yolov5_deepsort目标跟踪算法
时间: 2025-03-26 08:34:35 浏览: 40
### YOLOv5与DeepSort结合的目标跟踪算法实现教程
#### 初始化环境和模型加载
为了构建YOLOv5与DeepSort相结合的对象跟踪系统,首先需要安装并配置必要的库和工具。这包括但不限于YOLOv5、DeepSort及其依赖项。
```python
import torch
from models.experimental import attempt_load
from utils.general import non_max_suppression, scale_coords
from deep_sort.utils.parser import get_config
from deep_sort.deep_sort import DeepSort
```
这段代码展示了如何导入所需的模块和类来准备YOLOv5和DeepSort的集成[^1]。
#### 加载预训练权重及初始化追踪器实例
接着,在实际应用之前要确保已经下载了合适的YOLOv5权重文件,并通过下面的方式创建了一个`DeepSort`对象用于后续处理:
```python
device = 'cuda' if torch.cuda.is_available() else 'cpu'
model = attempt_load('yolov5s.pt', map_location=device)
cfg_deepsort = get_config()
cfg_deepsort.merge_from_file("deep_sort/configs/deep_sort.yaml")
deepsort = DeepSort(cfg_deepsort.DEEPSORT.REID_CKPT,
max_dist=cfg_deepsort.DEEPSORT.MAX_DIST,
min_confidence=cfg_deepsort.DEEPSORT.MIN_CONFIDENCE,
nms_max_overlap=cfg_deepsort.DEEPSORT.NMS_MAX_OVERLAP,
max_iou_distance=cfg_deepsort.DEEPSORT.MAX_IOU_DISTANCE,
max_age=cfg_deepsort.DEEPSORT.MAX_AGE,
n_init=cfg_deepsort.DEEPSORT.N_INIT,
nn_budget=cfg_deepsort.DEEPSORT.NN_BUDGET,)
```
此部分实现了YOLOv5模型的加载以及基于配置文件设置了DeepSort的具体参数[^2]。
#### 执行检测与跟踪流程
当一切就绪之后就可以进入核心逻辑——即对每一帧图像先调用YOLOv5获取边界框预测结果;再利用这些信息作为输入传递给DeepSort完成身份识别工作。以下是简化版伪代码表示该过程:
```python
def detect_and_track(frame):
imgsz = 640 # 图像尺寸调整大小
stride = int(model.stride.max()) # 模型最大步幅
im0 = frame.copy()
# Padded resize
img = letterbox(im0, new_shape=imgsz, auto=True)[0]
# Convert
img = img[:, :, ::-1].transpose(2, 0, 1) # BGR to RGB, to 3x416x416
img = np.ascontiguousarray(img)
img = torch.from_numpy(img).to(device)
img = img.float() / 255.0 # 归一化至[0, 1]
if len(img.shape) == 3:
img = img.unsqueeze(0)
pred = model(img)[0]
det = non_max_suppression(pred, conf_thres=0.4, iou_thres=0.5)[0]
bbox_xywh = []
confidences = []
if det is not None and len(det):
det[:, :4] = scale_coords(img.shape[2:], det[:, :4], im0.shape).round()
for *xyxy, conf, cls in reversed(det):
xywh = (torch.tensor(xyxy).view(1, 4)).clone().detach()[0]
c1, c2 = (int(xywh[0]), int(xywh[1])), (int(xywh[2]), int(xywh[3]))
box_w = c2[0] - c1[0]
box_h = c2[1] - c1[1]
x_c, y_c = xywh[0], xywh[1]
obj = [
x_c.item(),
y_c.item(),
box_w.item(),
box_h.item()
]
bbox_xywh.append(obj)
confidences.append(conf.item())
outputs = deepsort.update(torch.Tensor(bbox_xywh), confidences, im0)
for output in list(outputs):
draw_boxes(im0, output)
return im0
# 绘制边框函数定义省略...
```
上述代码片段描述了一次完整的检测加跟踪操作,其中包含了从原始图片读取到最后绘制跟踪结果的过程[^4]。
阅读全文
相关推荐


















