raise EnvironmentError(msg) OSError: Model name './prev_trained_model/bert-base-chinese/' was not found in model name list (bert-base-uncased, bert-large-uncased, bert-base-cased, bert-large-cased, bert-base-multilingual-uncased, bert-base-multilingual-c
时间: 2023-09-07 19:15:45 浏览: 276
很抱歉,看起来你在使用一个不存在的模型名称"./prev_trained_model/bert-base-chinese/"。请确保你正在使用正确的模型名称。目前提供的模型名称有: bert-base-uncased, bert-large-uncased, bert-base-cased, bert-large-cased, bert-base-multilingual-uncased, bert-base-multilingual-cased等。请检查你的模型名称是否正确,并重新运行代码。如果问题仍然存在,请提供更多的细节,让我能够更好地帮助你解决问题。
相关问题
/home/ls_lunwen/anaconda3/envs/llm/lib/python3.11/site-packages/transformers/utils/generic.py:441: FutureWarning: `torch.utils._pytree._register_pytree_node` is deprecated. Please use `torch.utils._pytree.register_pytree_node` instead. _torch_pytree._register_pytree_node( /home/ls_lunwen/anaconda3/envs/llm/lib/python3.11/site-packages/transformers/utils/generic.py:309: FutureWarning: `torch.utils._pytree._register_pytree_node` is deprecated. Please use `torch.utils._pytree.register_pytree_node` instead. _torch_pytree._register_pytree_node( hornetq Traceback (most recent call last): File "/home/ls_lunwen/KEPT-main/Kept/trace/main/./train_trace_rapt.py", line 28, in <module> main() File "/home/ls_lunwen/KEPT-main/Kept/trace/main/./train_trace_rapt.py", line 19, in main preprocess_dataset(args.data_dir,args.project) File "/home/ls_lunwen/KEPT-main/Kept/trace/main/../../common/data_processing.py", line 314, in preprocess_dataset process_project(base_dir,project) File "/home/ls_lunwen/KEPT-main/Kept/trace/main/../../common/data_processing.py", line 301, in process_project bug_reports_pd, links_pd, file_diffs_pd = process_data(issue_path, commit_path,data_type) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/home/ls_lunwen/KEPT-main/Kept/trace/main/../../common/data_processing.py", line 205, in process_data issue_pd = pd.read_csv(issue_path) ^^^^^^^^^^^^^^^^^^^^^^^ File "/home/ls_lunwen/anaconda3/envs/llm/lib/python3.11/site-packages/pandas/io/parsers/readers.py", line 912, in read_csv return _read(filepath_or_buffer, kwds) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/home/ls_lunwen/anaconda3/envs/llm/lib/python3.11/site-packages/pandas/io/parsers/readers.py", line 577, in _read parser = TextFileReader(filepath_or_buffer, **kwds) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/home/ls_lunwen/anaconda3/envs/llm/lib/python3.11/site-packages/pandas/io/parsers/readers.py", line 1407, in __init__ self._engine = self._make_engine(f, self.engine) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/home/ls_lunwen/anaconda3/envs/llm/lib/python3.11/site-packages/pandas/io/parsers/readers.py", line 1661, in _make_engine self.handles = get_handle( ^^^^^^^^^^^ File "/home/ls_lunwen/anaconda3/envs/llm/lib/python3.11/site-packages/pandas/io/common.py", line 859, in get_handle handle = open( ^^^^^ FileNotFoundError: [Errno 2] No such file or directory: '/home/yueli/HuYworks1/kept/input_data/raw/issue/hornetq.csv' /home/ls_lunwen/anaconda3/envs/llm/lib/python3.11/site-packages/transformers/utils/generic.py:441: FutureWarning: `torch.utils._pytree._register_pytree_node` is deprecated. Please use `torch.utils._pytree.register_pytree_node` instead. _torch_pytree._register_pytree_node( /home/ls_lunwen/anaconda3/envs/llm/lib/python3.11/site-packages/transformers/utils/generic.py:309: FutureWarning: `torch.utils._pytree._register_pytree_node` is deprecated. Please use `torch.utils._pytree.register_pytree_node` instead. _torch_pytree._register_pytree_node( eval parameters %s Namespace(project='hornetq', code_kg_mode='inner', data_dir='/home/yueli/HuYworks1/kept/input_data/', model_path='./output/hornetq', no_cuda=False, test_num=None, output_dir='./result/', overwrite=False, code_bert='../unixCoder', chunk_query_num=-1, per_gpu_eval_batch_size=32, code_kg_location='/home/yueli/HuYworks1/kept/input_data/hornetq/', text_kg_location='/home/yueli/HuYworks1/kept/input_data/hornetq/', length_limit=256, tqdm_interval=300.0, data_name='hornetq') Traceback (most recent call last): File "/home/ls_lunwen/KEPT-main/Kept/trace/main/eval_trace_rapt.py", line 25, in <module> model = Rapt(BertConfig(), args.code_bert) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/home/ls_lunwen/KEPT-main/Kept/trace/main/../../common/models.py", line 84, in __init__ self.ctokneizer = AutoTokenizer.from_pretrained(cbert_model, local_files_only=True) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/home/ls_lunwen/anaconda3/envs/llm/lib/python3.11/site-packages/transformers/models/auto/tokenization_auto.py", line 752, in from_pretrained config = AutoConfig.from_pretrained( ^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/home/ls_lunwen/anaconda3/envs/llm/lib/python3.11/site-packages/transformers/models/auto/configuration_auto.py", line 1082, in from_pretrained config_dict, unused_kwargs = PretrainedConfig.get_config_dict(pretrained_model_name_or_path, **kwargs) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/home/ls_lunwen/anaconda3/envs/llm/lib/python3.11/site-packages/transformers/configuration_utils.py", line 644, in get_config_dict config_dict, kwargs = cls._get_config_dict(pretrained_model_name_or_path, **kwargs) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/home/ls_lunwen/anaconda3/envs/llm/lib/python3.11/site-packages/transformers/configuration_utils.py", line 699, in _get_config_dict resolved_config_file = cached_file( ^^^^^^^^^^^^ File "/home/ls_lunwen/anaconda3/envs/llm/lib/python3.11/site-packages/transformers/utils/hub.py", line 360, in cached_file raise EnvironmentError( OSError: ../unixCoder does not appear to have a file named config.json. Checkout 'https://huggingface.co/../unixCoder/None' for available files.
<think>我们正在解决两个独立的问题:1)Pandas读取CSV文件时的FileNotFoundError;2)Hugging Face Transformers加载模型时的配置文件缺失错误(OSError: model directory missing config.json)。下面将分别给出解决方案。
### 一、解决Pandas读取CSV文件时的FileNotFoundError
当使用`pandas.read_csv()`时遇到`FileNotFoundError`,通常由以下原因引起:
1. **文件路径错误**:路径不存在或拼写错误
2. **工作目录不匹配**:相对路径基于当前工作目录(可通过`os.getcwd()`查看)
3. **权限问题**:用户对文件或上级目录无读取权限(但此问题通常引发`PermissionError`)
#### 解决方案步骤
1. **检查文件路径是否存在**:
```python
import os
file_path = "your_file.csv" # 替换为实际路径
if os.path.exists(file_path):
print(f"文件存在: {file_path}")
else:
print(f"文件不存在: {file_path}")
```
2. **使用绝对路径替代相对路径**:
```python
import pandas as pd
# 获取当前脚本所在目录的绝对路径
current_dir = os.path.dirname(os.path.abspath(__file__))
# 构建文件绝对路径
absolute_path = os.path.join(current_dir, "data", "your_file.csv")
df = pd.read_csv(absolute_path)
```
3. **处理路径中的特殊字符**(如空格):
```python
# 使用原始字符串或双反斜杠
df = pd.read_csv(r"C:\Users\My Name\data file.csv") # Windows示例
```
4. **检查文件扩展名**:确保文件确实是CSV格式(可用文本编辑器打开验证)
### 二、解决Transformers模型配置文件缺失错误(OSError: model directory missing config.json)
当使用`from_pretrained()`加载本地模型时出现`config.json`缺失错误,通常因为:
1. **模型目录不完整**:缺少Hugging Face模型必需的配置文件(`config.json`、`pytorch_model.bin`等)
2. **路径指定错误**:模型目录路径不正确
3. **模型未正确下载**:下载过程被中断导致文件不全
#### 解决方案步骤
1. **验证模型目录结构**:
确保模型目录包含以下基本文件(以BERT为例):
```
your_model_directory/
├── config.json # 模型配置文件
├── pytorch_model.bin # 模型权重(或tf_model.h5)
├── vocab.txt # 词表文件
└── tokenizer.json # (可选)分词器配置
```
2. **重新下载模型并保存到本地**(推荐):
```python
from transformers import AutoModel, AutoTokenizer
model_name = "bert-base-uncased" # 替换为你的模型名称
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModel.from_pretrained(model_name)
# 保存到本地目录
save_path = "./local_models/bert-base-uncased/"
tokenizer.save_pretrained(save_path)
model.save_pretrained(save_path)
```
3. **手动下载配置文件**(如果无法重新下载完整模型):
- 访问Hugging Face Model Hub:https://huggingface.co
- 搜索对应模型(如`bert-base-uncased`)
- 在文件列表中找到`config.json`,点击下载
- 将文件放入模型目录
4. **使用代码生成默认配置**(应急方案):
```python
from transformers import BertConfig
# 创建默认配置(与bert-base-uncased相同)
config = BertConfig()
config.save_pretrained("./your_model_directory/") # 会在目录下生成config.json
```
### 完整问题解决流程示例
假设项目结构如下:
```
project/
├── scripts/
│ └── train.py # 当前执行的脚本
└── data/
│ └── dataset.csv # 数据文件
└── models/
└── my_bert/ # 自定义模型目录(但缺少config.json)
```
**步骤1:解决CSV读取问题**
在`train.py`中:
```python
import os
import pandas as pd
# 获取当前脚本所在目录(scripts/),然后定位到上级目录的data文件夹
current_dir = os.path.dirname(os.path.abspath(__file__))
data_path = os.path.join(current_dir, "..", "data", "dataset.csv")
# 验证路径
print(f"数据路径: {data_path}")
print(f"是否存在: {os.path.exists(data_path)}") # 应为True
df = pd.read_csv(data_path) # 此时应能正确读取
```
**步骤2:解决模型配置缺失问题**
```python
from transformers import AutoModel, BertConfig
model_dir = os.path.join(current_dir, "..", "models", "my_bert")
# 方案1:如果目录中只是缺少config.json,尝试生成默认配置
if not os.path.exists(os.path.join(model_dir, "config.json")):
print("检测到config.json缺失,生成默认配置...")
config = BertConfig() # 使用与bert-base-uncased相同的默认配置
config.save_pretrained(model_dir)
# 现在加载模型
try:
model = AutoModel.from_pretrained(model_dir)
print("模型加载成功!")
except Exception as e:
print(f"加载失败: {e}")
# 方案2:重新下载模型
print("尝试重新下载模型...")
model = AutoModel.from_pretrained("bert-base-uncased")
model.save_pretrained(model_dir) # 覆盖保存完整模型文件
```
### 相关问题
1. 如何在不同操作系统(Windows/Linux/macOS)中正确处理文件路径的差异?
2. Hugging Face Transformers 模型保存时默认包含哪些必要文件?
3. 使用`pandas.read_csv()`读取大文件时有哪些内存优化技巧?
4. 如何验证下载的Hugging Face模型文件的完整性?
5. 当遇到`PermissionError: [Errno 13] Permission denied`时,如何在不使用`sudo`的情况下解决?
[^1]: 参考关于xlrd版本问题的解决方案,但注意这里的问题是不同的。</think>### 解决文件未找到错误和模型配置缺失问题
我将分别解决Pandas的`FileNotFoundError`和Transformers的`config.json`缺失问题,以下是结构化解决方案:
---
### 一、Pandas读取CSV文件时的`FileNotFoundError`解决方案
#### 常见原因分析
1. **路径错误**:相对路径与当前工作目录不匹配
2. **文件不存在**:文件名拼写错误或文件被移动
3. **权限问题**:用户对目录无访问权限
4. **文件锁定**:文件被其他程序占用(如Excel)
#### 解决步骤
```python
import os
import pandas as pd
# 1. 验证文件存在性
file_path = "your/file/path.csv"
print(f"文件存在: {os.path.exists(file_path)}") # 返回False则说明路径错误
# 2. 获取当前工作目录
print(f"当前工作目录: {os.getcwd()}")
# 3. 使用绝对路径(推荐)
abs_path = os.path.abspath(file_path)
print(f"绝对路径: {abs_path}")
# 4. 跨平台路径处理
corrected_path = os.path.normpath(file_path) # 标准化路径格式
# 5. 尝试读取
try:
df = pd.read_csv(corrected_path)
except FileNotFoundError:
# 6. 交互式定位文件
from tkinter import filedialog
corrected_path = filedialog.askopenfilename(title="选择CSV文件")
df = pd.read_csv(corrected_path)
```
#### 路径验证技巧
- **相对路径基准**:
```python
# 获取脚本所在目录
script_dir = os.path.dirname(os.path.abspath(__file__))
correct_path = os.path.join(script_dir, "data/your_file.csv")
```
- **环境变量使用**:
```python
data_dir = os.environ.get("DATA_DIR", "./default_data")
full_path = os.path.join(data_dir, "dataset.csv")
```
---
### 二、HuggingFace Transformers模型`config.json`缺失解决方案
#### 错误原因分析
1. **模型下载不完整**:缺少配置文件
2. **自定义模型未保存配置**:未调用`save_pretrained()`
3. **路径错误**:模型目录指定错误
4. **版本不兼容**:Transformers库版本与模型不匹配
#### 完整解决流程
```python
from transformers import AutoConfig, AutoModel
model_path = "your/model/directory"
# 方案1:重新下载完整模型
try:
model = AutoModel.from_pretrained("bert-base-uncased") # 使用标准名称
model.save_pretrained(model_path) # 保存完整模型文件
except:
# 方案2:手动创建配置文件
config = AutoConfig.from_pretrained("bert-base-uncased")
config.save_pretrained(model_path) # 生成config.json
# 添加缺失文件提示
with open(os.path.join(model_path, "README.md"), "w") as f:
f.write("请手动添加pytorch_model.bin和vocab.txt")
```
#### 模型目录验证
```python
def validate_model_dir(model_path):
required_files = ["config.json", "pytorch_model.bin", "vocab.txt"]
missing = [f for f in required_files if not os.path.exists(os.path.join(model_path, f))]
if missing:
print(f"缺失文件: {', '.join(missing)}")
# 自动补全配置
if "config.json" in missing:
AutoConfig.from_pretrained("bert-base-uncased").save_pretrained(model_path)
else:
print("模型文件完整")
```
#### 离线加载解决方案
```python
# 强制离线模式加载
model = AutoModel.from_pretrained(
model_path,
local_files_only=True,
config=AutoConfig.from_pretrained(model_path) # 显式传递配置
)
```
---
### 三、整合解决方案流程图
```mermaid
graph TD
A[FileNotFoundError] --> B{路径验证}
B -->|路径错误| C[使用os.path.abspath]
B -->|文件不存在| D[检查文件系统]
A -->|权限问题| E[chmod/chown]
F[config.json缺失] --> G{模型来源}
G -->|官方模型| H[重新下载]
G -->|自定义模型| I[生成默认配置]
I --> J[保存config.json]
H & J --> K[验证文件完整性]
```
---
### 相关问题
1. 如何在Docker容器中正确处理数据卷挂载以避免文件路径错误?
2. HuggingFace Transformers模型保存时应该包含哪些最小必要文件?
3. 使用相对路径时如何确保跨平台兼容性(Windows/Linux/macOS)?
4. 如何通过HuggingFace Hub API检查远程模型的完整性?
5. 当遇到`PermissionError`时,有哪些安全的权限修改方案?
6. 如何为自定义Transformer模型生成有效的`config.json`文件?
Traceback (most recent call last): File "E:\比赛\浪潮杯\src\main.py", line 42, in <module> tokenizer = BertTokenizer.from_pretrained('bert-base-chinese') ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "E:\比赛\浪潮杯\.venv\Lib\site-packages\transformers\tokenization_utils_base.py", line 2046, in from_pretrained raise EnvironmentError( OSError: Can't load tokenizer for 'bert-base-chinese'. If you were trying to load it from 'https://huggingface.co/models', make sure you don't have a local directory with the same name. Otherwise, make sure 'bert-base-chinese' is the correct path to a directory containing all relevant files for a BertTokenizer tokenizer.
### 解决方案
当尝试加载 `bert-base-chinese` 的分词器时遇到 `OSError: Can't load tokenizer for 'bert-base-chinese'` 错误,通常是因为本地环境未能成功获取所需的配置文件或权重文件。以下是可能的原因以及对应的解决方法:
#### 原因分析
1. **网络连接问题**
如果国内网络无法访问 Hugging Face 的官方模型库(位于 https://huggingface.co/models),可能会导致资源下载失败[^3]。
2. **缓存目录损坏**
Transformers 库会将已下载的模型存储到本地缓存中,默认路径通常是 `~/.cache/huggingface/transformers/`。如果该目录中的某些文件被意外删除或损坏,则可能导致加载错误[^1]。
3. **版本兼容性问题**
不同版本的 Transformers 可能对同一模型的支持存在差异。即使安装的是最新版本,仍需确认其与目标模型完全兼容[^2]。
---
#### 解决策略
##### 方法一:手动指定镜像源地址
由于国内网络可能存在访问限制,可以切换至阿里云或其他支持加速的服务作为替代数据源。修改代码如下所示:
```python
from transformers import BertTokenizer, BertModel
tokenizer = BertTokenizer.from_pretrained(
"bert-base-chinese",
cache_dir="./local_cache",
mirror="tuna"
)
pretrain_model = BertModel.from_pretrained(
"bert-base-chinese",
cache_dir="./local_cache",
mirror="tuna"
)
```
通过设置参数 `mirror='tuna'` 或其他可用选项(如 `'djlai'`),能够有效改善下载速度并减少失败概率。
##### 方法二:离线模式运行
提前从可信渠道下载所需的所有必要文件,并将其保存在一个特定位置供程序调用。例如,在执行脚本前完成以下操作:
1. 访问 [Hugging Face Model Repository](https://huggingface.co/bert-base-chinese),找到对应项目的 Releases 页面;
2. 下载完整的压缩包解压后放置于自定义路径 `/path/to/local/model`;
3. 修改初始化语句指向此静态副本而非远程仓库:
```python
from transformers import BertTokenizer, BertModel
tokenizer = BertTokenizer.from_pretrained("/path/to/local/model")
pretrain_model = BertModel.from_pretrained("/path/to/local/model")
```
##### 方法三:清理旧有缓存重新同步
有时残留的历史记录会造成冲突干扰正常流程。建议先清空默认储存区域再重试一次请求过程:
```bash
rm -rf ~/.cache/huggingface/
```
之后再次启动应用即可触发全新一轮的数据抓取动作。
---
### 总结
上述三种方式各有优劣适配场景不同,请依据实际需求选取最合适的处理手段加以实践验证效果最佳者保留长期运用下去。
阅读全文
相关推荐
















