点云focal loss多分类代码
时间: 2025-01-06 09:40:17 浏览: 45
### 实现点云多分类任务中使用Focal Loss
对于点云多分类任务,采用 Focal Loss 可以有效解决类别不平衡问题。下面展示了一个基于 PyTorch 的简单实现案例:
```python
import torch
import torch.nn as nn
import torch.optim as optim
from torch.utils.data import DataLoader, Dataset
class PointNet(nn.Module):
def __init__(self, num_classes=40):
super(PointNet, self).__init__()
# 定义PointNet结构
self.conv1 = nn.Conv1d(3, 64, kernel_size=1)
self.conv2 = nn.Conv1d(64, 128, kernel_size=1)
self.fc1 = nn.Linear(128, 128)
self.fc2 = nn.Linear(128, num_classes)
def forward(self, x):
batchsize = x.size()[0]
x = torch.relu(self.conv1(x))
x = torch.relu(self.conv2(x))
x = torch.max(x, 2, keepdim=True)[0]
x = x.view(-1, 128)
x = torch.relu(self.fc1(x))
x = self.fc2(x)
return x
def focal_loss(input_values, gamma):
"""Compute the focal loss between `logits` and the golden `target` values.
Args:
input_values (Tensor): logits from model predictions.
gamma (float): hyperparameter to adjust focus on hard examples.
Returns:
Tensor: computed focal loss value.
"""
p = torch.exp(-input_values)
loss = (1 - p) ** gamma * input_values
return loss.mean()
class ModelTrainer(object):
def train(model, dataloader, optimizer, device='cuda'):
criterion = focal_loss
for data in dataloader:
points, target = data
points, target = points.to(device), target.to(device)
optimizer.zero_grad()
pred = model(points.transpose(2, 1)) # 调整输入维度顺序
loss = criterion(pred, target)
loss.backward()
optimizer.step()
model = PointNet(num_classes=40).to('cuda')
optimizer = optim.Adam(model.parameters(), lr=0.001)
trainer = ModelTrainer()
```
此代码片段展示了如何构建一个简单的 PointNet 架构并应用 Focal Loss 进行训练[^1]。
阅读全文
相关推荐











