活动介绍

有配置文件和onnx文件,我想看这个模型的FPS _base_ = [ '../../../../_base_/default_runtime.py', '../../../../_base_/datasets/wflw.py' ] checkpoint_config = dict(interval=500) evaluation = dict(interval=10, metric=['NME'], save_best='NME') optimizer = dict( type='Adam', lr=2e-3, ) optimizer_config = dict(grad_clip=None) # learning policy lr_config = dict( policy='step', warmup='linear', warmup_iters=500, warmup_ratio=0.001, step=[40, 55]) total_epochs = 1000 log_config = dict( interval=10, hooks=[ dict(type='TextLoggerHook'), dict(type='TensorboardLoggerHook') ]) channel_cfg = dict( num_output_channels=98, dataset_joints=98, dataset_channel=[ list(range(98)), ], inference_channel=list(range(98))) data_cfg = dict( image_size=[256, 256], heatmap_size=[64, 64], ##-------------------------------- # # #-------------2023-04-23------------ num_output_channels=channel_cfg['num_output_channels'], num_joints=channel_cfg['dataset_joints'], dataset_channel=channel_cfg['dataset_channel'], inference_channel=channel_cfg['inference_channel']) in_channels=[18, 36, 72, 144] in_index=(0, 1, 2, 3) if data_cfg['heatmap_size'][0] ==8: in_channels=[18, 36, 72] in_index=(0, 1, 2) if data_cfg['heatmap_size'][0] ==4: in_channels=[18, 36] in_index=(0, 1) # model settings model = dict( type='TopDown', # pretrained='open-mmlab://msra/hrnetv2_w18', pretrained='./data/hrnetv2_w18_wflw_256x256-2bf032a6_20210125.pth', backbone=dict( type='HRNet', in_channels=3, extra=dict( stage1=dict( num_modules=1, num_branches=1, block='BOTTLENECK', num_blocks=(4, ), num_channels=(64, )), stage2=dict( num_modules=1, num_branches=2, block='BASIC', num_blocks=(4, 4), num_chan

时间: 2025-07-10 13:43:49 浏览: 11
<think>好的,我现在需要帮助用户评估ONNX模型的FPS性能,特别是TopDown HRNet模型在PyTorch和ONNXRuntime下的表现。用户提到了使用配置文件和ONNX文件,所以我得想想如何结合这两者来测量FPS。 首先,用户可能已经有一个ONNX模型和对应的配置文件。配置文件通常包含模型结构、预处理参数等信息,比如在MMPose这样的框架中,配置文件会定义数据预处理步骤、模型结构等。我需要确认用户是否在使用类似MMPose这样的库,因为引用中提到了MMPose的工具和训练脚本[^1],这可能相关。 接下来,FPS的测量通常涉及多次运行模型推理,计算平均时间。需要考虑的因素包括预热次数(避免冷启动误差)、测试次数、是否包括数据预处理和后处理的时间。用户可能希望只测模型推理部分,或者整个流程的端到端时间,这会影响实现方式。 然后,ONNXRuntime的使用方法。需要用Python的onnxruntime库来加载ONNX模型,创建InferenceSession。输入数据需要符合模型的输入要求,比如形状和数据类型。TopDown模型通常是先检测人体框,再检测关键点,但用户可能已经处理好了输入,只需要关注HRNet部分的推理。 配置文件的作用可能包括指定输入尺寸、归一化参数等预处理步骤。比如,在MMPose的配置中,测试流程可能包括加载图像、调整大小、归一化等步骤[^3]。用户需要确保测试时的数据预处理与训练时一致,否则会影响模型性能甚至精度。 另外,引用中提到OpenPose的优化方法,比如使用MobileNetV1和空洞卷积[^2],这可能对性能有影响,但用户当前的问题是关于测量FPS,而不是优化模型结构。不过,了解这些优化方法可能对后续优化FPS有帮助。 可能的步骤包括: 1. 加载ONNX模型,创建ONNXRuntime的会话。 2. 准备输入数据,可能需要根据配置文件中的预处理步骤处理图像。 3. 进行预热推理,排除初始化带来的时间偏差。 4. 多次运行推理,计算平均时间,进而得到FPS。 5. 确保测试环境稳定,比如关闭不必要的程序,固定CPU/GPU频率等。 用户可能还需要考虑硬件配置,比如引用中提到的Intel NUC和Core i7 CPU的性能数据[^2],不同的硬件会影响FPS结果。因此,在测试时需要明确记录硬件环境。 另外,是否需要使用多线程或异步推理?这可能会影响FPS测量结果。在ONNXRuntime中,可以配置执行提供者(如CPU或CUDA),以及线程数等参数。 最后,用户可能需要一个脚本来自动化这个过程,比如类似MMPose中的test.py,但需要修改以适应ONNX模型和FPS测试的需求。可能需要编写一个单独的脚本,读取配置文件中的参数,处理输入数据,然后进行推理计时。 总结下来,我需要指导用户如何结合配置文件和ONNX模型,使用ONNXRuntime进行推理,并准确测量FPS,同时注意预处理步骤的正确性和测试环境的稳定性。</think>### 评估ONNX模型FPS性能的方法 #### 1. **准备测试环境** - **硬件配置**:明确测试设备(如CPU型号/GPU型号),确保测试环境与实际应用场景一致[^2]。 - **依赖库安装**:确保已安装`onnxruntime`(CPU或GPU版本)及必要的预处理库(如OpenCV、PyTorch)。 #### 2. **加载模型与配置文件** - **加载ONNX模型**:使用ONNXRuntime创建推理会话。 ```python import onnxruntime as ort sess = ort.InferenceSession("hrnet.onnx", providers=['CPUExecutionProvider']) # 根据硬件选择ExecutionProvider ``` - **解析配置文件**:从TopDown HRNet的配置文件中获取输入尺寸、归一化参数等。例如: ```python input_size = (256, 192) # 根据配置文件中的data_cfg设定 mean = [0.485, 0.456, 0.406] # 归一化均值 std = [0.229, 0.224, 0.225] # 归一化方差 ``` #### 3. **数据预处理** - **输入模拟**:生成符合模型要求的输入张量(若需真实数据,需按配置文件流程处理图像)。 ```python import numpy as np dummy_input = np.random.randn(1, 3, input_size[1], input_size[0]).astype(np.float32) # 形状:Batch×Channel×Height×Width ``` #### 4. **性能测试脚本** ```python import time # 预热(避免冷启动误差) for _ in range(10): sess.run(None, {'input': dummy_input}) # 正式测试 num_tests = 100 start_time = time.time() for _ in range(num_tests): sess.run(None, {'input': dummy_input}) total_time = time.time() - start_time fps = num_tests / total_time print(f"FPS: {fps:.2f}") ``` #### 5. **关键注意事项** - **输入一致性**:确保输入数据形状和类型与ONNX模型定义完全匹配。 - **环境隔离**:关闭无关进程,避免CPU/GPU资源竞争[^2]。 - **端到端测试**:若需包含预处理时间,需将图像加载、归一化等步骤纳入计时范围[^3]。 --- ###
阅读全文

相关推荐

#include "dml-module.h" #include "cap.h" #include "cap_win.h" #include <nms.h> #include <opencv2/opencv.hpp> #include "AIMBOT.cpp" #include "mouse_controller.h" #include <windows.h> #include <chrono> #include <string> #include <filesystem> #include <iostream> #include <functional> #include <atomic> #include <mutex> #include <vector> #include <algorithm> #include <optional> #include "gbil_mouse_controller.h" #include "config.h" // ===== 新增:ADRC控制器结构体(自抗扰控制,解决动态目标扰动问题)===== struct ADRCController { float w0; // 观测器带宽 float b0; // 控制增益 float w_n; // 闭环带宽 float sigma; // 阻尼系数 float time_delta; // 时间步长(ms转换为秒) // 扩张状态观测器变量 float z1{ 0 }, z2{ 0 }, z3{ 0 }; // 状态观测值(位置、速度、扰动) float u_p{ 0 }; // 上一时刻控制量 std::mutex mtx; // 初始化ADRC参数(从配置文件读取) ADRCController(float w0_, float b0_, float w_n_, float sigma_, float dt) : w0(w0_), b0(b0_), w_n(w_n_), sigma(sigma_), time_delta(dt) { } // *核心方法:根据目标值和当前值计算补偿后的控制量 float update(float target, float current) { std::lock_guard<std::mutex> lock(mtx); float err = current - z1; // 跟踪误差 // 扩张状态观测器(ESO)更新 float fhan = this->fhan(err, z2, w_n, sigma); z1 += time_delta * (z2 + w0 * w0 * err); // 位置观测 z2 += time_delta * (z3 + 2 * w0 * z2 + w0 * w0 * fhan); // 速度观测 z3 += time_delta * (-3 * w0 * z3 + w0 * w0 * w0 * (current - z1)); // 扰动观测 // 控制律计算(补偿扰动) float u0 = w_n * w_n * (target - z1) - 2 * sigma * w_n * z2; float u = (u0 - z3) / b0; u_p = u; // 保存当前控制量 return u; } // 快速跟踪微分器(处理非线性特性) float fhan(float x1, float x2, float r, float h0) { float d = r * h0 * h0; float d0 = h0 * d; float y = x1 + h0 * x2; float a0 = sqrt(d * (d + 8 * abs(y))); float a; if (abs(y) > d0) { a = x2 + (a0 - d) / 2 * (y > 0 ? 1 : -1); } else { a = x2 + y / h0; } if (abs(a) > d) { return -r * (a > 0 ? 1 : -1); } else { return -r * a / d; } } void reset() { std::lock_guard<std::mutex> lock(mtx); z1 = z2 = z3 = 0; u_p = 0; } }; // ===== PID控制器结构体(保留原有功能,与ADRC级联)===== struct PIDController { float kp, ki, kd; float integral{ 0 }, last_error{ 0 }; std::mutex mtx; PIDController(float p, float i, float d) : kp(p), ki(i), kd(d) {} float compute(float error) { std::lock_guard<std::mutex> lock(mtx); integral += error; float derivative = error - last_error; last_error = error; return kp * error + ki * integral + kd * derivative; } void reset() { std::lock_guard<std::mutex> lock(mtx); integral = 0; last_error = 0; } }; // ===== 卡尔曼滤波类(参数可配置)===== class KalmanFilter { public: KalmanFilter(float process_noise, float obs_noise) { kf.init(4, 2, 0); kf.transitionMatrix = (cv::Mat_<float>(4, 4) << 1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1); cv::setIdentity(kf.measurementMatrix); cv::setIdentity(kf.processNoiseCov, cv::Scalar::all(process_noise)); cv::setIdentity(kf.measurementNoiseCov, cv::Scalar::all(obs_noise)); cv::setIdentity(kf.errorCovPost, cv::Scalar::all(1)); } cv::Point2f predict(float x, float y) { cv::Mat measurement = (cv::Mat_<float>(2, 1) << x, y); kf.predict(); cv::Mat estimated = kf.correct(measurement); return cv::Point2f(estimated.at<float>(0), estimated.at<float>(1)); } private: cv::KalmanFilter kf; }; // ===== 新增:贝塞尔曲线生成工具(解决移动拖影,实现类人平滑路径)===== class BezierCurve { public: // 生成从起点到终点的贝塞尔曲线路径点 static std::vector<cv::Point2f> generatePoints( cv::Point2f start, cv::Point2f end, int num_points = 10) { // 路径点数量(越多越平滑)数值越大越慢 std::vector<cv::Point2f> points; // 生成随机内点(增加路径自然性) std::vector<cv::Point2f> control_points; control_points.push_back(start); // 添加2个随机内点(在起点和终点范围内) control_points.push_back(cv::Point2f( start.x + (end.x - start.x) * 0.3f + rand() % 5 - 2, // 微小随机偏移 start.y + (end.y - start.y) * 0.3f + rand() % 5 - 2 )); control_points.push_back(cv::Point2f( start.x + (end.x - start.x) * 0.7f + rand() % 5 - 2, start.y + (end.y - start.y) * 0.7f + rand() % 5 - 2 )); control_points.push_back(end); // 贝塞尔曲线采样 for (int i = 0; i < num_points; ++i) { float t = (float)i / (num_points - 1); points.push_back(bezier(t, control_points)); } return points; } private: // 贝塞尔曲线计算 static cv::Point2f bezier(float t, const std::vector<cv::Point2f>& points) { int n = points.size() - 1; cv::Point2f result(0, 0); for (int i = 0; i <= n; ++i) { float bernstein = binomial(n, i) * pow(t, i) * pow(1 - t, n - i); result.x += points[i].x * bernstein; result.y += points[i].y * bernstein; } return result; } // 二项式系数计算 static float binomial(int n, int k) { if (k < 0 || k > n) return 0; if (k == 0 || k == n) return 1; k = std::min(k, n - k); float res = 1; for (int i = 1; i <= k; ++i) { res = res * (n - k + i) / i; } return res; } }; // ===== 目标选择函数(安全封装)===== std::optional<Box> selectTarget( std::vector<Box>& filtered, int& tracked_id, int& tracking_counter, float anchor_x, float anchor_y, int width, int height ) { // 优先选择上次追踪目标 for (auto& box : filtered) { if (box.id == tracked_id) { tracking_counter++; return box; } } // 未找到则选择距离中心最近的目标 if (!filtered.empty()) { float min_dist = FLT_MAX; Box* best_target = nullptr; for (auto& box : filtered) { float cx = box.left + (box.right - box.left) * anchor_x; float cy = box.top + (box.bottom - box.top) * anchor_y; float dist = std::hypot(cx - width / 2.0f, cy - height / 2.0f); if (dist < min_dist) { min_dist = dist; best_target = &box; } } if (best_target) { tracked_id = best_target->id; tracking_counter = 1; return *best_target; } } return std::nullopt; } int main() { // ------ 新增:检查自身实例是否已在运行 开始 ------ // 通过创建全局命名互斥锁(Named Mutex)来判断是否已有一个实例在运行 HANDLE hInstanceMutex = CreateMutexW(nullptr, FALSE, L"Global\\GblidDemoVC_Mutex"); if (!hInstanceMutex || GetLastError() == ERROR_ALREADY_EXISTS) { MessageBoxW(NULL, L"请勿重复运行", L"提示", MB_OK | MB_ICONWARNING); if (hInstanceMutex) { CloseHandle(hInstanceMutex); } ExitProcess(0); // 已有实例,退出当前进程 } // ------ 新增:检查自身实例是否已在运行 结束 ------ // 隐藏控制台窗口 HWND consoleWindow = GetConsoleWindow(); // 获取当前控制台窗口句柄 ShowWindow(consoleWindow, SW_HIDE); // 隐藏控制台窗口(如果需要调试可以注释掉这行)//==========需要调试可以注释================== // ==== 加载配置 ==== Config config; if (!config.loadFromFile("./config.ini")) { printf("主程序-配置文件加载失败!\n"); return -1; } bool baim = (config.aim_part == 0); timeBeginPeriod(1); // 设置定时器精度为1ms // === 自动加载模型 === std::string model_dir = "onnx"; std::string model_path; for (const auto& entry : std::filesystem::directory_iterator(model_dir)) { if (entry.path().extension() == ".onnx") { model_path = entry.path().string(); break; } } if (model_path.empty()) { printf("主程序-未在 'onnx' 文件夹中找到任何 .onnx 模型文件!\n"); return -1; } printf("主程序-加载模型路径: %s\n", model_path.c_str()); // 初始化模型类 auto* frame = new IDML(); if (!frame->AnalyticalModel(model_path)) { printf("主程序-模型加载失败。\n"); return -2; } const auto& input_dims = frame->getInputDims(); if (input_dims.size() != 4) { printf("主程序-模型输入维度异常,当前维度数量: %llu\n", input_dims.size()); return -3; } int channels = static_cast<int>(input_dims[1]); int height = static_cast<int>(input_dims[2]); int width = static_cast<int>(input_dims[3]); printf("主程序-输入图像尺寸: %d x %d\n", width, height); // ==== 初始化控制器(*修改:新增ADRC控制器)==== PIDController pid_x(config.xkp, config.xki, config.xkd); PIDController pid_y(config.ykp, config.yki, config.ykd); // *ADRC参数(从配置文件读取,可根据动态目标特性调整) float adrc_dt = 0.016f; // 约60FPS的时间步长(1/60≈0.016s) ADRCController adrc_x(config.adrc_w0, config.adrc_b0, config.adrc_wn, config.adrc_sigma, adrc_dt); ADRCController adrc_y(config.adrc_w0, config.adrc_b0, config.adrc_wn, config.adrc_sigma, adrc_dt); KalmanFilter kf(config.kalman_Q, config.kalman_R); printf("主程序-控制参数: PID X[%.2f, %.3f, %.2f] Y[%.2f, %.3f, %.2f]\n", config.xkp, config.xki, config.xkd, config.ykp, config.yki, config.ykd); printf("主程序-ADRC参数: w0=%.1f, b0=%.2f, wn=%.1f, sigma=%.1f\n", config.adrc_w0, config.adrc_b0, config.adrc_wn, config.adrc_sigma); int screenW = GetSystemMetrics(SM_CXSCREEN); int screenH = GetSystemMetrics(SM_CYSCREEN); std::function<BYTE* ()> capture_func; void* cap_impl = nullptr; // 选择截图方式 if (config.screenshot_method == 0) { auto* c = new capture(screenW, screenH, width, height, "CrossFire"); cap_impl = c; capture_func = [c]() -> BYTE* { return (BYTE*)c->cap(); }; printf("主程序-截图方式: DXGI\n"); } else { auto* c = new capture_win32(screenW, screenH, width, height, "CrossFire"); cap_impl = c; capture_func = [c]() -> BYTE* { return c->cap(); }; printf("主程序-截图方式: Win32 BitBlt\n"); } // 初始化鼠标控制器 IMouseController* mouse = nullptr; if (config.move_type == 0) { mouse = new WinMouseController(); printf("主程序-使用鼠标控制器: WinMove\n"); } else if (config.move_type == 1) { mouse = new GBILMouseController(); printf("主程序-使用鼠标控制器: GBIL\n"); } else { printf("主程序-未知的 move_type 类型: %d,未启用鼠标移动!\n", config.move_type); } using Clock = std::chrono::high_resolution_clock; auto last_time = Clock::now(); float fps = 0.0f; // ==== 持续追踪状态 ==== static int tracked_id = -1; static int tracking_counter = 0; static int lost_counter = 0; // ==== 跟踪功能开关状态 ==== std::atomic<bool> tracking_enabled{ true }; bool last_tracking_toggle_state = false; bool last_exit_key_state = false; // ==== 新增:记录上一时刻鼠标位置(用于贝塞尔路径生成)==== cv::Point2f last_mouse_pos(0, 0); // ==== 主循环 ==== static bool target_locked = false; static int lock_frames_counter = 0; static float last_min_dist = FLT_MAX; while (true) { auto start = Clock::now(); // ==== 检查退出键 ==== bool current_exit_state = (GetAsyncKeyState(config.exit_key) & 0x8000) != 0; if (current_exit_state && !last_exit_key_state) { // 使用MB_SYSTEMMODAL标志使对话框置顶 [1,8](@ref) int result = MessageBoxA( NULL, "确定要退出YAK吗?", "退出确认", MB_OKCANCEL | MB_ICONQUESTION | MB_SYSTEMMODAL // 添加MB_SYSTEMMODAL标志 ); if (result == IDOK) { break; } } last_exit_key_state = current_exit_state; // ==== 检查跟踪开关键 ==== bool current_tracking_toggle = (GetAsyncKeyState(config.tracking_toggle_key) & 0x8000) != 0; if (current_tracking_toggle && !last_tracking_toggle_state) { tracking_enabled = !tracking_enabled; printf("主程序-跟踪功能已%s\n", tracking_enabled ? "开启" : "关闭"); } last_tracking_toggle_state = current_tracking_toggle; // 截图 BYTE* s = capture_func(); auto after_cap = Clock::now(); // 目标检测 float* data = frame->Detect(s); auto after_detect = Clock::now(); // 计算性能指标 float capture_ms = std::chrono::duration<float, std::milli>(after_cap - start).count(); float detect_ms = std::chrono::duration<float, std::milli>(after_detect - after_cap).count(); float frame_time = std::chrono::duration<float>(after_detect - last_time).count(); last_time = after_detect; fps = 1.0f / frame_time; std::vector<Box> oldbox; std::vector<Box> newbox = generate_yolo_proposals(data, oldbox, frame->out1, frame->out2, config.conf_threshold, config.nms_threshold); // ==== 目标过滤 ==== static std::vector<Box> filtered; filtered.clear(); for (auto& box : newbox) { if (config.valid_classes.empty() || std::find(config.valid_classes.begin(), config.valid_classes.end(), box.class_label) != config.valid_classes.end()) { filtered.push_back(box); } } // ==== 目标选择与锁定机制 ==== std::optional<Box> current_target = std::nullopt; if (tracking_enabled) { if (target_locked) { for (auto& box : filtered) { if (box.id == tracked_id) { current_target = box; tracking_counter++; lost_counter = 0; break; } } if (!current_target) { if (++lost_counter > 5) { target_locked = false; tracked_id = -1; tracking_counter = 0; lost_counter = 0; last_min_dist = FLT_MAX; } } } else if (!filtered.empty()) { float min_dist = FLT_MAX; Box* best_target = nullptr; for (auto& box : filtered) { float cx = box.left + (box.right - box.left) * config.anchor_x; float cy = box.top + (box.bottom - box.top) * config.anchor_y; float dist = std::hypot(cx - width / 2.0f, cy - height / 2.0f); if (dist < min_dist && (tracked_id == -1 || dist < last_min_dist * 0.8f)) { min_dist = dist; best_target = &box; } } if (best_target) { current_target = *best_target; tracked_id = best_target->id; tracking_counter = 1; last_min_dist = min_dist; if (min_dist < config.lock_threshold) { if (++lock_frames_counter >= config.lock_frames) { target_locked = true; lock_frames_counter = 0; } } else { lock_frames_counter = 0; } } } } // ==== 鼠标控制逻辑(*核心修改:PID+ADRC级联控制+贝塞尔路径平滑)==== bool aim_key_pressed = (GetAsyncKeyState(config.aim_key) & 0x8000) != 0; bool aim_key1_pressed = (GetAsyncKeyState(config.aim_key1) & 0x8000) != 0; bool any_aim_key_pressed = aim_key_pressed || aim_key1_pressed; if (any_aim_key_pressed && mouse && tracking_enabled) { if (current_target) { // 计算锚点位置 float center_x = current_target->left + (current_target->right - current_target->left) * config.anchor_x; float center_y = current_target->top + (current_target->bottom - current_target->top) * config.anchor_y; cv::Point2f smoothed; if (config.kalman_enable) { smoothed = kf.predict(center_x, center_y); } else { smoothed = cv::Point2f(center_x, center_y); } // 计算原始偏移(目标与屏幕中心的偏差) float raw_dx = smoothed.x - width / 2.0f; float raw_dy = smoothed.y - height / 2.0f; // *步骤1:PID计算基础移动量(比例+积分+微分) float pid_dx = pid_x.compute(raw_dx); float pid_dy = pid_y.compute(raw_dy); // *步骤2:ADRC补偿动态扰动(解决动态目标跟踪延迟) float adrc_dx = adrc_x.update(pid_dx, raw_dx); // 输入PID输出和原始偏差 float adrc_dy = adrc_y.update(pid_dy, raw_dy); // *步骤3:贝塞尔曲线生成平滑路径(解决移动拖影) cv::Point2f target_pos(last_mouse_pos.x + adrc_dx, last_mouse_pos.y + adrc_dy); std::vector<cv::Point2f> path = BezierCurve::generatePoints(last_mouse_pos, target_pos); // *步骤4:按平滑路径移动鼠标 for (const auto& p : path) { mouse->updateTarget(p.x - last_mouse_pos.x, p.y - last_mouse_pos.y); last_mouse_pos = p; // 更新当前鼠标位置 Sleep(1); // 微小延迟,确保平滑效果 } } else { // 无目标时重置 mouse->updateTarget(0.0f, 0.0f); pid_x.reset(); pid_y.reset(); adrc_x.reset(); // *重置ADRC adrc_y.reset(); last_mouse_pos = cv::Point2f(0, 0); target_locked = false; tracked_id = -1; lock_frames_counter = 0; } } else { // 未按触发键时重置 if (mouse) mouse->updateTarget(0.0f, 0.0f); target_locked = false; tracked_id = -1; tracking_counter = 0; lock_frames_counter = 0; pid_x.reset(); pid_y.reset(); adrc_x.reset(); // *重置ADRC adrc_y.reset(); last_mouse_pos = cv::Point2f(0, 0); } // ==== 调试窗口显示 ==== if (config.show_window) { cv::Mat a(height, width, CV_8UC3, s); if (!newbox.empty()) { for (const Box& detection : newbox) { cv::Scalar color = (current_target && detection.id == current_target->id) ? cv::Scalar(0, 0, 255) : cv::Scalar(0, 255, 0); int thickness = (current_target && detection.id == current_target->id) ? 2 : 1; cv::rectangle(a, cv::Point((int)detection.left, (int)detection.top), cv::Point((int)detection.right, (int)detection.bottom), color, thickness ); std::string class_str = std::to_string(detection.class_label); char conf_str[16]; snprintf(conf_str, sizeof(conf_str), "%.2f", detection.confidence); int fontFace = cv::FONT_HERSHEY_SIMPLEX; double fontScale = 0.4; int textThickness = 1; cv::Point textOrg((int)detection.left, (int)detection.top - 4); if (textOrg.y < 10) textOrg.y = 10; cv::putText(a, class_str, textOrg, fontFace, fontScale, cv::Scalar(0, 0, 255), textThickness); cv::Size textSize = cv::getTextSize(class_str, fontFace, fontScale, textThickness, nullptr); cv::Point confOrg = textOrg + cv::Point(textSize.width + 4, 0); cv::putText(a, conf_str, confOrg, fontFace, fontScale, cv::Scalar(0, 255, 0), textThickness); } } // 绘制锚点和追踪线 if (current_target && any_aim_key_pressed && tracking_enabled) { int anchor_x_pos = current_target->left + (current_target->right - current_target->left) * config.anchor_x; int anchor_y_pos = current_target->top + (current_target->bottom - current_target->top) * config.anchor_y; cv::circle(a, cv::Point(anchor_x_pos, anchor_y_pos), 5, cv::Scalar(255, 0, 255), -1); cv::line(a, cv::Point(width / 2, height / 2), cv::Point(anchor_x_pos, anchor_y_pos), cv::Scalar(0, 255, 255), 1); } // 性能指标显示 int base_y = 20; int line_height = 18; double font_scale = 0.5; int thickness = 1; auto draw_metric = [&](const std::string& label, const std::string& value, int line) { int y = base_y + line * line_height; cv::putText(a, label, cv::Point(10, y), cv::FONT_HERSHEY_SIMPLEX, font_scale, cv::Scalar(0, 0, 255), thickness); cv::putText(a, value, cv::Point(80, y), cv::FONT_HERSHEY_SIMPLEX, font_scale, cv::Scalar(0, 255, 0), thickness); }; draw_metric("FPS:", std::to_string((int)fps), 0); draw_metric("CAPTURE:", std::to_string((int)capture_ms) + "ms", 1); draw_metric("DETECT:", std::to_string((int)detect_ms) + "ms", 2); draw_metric("TRACK:", tracking_enabled ? "ON" : "OFF", 3); // 状态信息显示 if (current_target) { std::string track_info = "TRACK: " + std::to_string(tracking_counter); cv::putText(a, track_info, cv::Point(width - 120, 30), cv::FONT_HERSHEY_SIMPLEX, 0.6, cv::Scalar(200, 200, 0), 1); } if (target_locked) { std::string lock_info = "LOCKED: " + std::to_string(tracked_id); cv::putText(a, lock_info, cv::Point(width - 120, 60), cv::FONT_HERSHEY_SIMPLEX, 0.6, cv::Scalar(0, 200, 255), 1); } if (lost_counter > 0) { std::string lost_info = "LOST: " + std::to_string(lost_counter); cv::putText(a, lost_info, cv::Point(width - 120, 90), cv::FONT_HERSHEY_SIMPLEX, 0.6, cv::Scalar(0, 200, 200), 1); } // 窗口置顶设置 static bool topmost_set = false; if (!topmost_set) { HWND hwnd = FindWindowA(NULL, "c"); if (hwnd) { SetWindowPos(hwnd, HWND_TOPMOST, 0, 0, 0, 0, SWP_NOMOVE | SWP_NOSIZE | SWP_SHOWWINDOW); } topmost_set = true; } cv::imshow("c", a); cv::waitKey(1); } } // 退出前释放资源 if (mouse) { mouse->stop(); delete mouse; mouse = nullptr; } delete frame; if (cap_impl) { if (config.screenshot_method == 0) { delete static_cast<capture*>(cap_impl); } else { delete static_cast<capture_win32*>(cap_impl); } } timeEndPeriod(1); return 0; }这个是c++程序,你帮忙分析一下,为什么跟踪目标会跟不上,还会有拖影

大家在看

recommend-type

PCL点云官方点云数据.zip

PCL官方点云数据,包含全部全部点云数据,可以用于官方所有例子的测试与比较,其中有著名的斯坦福大学提供的兔子模型,马模型等。
recommend-type

基于强化学习的坦克大战python语言实现

该游戏有两个系统。一个是玩家控制的小车。还有一个AI控制的坦克可以自动探寻敌方坦克所在位置,进行攻击。 运行run_examples.py文件,可以实现坦克战斗界面,其中: machine_control() # human_control() 两个函数进行选择性注释,第一个为增强学习后的坦克大战。第二个函数 human_control()为认为操作进行坦克大战。 run_RF.py函数实现了增强学习模型训练过程。 坦克大战功能: 人工操作坦克控制功能 使用pygame库之后,可以检测玩家的控制,当玩家按下按键后,就可以映射到我方坦克上,从而进行操控。基本操作是: w——前进 s——后退 a——向左前进 d——向右前进 空格——发射导弹 Tensorflow(神经网络编程框架) 2.12 Keras(高级神经网络框架) 2.3.4
recommend-type

数字逻辑与数字系统设计习题 卢建华版 参考答案

数字逻辑与数字系统设计--基于Proteus VSM和Verilog HDL 卢建华 邵平凡 编著 课后习题答案
recommend-type

Foxit Quick PDF Library 17.11

著名的PDF编程插件17.11版本,已解压,手动安装,支持Delphi 10.3 Rio Quick PDF Library for Windows ActiveX – ActiveX COM for Windows development supports C#, Visual C++, C++ Builder, Delphi, Visual Basic, PHP, Python, Java, PowerBASIC and more. 32-bit and 64-bit versions. DLL – Dynamically-linked library for Windows development
recommend-type

MPU9250-MPL-STM32F1

STM32F103C8T6 通过PC11(SDA),PC12(SCL)与MPU9250连接,用MPL姿态解算出姿态角

最新推荐

recommend-type

《Babysitting-on-a-Spring-Day》Spring-Is-Coming-PPT下载.pptx

《Babysitting-on-a-Spring-Day》Spring-Is-Coming-PPT下载.pptx
recommend-type

《Babysitting-on-a-Spring-Day》Spring-Is-Coming-PPT.pptx

《Babysitting-on-a-Spring-Day》Spring-Is-Coming-PPT.pptx
recommend-type

C# winform通过扫码枪自动扫描实现的货物出入库、订单管理系统

winform通过扫码枪自动扫描实现的货物出入库、订单管理系统。 扫码功能注意事项 程序启动时将输入法更改为英文输入,将鼠标光标放置在扫描结果后的输入框内。扫码枪可以扫描条形码和二维码,具体可扫描类型请参考连接在系统的扫码枪。 扫描结果根据正则表达式进行匹配,如有需要修改并使用,请在MyPatternStr类中修改表达式。
recommend-type

SysY语言编译器项目-支持SysY语言词法分析语法分析语义分析中间代码生成目标代码优化-为计算机专业学生和编译器开发者提供完整教学参考实现-使用LLVM框架实现前端词法解析器语法.zip

SysY语言编译器项目_支持SysY语言词法分析语法分析语义分析中间代码生成目标代码优化_为计算机专业学生和编译器开发者提供完整教学参考实现_使用LLVM框架实现前端词法解析器语法.zip扣子COZE AI 编程案例
recommend-type

《数控加工与编程》实训的目的与安排.doc

《数控加工与编程》实训的目的与安排.doc
recommend-type

C++实现的DecompressLibrary库解压缩GZ文件

根据提供的文件信息,我们可以深入探讨C++语言中关于解压缩库(Decompress Library)的使用,特别是针对.gz文件格式的解压过程。这里的“lib”通常指的是库(Library),是软件开发中用于提供特定功能的代码集合。在本例中,我们关注的库是用于处理.gz文件压缩包的解压库。 首先,我们要明确一个概念:.gz文件是一种基于GNU zip压缩算法的压缩文件格式,广泛用于Unix、Linux等操作系统上,对文件进行压缩以节省存储空间或网络传输时间。要解压.gz文件,开发者需要使用到支持gzip格式的解压缩库。 在C++中,处理.gz文件通常依赖于第三方库,如zlib或者Boost.IoStreams。codeproject.com是一个提供编程资源和示例代码的网站,程序员可以在该网站上找到现成的C++解压lib代码,来实现.gz文件的解压功能。 解压库(Decompress Library)提供的主要功能是读取.gz文件,执行解压缩算法,并将解压缩后的数据写入到指定的输出位置。在使用这些库时,我们通常需要链接相应的库文件,这样编译器在编译程序时能够找到并使用这些库中定义好的函数和类。 下面是使用C++解压.gz文件时,可能涉及的关键知识点: 1. Zlib库 - zlib是一个用于数据压缩的软件库,提供了许多用于压缩和解压缩数据的函数。 - zlib库支持.gz文件格式,并且在多数Linux发行版中都预装了zlib库。 - 在C++中使用zlib库,需要包含zlib.h头文件,同时链接z库文件。 2. Boost.IoStreams - Boost是一个提供大量可复用C++库的组织,其中的Boost.IoStreams库提供了对.gz文件的压缩和解压缩支持。 - Boost库的使用需要下载Boost源码包,配置好编译环境,并在编译时链接相应的Boost库。 3. C++ I/O操作 - 解压.gz文件需要使用C++的I/O流操作,比如使用ifstream读取.gz文件,使用ofstream输出解压后的文件。 - 对于流操作,我们常用的是std::ifstream和std::ofstream类。 4. 错误处理 - 解压缩过程中可能会遇到各种问题,如文件损坏、磁盘空间不足等,因此进行适当的错误处理是必不可少的。 - 正确地捕获异常,并提供清晰的错误信息,对于调试和用户反馈都非常重要。 5. 代码示例 - 从codeproject找到的C++解压lib很可能包含一个或多个源代码文件,这些文件会包含解压.gz文件所需的函数或类。 - 示例代码可能会展示如何初始化库、如何打开.gz文件、如何读取并处理压缩数据,以及如何释放资源等。 6. 库文件的链接 - 编译使用解压库的程序时,需要指定链接到的库文件,这在不同的编译器和操作系统中可能略有不同。 - 通常,在编译命令中加入-l参数,比如使用g++的话可能是`g++ -o DecompressLibrary DecompressLibrary.cpp -lz`,其中`-lz`表示链接zlib库。 7. 平台兼容性 - 在不同平台上使用解压库可能需要考虑平台兼容性问题。 - Windows系统可能需要额外的配置和库文件,因为zlib或其他库可能不是默认预装的。 根据以上知识点,我们可以得出,在C++中解压.gz文件主要涉及到对zlib或类似库的使用,以及熟悉C++的I/O操作。正确使用这些库,能够有效地对压缩文件进行解压,并处理可能出现的错误情况。如果从codeproject获取到的C++解压lib确实是针对.gz文件格式的,那么它很可能已经封装好了大部分的操作细节,让开发者能够以更简单的方式实现解压功能。
recommend-type

【数据融合技术】:甘肃土壤类型空间分析中的专业性应用

# 摘要 数据融合技术作为一种集成多源数据信息的方法,在土壤类型空间分析中发挥着关键作用。本文介绍了数据融合技术的基本概念及其理论基础,阐述了数据预处理、同步整合及冲突解决等关键技术,并详细描述了甘肃土壤类型数据准备的流程,包括数据采集、质量评估、空间化处理及融合实践准备。通过具体案例分析,展示了数据融合在土壤类型空间分布分析、土壤质量评估及土壤保护规划中的应用。同时,文
recommend-type

VM ware如何查看软件版本信息

<think>首先,用户的问题是:“我想查找VMware软件版本信息的查看方法请问如何在VMware中查看软件版本信息”。用户参考了之前的引用,但那些引用主要是关于查看VMware版本的一般方法,现在用户具体想知道在VMware软件中如何查看版本信息。回顾之前的对话:-用户第一次问的是VSCode的版本查看方法。-现在用户问的是VMware的版本查看方法。-系统级指令要求使用中文回答,正确格式化数学表达式(如果需要),但这里可能不需要数学表达式。-指令还要求生成相关问题,并在回答中引用段落时添加引用标识。用户提供的引用[1]到[5]是关于VMware版本的查看方法、下载等,但用户特别强调“参考
recommend-type

数据库课程设计报告:常用数据库综述

数据库是现代信息管理的基础,其技术广泛应用于各个领域。在高等教育中,数据库课程设计是一个重要环节,它不仅是学习理论知识的实践,也是培养学生综合运用数据库技术解决问题能力的平台。本知识点将围绕“经典数据库课程设计报告”展开,详细阐述数据库的基本概念、课程设计的目的和内容,以及在设计报告中常用的数据库技术。 ### 1. 数据库基本概念 #### 1.1 数据库定义 数据库(Database)是存储在计算机存储设备中的数据集合,这些数据集合是经过组织的、可共享的,并且可以被多个应用程序或用户共享访问。数据库管理系统(DBMS)提供了数据的定义、创建、维护和控制功能。 #### 1.2 数据库类型 数据库按照数据模型可以分为关系型数据库(如MySQL、Oracle)、层次型数据库、网状型数据库、面向对象型数据库等。其中,关系型数据库因其简单性和强大的操作能力而广泛使用。 #### 1.3 数据库特性 数据库具备安全性、完整性、一致性和可靠性等重要特性。安全性指的是防止数据被未授权访问和破坏。完整性指的是数据和数据库的结构必须符合既定规则。一致性保证了事务的执行使数据库从一个一致性状态转换到另一个一致性状态。可靠性则保证了系统发生故障时数据不会丢失。 ### 2. 课程设计目的 #### 2.1 理论与实践结合 数据库课程设计旨在将学生在课堂上学习的数据库理论知识与实际操作相结合,通过完成具体的数据库设计任务,加深对数据库知识的理解。 #### 2.2 培养实践能力 通过课程设计,学生能够提升分析问题、设计解决方案以及使用数据库技术实现这些方案的能力。这包括需求分析、概念设计、逻辑设计、物理设计、数据库实现、测试和维护等整个数据库开发周期。 ### 3. 课程设计内容 #### 3.1 需求分析 在设计报告的开始,需要对项目的目标和需求进行深入分析。这涉及到确定数据存储需求、数据处理需求、数据安全和隐私保护要求等。 #### 3.2 概念设计 概念设计阶段要制定出数据库的E-R模型(实体-关系模型),明确实体之间的关系。E-R模型的目的是确定数据库结构并形成数据库的全局视图。 #### 3.3 逻辑设计 基于概念设计,逻辑设计阶段将E-R模型转换成特定数据库系统的逻辑结构,通常是关系型数据库的表结构。在此阶段,设计者需要确定各个表的属性、数据类型、主键、外键以及索引等。 #### 3.4 物理设计 在物理设计阶段,针对特定的数据库系统,设计者需确定数据的存储方式、索引的具体实现方法、存储过程、触发器等数据库对象的创建。 #### 3.5 数据库实现 根据物理设计,实际创建数据库、表、视图、索引、触发器和存储过程等。同时,还需要编写用于数据录入、查询、更新和删除的SQL语句。 #### 3.6 测试与维护 设计完成之后,需要对数据库进行测试,确保其满足需求分析阶段确定的各项要求。测试过程包括单元测试、集成测试和系统测试。测试无误后,数据库还需要进行持续的维护和优化。 ### 4. 常用数据库技术 #### 4.1 SQL语言 SQL(结构化查询语言)是数据库管理的国际标准语言。它包括数据查询、数据操作、数据定义和数据控制四大功能。SQL语言是数据库课程设计中必备的技能。 #### 4.2 数据库设计工具 常用的数据库设计工具包括ER/Studio、Microsoft Visio、MySQL Workbench等。这些工具可以帮助设计者可视化地设计数据库结构,提高设计效率和准确性。 #### 4.3 数据库管理系统 数据库管理系统(DBMS)是用于创建和管理数据库的软件。关系型数据库管理系统如MySQL、PostgreSQL、Oracle、SQL Server等是数据库课程设计中的核心工具。 #### 4.4 数据库安全 数据库安全涉及用户认证、授权、数据加密、审计日志记录等方面,以确保数据的完整性和保密性。设计报告中应考虑如何通过DBMS内置的机制或额外的安全措施来保护数据。 ### 5. 结语 综上所述,一个经典数据库课程设计报告包含了从需求分析到数据库安全的全过程,涵盖了数据库设计的各个方面。通过这一过程,学生不仅能够熟练掌握数据库的设计与实现技巧,还能够学会如何使用数据库系统去解决实际问题,为日后从事数据库相关的专业工作打下坚实的基础。
recommend-type

【空间分布规律】:甘肃土壤类型与农业生产的关联性研究

# 摘要 本文对甘肃土壤类型及其在农业生产中的作用进行了系统性研究。首先概述了甘肃土壤类型的基础理论,并探讨了土壤类型与农业生产的理论联系。通过GIS技术分析,本文详细阐述了甘肃土壤的空间分布规律,并对其特征和影响因素进行了深入分析。此外,本文还研究了甘肃土壤类型对农业生产实际影响,包括不同区域土壤改良和作物种植案例,以及土壤养分、水分管理对作物生长周期和产量的具体影响。最后,提出了促进甘肃土壤与农业可持续发展的策略,包括土壤保护、退化防治对策以及土壤类型优化与农业创新的结合。本文旨在为