bgdmodel = np.zeros((1,65),np.float64) fgdmodel = np.zeros((1,65),np.float64)
时间: 2023-08-03 16:03:44 浏览: 221
这段代码创建了两个大小为(1, 65)的数组,分别命名为`bgdmodel`和`fgdmodel`。这些数组的数据类型是`np.float64`。这些数组通常用于OpenCV库中的GrabCut图像分割算法中,用于存储背景模型和前景模型的参数。
在GrabCut算法中,这些模型用于对图像进行迭代分割。`bgdmodel`存储了背景模型的参数,而`fgdmodel`存储了前景模型的参数。这些参数将在算法的迭代过程中更新,并最终用于分割图像为前景和背景。
这里,两个数组都被初始化为全零,以便在开始分割之前,将其传递给GrabCut算法以进行初始化。
相关问题
state_buffer = np.zeros((0, 1), dtype=np.float32) state_buffer1 = np.zeros((0, 100), dtype=np.float32)这两行代码有什么区别
这两行代码的区别在于 `np.zeros` 中的第二个参数,即生成的数组的形状。
第一行代码中 `np.zeros((0, 1), dtype=np.float32)` 生成的是一个形状为 `(0, 1)` 的浮点型数组,也就是一个空的列向量(其中的 0 表示行数为 0,1 表示列数为 1)。
第二行代码中 `np.zeros((0, 100), dtype=np.float32)` 生成的是一个形状为 `(0, 100)` 的浮点型数组,也就是一个空的 $100$ 列的矩阵(其中的 0 表示行数为 0,100 表示列数为 100)。
因此,第一行代码生成的数组可以表示一个空的状态序列,第二行代码生成的数组可以表示一个空的状态矩阵。
def agglr(costVolume, color_left, color_right, maxDis, P1, P2, thres): H = costVolume.shape[0]; W = costVolume.shape[1] imgL = color_left.astype(np.float32); imgR = color_right.astype(np.float32) penalties = np.zeros(shape=(maxDis), dtype=np.float32) aggtwo = np.zeros(shape=(H, W, maxDis), dtype=np.float32) aggfour = np.zeros(shape=(H, W, maxDis), dtype=np.float32) aggtwo[:, 0, :] = costVolume[:, 0, :] aggfour[:, W - 1, :] = costVolume[:, W - 1, :]啥意思
这段代码是实现了一个聚合算法,用于计算左右两个图像之间的视差。其中,costVolume是一个三维的张量,表示各个像素点在不同视差下的代价值;color_left和color_right分别表示左右两张图像的像素值;maxDis表示最大视差值;P1和P2是用于计算代价值的参数;thres是一个阈值,用于控制是否聚合到更多像素。
代码中,首先获取图像的高度和宽度,将左右两张图像转换为浮点数类型。然后定义penalties、aggtwo和aggfour三个张量,分别用于存储惩罚、两个方向的聚合结果和四个方向的聚合结果。在第一列和最后一列分别初始化两个方向的聚合结果。
阅读全文
相关推荐
















