐博士C++编程指南与心得:初学者快速提能

首先,这份文件的核心在于学习和提高C++编程能力,特别是针对初学者。在这个过程中,需要掌握的不仅仅是编程语法和基本结构,更多的是理解和运用这些知识来解决实际问题。下面将详细解释一些重要的知识点。 ### 1. 学习C++基础知识 - **基本数据类型**: 在C++中,需要熟悉整型、浮点型、字符型等数据类型,以及它们的使用和相互转换。 - **变量与常量**: 学习如何声明变量和常量,并理解它们在程序中的作用。 - **控制结构**: 包括条件语句(if-else)、循环语句(for、while、do-while),它们是构成程序逻辑的关键。 - **函数**: 理解函数定义、声明、调用和参数传递机制,是组织代码的重要手段。 - **数组和指针**: 学习如何使用数组存储数据,以及指针的声明、初始化和运算,这是C++中的高级话题。 ### 2. 林锐博士的《高质量的C++编程指南》 林锐博士的著作《高质量的C++编程指南》是C++学习者的重要参考资料。这本书主要覆盖了以下内容: - **编码规范**: 包括命名规则、注释习惯、文件结构等,这些都是编写可读性和可维护性代码的基础。 - **设计模式**: 在C++中合理使用设计模式可以提高代码的复用性和可维护性。 - **性能优化**: 学习如何编写效率更高、资源占用更少的代码。 - **错误处理**: 包括异常处理和错误检测机制,这对于提高程序的鲁棒性至关重要。 - **资源管理**: 学习如何在C++中管理资源,避免内存泄漏等常见错误。 ### 3. 答题与测试 - **C++C试题**: 通过阅读并回答相关试题,可以帮助读者巩固所学知识,并且学会如何将理论应用到实际问题中。 - **答案与评分标准**: 提供答案和评分标准,使读者能够自我评估学习成果,了解哪些方面需要进一步加强。 ### 4. 心得体会与实践 - **实践**: 理论知识需要通过大量编程实践来加深理解,动手编写代码,解决问题,是学习编程的重要方式。 - **阅读源码**: 阅读其他人的高质量代码,可以学习到许多编程技巧和最佳实践。 - **学习社区**: 参与C++相关社区,比如Stack Overflow、C++论坛等,可以帮助解答疑惑,交流心得。 ### 5. 拓展知识 - **C++标准库**: 学习C++标准模板库(STL),包括vector、map、list、algorithm等常用组件,是构建复杂数据结构和算法的基础。 - **面向对象编程**: C++是一种面向对象的编程语言,理解类、对象、继承、多态等概念对于写出优雅的C++代码至关重要。 - **跨平台编程**: 了解不同操作系统(如Windows、Linux)上的C++编程差异,学习如何编写跨平台的应用程序。 - **现代C++特性**: 学习C++11、C++14、C++17甚至C++20中的新特性,如智能指针、lambda表达式、自动类型推导等,可以提高开发效率和代码质量。 ### 总结 学习C++是一个系统工程,需要从基础语法开始,逐步深入到设计思想、性能优化、跨平台编程等领域。通过不断的学习和实践,初学者可以逐步成长为一个具有高代码质量意识的C++程序员。而通过阅读经典指南书籍,参与测试与评估,以及反思和总结实践经验,读者将更加扎实地掌握C++编程技术。此外,还需注意编程社区的交流和现代C++的发展趋势,这些都对于保持编程技能的前沿性和实用性是必不可少的。
recommend-type

线性代数方程组求解全攻略:直接法vs迭代法,一文搞懂

# 摘要 线性代数方程组求解是数学和工程领域中的基础而重要的问题。本文首先介绍了线性方程组求解的基础知识,然后详细阐述了直接法和迭代法两种主要的求解策略。直接法包括高斯消元法和LU分解方法,本文探讨了其理论基础、实践应用以及算法优化。迭代法则聚焦于雅可比和高斯-赛德尔方法,分析了其原理、实践应用和收敛性。通过比较分析,本文讨论了两种方法在