image: cvat.pth.ultralytics.yolov8-segment baseImage: ultralytics/yolov5:latest directives: preCopy: - kind: USER value: root - kind: RUN value: apt update && apt install --no-install-recommends -y libglib2.0-0 - kind: WORKDIR value: /opt/nuclio - kind: RUN value: pip install supervision - kind: WORKDIR value: /opt/nuclio把上面缺失的包加入
时间: 2024-02-14 11:29:50 浏览: 180
以下是针对你提供的Dockerfile中缺少的包的更新:
```dockerfile
image: ultralytics/yolov5:latest
directives:
preCopy:
- kind: USER
value: root
- kind: RUN
value: apt update && apt install --no-install-recommends -y libglib2.0-0
- kind: WORKDIR
value: /opt/nuclio
- kind: RUN
value: |
pip install numpy
pip install supervision
- kind: WORKDIR
value: /opt/nuclio
```
在这个更新中,我们添加了两个`pip install`命令来安装缺失的包,`numpy`和`supervision`。这样,你就可以在Docker容器中使用这些包了。
请注意,根据你的具体需求,你可能还需要添加其他的包和库。确保在Dockerfile中添加了所有需要的依赖项,并在构建过程中进行安装。
相关问题
spec: description: YOLO v8 via Ultralytics Pytorch runtime: 'python:3.8' handler: main:handler eventTimeout: 10000s build: image: cvat.pth.ultralytics.yolov8-detect baseImage: ultralytics/yolov5:latest directives: preCopy: - kind: USER value: root - kind: RUN value: apt update && apt install --no-install-recommends -y libglib2.0-0 - kind: WORKDIR value: /opt/nuclio - kind: RUN value: pip install supervision - kind: WORKDIR value: /opt/nuclio这个适用于YOLOV8的分割模型吗
抱歉,我无法确定您提供的 YAML 规范中的适用模型是否适用于 YOLOv8 的分割模型。因为根据您提供的规范,该模型是基于 Ultralytics PyTorch 平台的 YOLOv8 目标检测模型,而不是分割模型。YOLOv8 主要用于目标检测任务,而不是像分割模型那样对图像进行像素级别的分类。如果您需要使用 YOLOv8 进行目标检测任务,该规范可能适用;但如果您需要进行图像分割任务,您可能需要寻找其他适用的模型或框架。
Traceback (most recent call last): File "D:\桌面\ultralytics-yolov8-main\test1\blueberry.py", line 4, in <module> a1 = YOLO('yolov8n.pt') # 官方提供的基础测试和训练模型 ^^^^^^^^^^^^^^^^^^ File "D:\桌面\ultralytics-yolov8-main\ultralytics\yolo\engine\model.py", line 106, in __init__ self._load(model, task) File "D:\桌面\ultralytics-yolov8-main\ultralytics\yolo\engine\model.py", line 145, in _load self.model, self.ckpt = attempt_load_one_weight(weights) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "D:\桌面\ultralytics-yolov8-main\ultralytics\nn\tasks.py", line 396, in attempt_load_one_weight ckpt, weight = torch_safe_load(weight) # load ckpt ^^^^^^^^^^^^^^^^^^^^^^^ File "D:\桌面\ultralytics-yolov8-main\ultralytics\nn\tasks.py", line 336, in torch_safe_load return torch.load(file, map_location='cpu'), file # load ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "C:\Users\李佳伟\AppData\Roaming\Python\Python312\site-packages\torch\serialization.py", line 1524, in load raise pickle.UnpicklingError(_get_wo_message(str(e))) from None _pickle.UnpicklingError: Weights only load failed. This file can still be loaded, to do so you have two options, do those steps only if you trust the source of the checkpoint. (1) In PyTorch 2.6, we changed the default value of the `weights_only` argument in `torch.load` from `False` to `True`. Re-running `torch.load` with `weights_only` set to `False` will likely succeed, but it can result in arbitrary code execution. Do it only if you got the file from a trusted source. (2) Alternatively, to load with `weights_only=True` please check the recommended steps in the following error message. WeightsUnpickler error: Unsupported global: GLOBAL ultralytics.nn.tasks.DetectionModel was not an allowed global by default. Please use `torch.serialization.add_safe_globals([ultralytics.nn.tasks.DetectionModel])` or the `torch.serialization.safe_globals([ultralytics.nn.tasks.DetectionModel])` context manager to allowlist this global if you trust this class/function. Check the documentation of torch.load to learn more about types accepted by default with weights_only https://pytorch.org/docs/stable/generated/torch.load.html.
### PyTorch 加载权重时出现 UnpicklingError 错误的解决方案
当使用 `torch.load()` 函数加载模型权重时,如果遇到 `UnpicklingError` 错误,通常是因为在 PyTorch 2.6 及更高版本中,默认情况下 `weights_only` 参数被设置为 `True`。这会阻止某些自定义类或函数的反序列化操作[^3]。
#### 解决方法一:调整 `weights_only` 参数
可以通过显式指定 `weights_only=False` 来解决此问题。这样可以允许加载完整的对象图谱而不仅仅是权重数据。然而需要注意的是,这种方式可能会带来潜在的安全风险,因为它可能执行任意代码。因此仅应在信任源文件的情况下使用:
```python
import torch
model_state_dict = torch.load('path_to_checkpoint.pth', weights_only=False)
```
这种方法适用于需要恢复整个模型结构而非仅仅参数的情况[^3]。
#### 解决方法二:安全全局配置
另一种更推荐的方式是通过 `add_safe_globals` 或者使用上下文管理器来扩展可接受的全局变量列表。对于特定于 Ultralytics 的检测模型 (`ultralytics.nn.tasks.DetectionModel`) ,可以如下处理:
```python
from ultralytics.nn.tasks import DetectionModel
import torch
with torch.serialization.safe_globals(DetectionModel):
model_state_dict = torch.load('path_to_checkpoint.pth')
```
或者单独调用添加安全全局的方法前再进行常规加载过程:
```python
from ultralytics.nn.tasks import DetectionModel
import torch
torch.serialization.add_safe_globals(DetectionModel)
model_state_dict = torch.load('path_to_checkpoint.pth')
```
这两种方式均能有效规避因默认安全性设定引发的异常状况同时保持较高的运行效率以及程序健壮性[^1]。
#### 官方文档查阅建议
为了获取更多关于支持类型的细节信息,请参阅官方文档链接以了解当前实现下 `weights_only` 接受哪些类型作为输入值的标准说明[^2]:
[https://pytorch.org/docs/stable/generated/torch.load.html](https://pytorch.org/docs/stable/generated/torch.load.html)
阅读全文
相关推荐














