自定义激活函数替换卷积神经网络relulayer的matlab代码
时间: 2023-11-21 22:03:14 浏览: 241
以下是一个示例代码,用于将ReLU激活函数替换为sigmoid激活函数:
```matlab
classdef SigmoidLayer < nnet.layer.Layer
properties
% (Optional) Layer properties.
% 例如:
% Layer properties can be set and used during training and prediction.
% MyProperty
end
methods
function layer = SigmoidLayer(name)
% (Optional) Create a myLayer.
% This function must have the same name as the class.
% 例如:
% layer = myLayer(myProperty)
% Set layer name.
layer.Name = name;
% (Optional) Set layer description.
layer.Description = 'Sigmoid Layer';
end
function Z = predict(layer, X)
% Forward input data through the layer and output the result.
% 例如:
% Z = layer.predict(X)
% Z = mySigmoidFunction(X)
Z = sigmoid(X);
end
function [dLdX] = backward(layer, X, Z, dLdZ, memory)
% Backward propagate the derivative of the loss function through
% the layer.
% 例如:
% dLdX = layer.backward(X, Z, dLdZ, memory)
% dLdX = mySigmoidFunctionGradient(X, Z, dLdZ)
dLdX = dLdZ .* Z .* (1-Z);
end
end
end
```
然后,您可以将它与卷积神经网络的各层结合使用,例如:
```matlab
layers = [
imageInputLayer([28 28 1])
convolution2dLayer(5,20)
SigmoidLayer('sigmoid1')
maxPooling2dLayer(2,'Stride',2)
convolution2dLayer(5,50)
SigmoidLayer('sigmoid2')
maxPooling2dLayer(2,'Stride',2)
fullyConnectedLayer(500)
SigmoidLayer('sigmoid3')
fullyConnectedLayer(10)
softmaxLayer
classificationLayer];
options = trainingOptions('sgdm',...
'MaxEpochs',20,...
'InitialLearnRate',0.01);
net = trainNetwork(trainData,layers,options);
```
阅读全文
相关推荐















