题目描述 树的表示方法有多种,如图6_1采用的就是一种形象的树形表示法;另外还有一种常用的表示方法"括号表示法",它的表示方法归纳如下:先将整棵树的根结点放入一对圆括号中,然后把它的子树由左至右放入括号中,同层子树用圆括号括在一起(同层子树之间用逗号隔开),而对子树也采用同样的方法处理,直到所有的子树都只有一个根结点为止。用括号表示法表示图6_1的步骤如下: =(T) =(1(T1,T2 ,T3 )) {1是根结点,有3棵子树,用逗号隔开} =(1(2(T11,T12),3,4(T31))) {分别对3棵子树做同样的操作} =(1(2(5,6),3,4(7(T311,T312)))) =(1(2(5,6),3,4(7(8,9)))) 实际上,以上方法是按照树的层次逐步展开,直到所有结点都已列出。 注意,当一个节点有若干个子树时,子节点编号小的写在前面,编号大的写在后面。 给你一棵n个节点的有根树,节点标号为1~n,1号节点为根节点。 请给出它的括号表示结果。 输入 第一行一个整数n。 以后n行,每行若干个整数。第i行,第一个数为mi,表示节点i的子节点个数。紧接着mi个整数,表示节点i子节点的编号。保证父节点编号小于子节点。 输出 一行一个字符串,由数字、括号、逗号组成。表示括号表示的结果。注意不包含多余空格。 样例 输入 复制 3 2 2 3 0 0 输出 复制 (1(2,3)) 请用c++语言解决此问题

时间: 2024-04-16 20:27:07 浏览: 104
你可以使用以下C++代码来解决这个问题: ```cpp #include <iostream> #include <vector> #include <string> using namespace std; string buildParenthesis(int node, const vector<vector<int>>& tree { string representation = to_string(node); if (tree[node].empty()) { return representation; } representation += "("; for (int i = 0; i < tree[node].size(); i++) { representation += buildParenthesisRepresentation(tree[node][i], tree); if (i != tree[node].size() - 1) { representation += ","; } } representation += ")"; return representation; } int main() { int n; cin >> n; vector<vector<int>> tree(n + 1); for (int i = 1; i <= n; i++) { int m; cin >> m; for (int j = 0; j < m; j++) { int child; cin >> child; tree[i].push_back(child); } } string result = buildParenthesisRepresentation(1, tree); cout << result << endl; return 0; } ``` 你可以将上述代码保存为.cpp文件,然后使用C++编译器进行编译和运行。运行程序后,它会要求你输入树的节点个数n,以及每个节点的子节点信息。最后,它会输出树的括号表示结果。 注意:这里假设根节点的编号为1,节点的编号范围为1到n。
阅读全文

相关推荐

题目描述 树的表示方法有多种,如图6_1采用的就是一种形象的树形表示法;另外还有一种常用的表示方法"括号表示法",它的表示方法归纳如下:先将整棵树的根结点放入一对圆括号中,然后把它的子树由左至右放入括号中,同层子树用圆括号括在一起(同层子树之间用逗号隔开),而对子树也采用同样的方法处理,直到所有的子树都只有一个根结点为止。用括号表示法表示图6_1的步骤如下: =(T) =(1(T1,T2 ,T3 )) {1是根结点,有3棵子树,用逗号隔开} =(1(2(T11,T12),3,4(T31))) {分别对3棵子树做同样的操作} =(1(2(5,6),3,4(7(T311,T312)))) =(1(2(5,6),3,4(7(8,9)))) 实际上,以上方法是按照树的层次逐步展开,直到所有结点都已列出。 注意,当一个节点有若干个子树时,子节点编号小的写在前面,编号大的写在后面。 给你一棵n个节点的有根树,节点标号为1~n,1号节点为根节点。 请给出它的括号表示结果。 输入 第一行一个整数n。 以后n行,每行若干个整数。第i行,第一个数为mi,表示节点i的子节点个数。紧接着mi个整数,表示节点i子节点的编号。保证父节点编号小于子节点。 输出 一行一个字符串,由数字、括号、逗号组成。表示括号表示的结果。注意不包含多余空格。 样例 输入 3 2 2 3 0 0 输出 (1(2,3)) 请用c++语言解决

链接:https://ac.nowcoder.com/acm/contest/106140/D 来源:牛客网 你有一些木桩,木桩分为大木桩和小木桩,大木桩共 𝑎 a 个,小木桩共 𝑏 b 个。 你还有一条直线,直线上有有 𝑎 + 𝑏 a+b 个位置,分别编号为 1 , 2 , ⋯   , 𝑎 + 𝑏 1,2,⋯,a+b。 现在你需要把这 𝑎 + 𝑏 a+b 个木桩一一对应地打到每一个位置上。换句话说,每个位置有且仅有一个木桩。 对于一种打木桩的方案,它的美观值由如下方式计算: 对于任意两个打在位置 𝑖 , 𝑗 i,j 的大木桩,它们会使美观值增加 𝑥 x ,其中 𝑥 x 为位置编号在 [ 𝑖 , 𝑗 ] [i,j] 中小木桩的数量。 对于任意一个打在位置 𝑖 i 的大木桩,它们会使美观值减少 𝑦 y ,其中 𝑦 y 为位置编号在 [ 𝑖 , 𝑎 + 𝑏 ] [i,a+b] 中小木桩的数量。 请你求出所有打木桩方案中美观值最大的那一种,并输出这个最大值。 输入描述: 本题中的每个测试点包含多个测试数据。 第一行一个整数 𝑇 ( 1 ≤ 𝑇 ≤ 1 0 5 ) T (1≤T≤10 5 ) 表示测试数据组数。 每组数据输入一行两个整数 𝑎 , 𝑏 ( 0 ≤ 𝑎 , 𝑏 ≤ 1 0 6 ) a,b (0≤a,b≤10 6 ) 。 输出描述: 对于每组数据,输出一行一个整数表示答案。 示例1 输入 复制 2 4 1 2 2 输出 复制 2 0 说明 设 0 0 表示小木桩, 1 1 表示大木桩。 对于第一组数据,一种最优打法为 11011 11011 。 对于第二组数据,一种最优打法为 0101 0101 。 c++实现

请根帮我写一篇题目为基于STM32的零件智能检测系统的毕业设计论文,请帮我将下面的框架扩展至2万字。基于STM32的零件智能检测系统设计与实现 摘要 随着工业自动化需求的不断提升,机械零件的高效、高精度检测成为智能制造领域的核心挑战之一。传统人工检测方法存在效率低、主观性强等问题,而现有的自动化检测系统往往成本高或适应性不足。本文设计并实现了一种基于STM32微控制器的零件智能检测系统,通过集成OV7670图像传感器、ESP8266无线传输模块及优化的图像处理算法,实现了对零件尺寸、形状和表面缺陷的自动化检测。系统硬件设计包括电源管理、传感器接口、通信模块及检测电路,软件算法结合边缘检测、形态学处理及缺陷识别技术,并通过无线数据传输实现与上位机的实时交互。实验结果表明,系统检测精度达到±0.05mm,检测效率提升40%,且支持批量数据的远程管理,适用于工业生产线中的质量管控场景。 关键词:STM32;零件检测;图像处理;无线传输;智能制造 1. 引言 1.1 研究背景与意义 机械零件作为工业制造的基础单元,其质量直接影响产品的可靠性和安全性。传统检测方法依赖人工目视或接触式测量,存在效率低、重复性差等缺陷。随着机器视觉和嵌入式技术的发展,基于图像处理的非接触式检测成为研究热点。STM32微控制器凭借其高性能、低功耗及丰富外设资源,为低成本、高集成度的检测系统提供了硬件基础。 1.2 国内外研究现状 近年来,国内外学者在智能检测领域取得显著进展。例如,田玉冬等提出的机械零件智能化检测平台技术,通过硬件与软件模块化设计提升了系统通用性[1];Bo Yu等人利用光电检测技术实现了大尺寸板件孔形的非接触测量[2];王小龙等基于STM32和OV7670设计的弯道预警系统,验证了图像处理算法在嵌入式平台的高效性[3]。然而,现有研究在实时性、多场景适应性及无线数据传输方面仍存在不足。 1.3 本文研究内容 本文设计一种基于STM32的零件智能检测系统,主要贡献包括: 集成OV7670图像传感器与FIFO缓存模块,优化图像采集效率; 设计自适应边缘检测与缺陷识别算法,提升检测精度; 开发基于ESP8266的无线数据传输模块,实现检测数据实时上传; 构建完整的硬件电路与上位机软件,验证系统在工业场景的适用性。 2. 系统总体设计 2.1 系统架构 系统由硬件层、算法层和应用层组成(图1): 硬件层:STM32F103RCT6微控制器为核心,集成OV7670图像采集模块、ESP8266无线模块、电源管理电路及外围接口; 算法层:包括图像预处理、特征提取、缺陷识别及数据压缩; 应用层:上位机软件实现数据可视化、统计分析及远程控制。 系统架构图 图1 系统总体架构 2.2 技术指标 图像分辨率:640×480 @15fps; 检测精度:±0.05mm; 无线传输速率:≥1Mbps; 功耗:待机模式<10mA,工作模式<150mA。 3. 硬件设计 3.1 STM32微控制器电路 选用STM32F103RCT6,其72MHz主频、256KB Flash及64KB RAM满足实时处理需求。设计最小系统电路(图2),包括: 电源电路:采用AMS1117-3.3V稳压芯片,输入5V,输出3.3V; 时钟电路:8MHz晶振与22pF负载电容; 调试接口:SWD协议,支持Keil MDK在线调试。 STM32最小系统电路 图2 STM32最小系统电路 3.2 OV7670图像采集模块 OV7670通过SCCB总线配置寄存器,输出RGB565格式图像。为降低STM32负载,采用AL422B FIFO缓存图像数据(图3)。关键设计: 接口电路:数据线D0-D7连接STM32 GPIO,VSYNC与HREF信号触发外部中断; FIFO控制:通过WRST、RRST引脚管理读写时序,确保帧完整性。 OV7670与FIFO接口电路 图3 OV7670图像采集模块电路 3.3 ESP8266无线传输模块 ESP8266通过UART与STM32通信,配置为STA模式连接Wi-Fi网络。设计要点: 电平转换:采用TXS0108E芯片实现3.3V与5V电平兼容; 协议栈:基于AT指令集,实现TCP/IP数据传输; 数据封装:自定义JSON格式,包含时间戳、检测结果及校验码。 3.4 电源与抗干扰设计 多级滤波:电源输入端加入π型LC滤波; 屏蔽措施:图像传感器与无线模块分区域布局,减少电磁干扰; ESD保护:TVS二极管防护GPIO接口。 4. 软件设计 4.1 图像采集与预处理 OV7670驱动:通过SCCB配置分辨率、曝光及白平衡参数; 图像缓存:DMA传输至SRAM,减少CPU占用; 预处理流程:灰度化→中值滤波→直方图均衡化。 4.2 特征提取算法 边缘检测:改进Sobel算子,结合自适应阈值分割(公式1): G = ( G x 2 + G y 2 ) , T = μ + k σ G= (G x 2 ​ +G y 2 ​ ) ​ ,T=μ+kσ 其中, μ μ为灰度均值, σ σ为标准差, k = 1.5 k=1.5。 轮廓拟合:基于链码跟踪法提取边界点,最小二乘法拟合几何参数。 4.3 缺陷识别与分类 表面划痕:形态学闭运算消除噪声,连通域分析标记缺陷区域; 尺寸超差:对比预设公差范围,标记超差零件; 分类输出:通过KNN算法区分缺陷类型,置信度>90%。 4.4 无线数据传输 协议设计:数据帧包含头标志、长度、载荷及CRC校验; 断点续传:Flash缓存未发送数据,网络恢复后自动重传。 5. 实验与结果分析 5.1 实验平台搭建 硬件环境:STM32开发板、OV7670模块、ESP8266模块、标准零件样本; 软件环境:Keil MDK 5.25、Python上位机(OpenCV、PyQt5)。 5.2 性能测试 检测精度:对100个标准件测量,误差分布如图4所示,最大误差0.06mm; 实时性:单帧处理时间≤50ms,满足产线节拍需求; 无线传输:丢包率<0.1%,平均延时120ms。 检测误差分布 图4 尺寸检测误差分布 5.3 对比分析 与传统卡尺测量及现有机器视觉系统对比(表1): 指标 传统卡尺 现有系统 本系统 检测速度(件/分钟) 10 30 50 精度(mm) ±0.02 ±0.1 ±0.05 自动化程度 低 中 高 6. 结论与展望 本文设计的基于STM32的零件智能检测系统,通过软硬件协同优化,实现了高精度、高效率的自动化检测。实验表明,系统在工业场景中具备良好的实用性。未来工作将聚焦于: 引入深度学习算法提升缺陷分类能力; 支持多传感器融合检测; 优化无线模块功耗,适配电池供电场景。 参考文献 [1] 田玉冬, 田玉雪. 机械零件智能化检测系统的平台技术[J]. 机械研究与应用, 2000. [2] Bo Yu, et al. Photoelectric Detection of Hole Shape and Size for Large Plate Parts[J]. Journal of Physics, 2021. [3] 王小龙, 等. 基于OV7670图像采集与STM32的弯道预警系统[J]. CMC, 2019. 附录 电路原理图 上位机软件源码 实验数据集

最新推荐

recommend-type

深圳大学研究生2021算法学硕期末考试题目及答案.docx

对于这类问题,有两种常见的解决方法:迭代法和递归树法。题目明确指出不能使用主定理,所以我们需要使用迭代法或递归树来求解复杂度。迭代法通过不断替换递归关系中的 `T(n)` 来逼近解,而递归树法则通过构建一棵...
recommend-type

编译原理期末试题(8套含答案 大题集)(1).doc

第七题是关于逆波兰表示法的,表达式(┐A∨B)∧(C∨D)的逆波兰表示为A┐B∨CD∨∧。第八题提到优化的目标,答案是D,即生成运行时间短且占用存储空间小的目标代码。第九题询问非循环优化方法,答案是D,代码外提。...
recommend-type

深度学习算法加速.pptx

深度学习算法加速.pptx
recommend-type

港美股量化交易自动化程序

可实现在一定策略条件下,实现自动发现信号,自动买入、卖出,规避风险,增厚利润
recommend-type

省市县三级联动实现与应用

省市县三级联动是一种常见的基于地理位置的联动选择功能,广泛应用于电子政务、电子商务、物流配送等系统的用户界面中。它通过用户在省份、城市、县三个层级之间进行选择,并实时显示下一级别的有效选项,为用户提供便捷的地理位置选择体验。本知识点将深入探讨省市县三级联动的概念、实现原理及相关的JavaScript技术。 1. 概念理解: 省市县三级联动是一种动态联动的下拉列表技术,用户在一个下拉列表中选择省份后,系统根据所选的省份动态更新城市列表;同理,当用户选择了某个城市后,系统会再次动态更新县列表。整个过程中,用户不需要手动刷新页面或点击额外的操作按钮,选中的结果可以直接用于表单提交或其他用途。 2. 实现原理: 省市县三级联动的实现涉及前端界面设计和后端数据处理两个部分。前端通常使用HTML、CSS和JavaScript来实现用户交互界面,后端则需要数据库支持,并提供API接口供前端调用。 - 前端实现: 前端通过JavaScript监听用户的选择事件,一旦用户选择了一个选项(省份、城市或县),相应的事件处理器就会被触发,并通过AJAX请求向服务器发送最新的选择值。服务器响应请求并返回相关数据后,JavaScript代码会处理这些数据,动态更新后续的下拉列表选项。 - 后端实现: 后端需要准备一套完整的省市区数据,这些数据通常存储在数据库中,并提供API接口供前端进行数据查询。当API接口接收到前端的请求后,会根据请求中包含的参数(当前选中的省份或城市)查询数据库,并将查询结果格式化为JSON或其他格式的数据返回给前端。 3. JavaScript实现细节: - HTML结构设计:创建三个下拉列表,分别对应省份、城市和县的选项。 - CSS样式设置:对下拉列表进行样式美化,确保良好的用户体验。 - JavaScript逻辑编写:监听下拉列表的变化事件,通过AJAX(如使用jQuery的$.ajax方法)向后端请求数据,并根据返回的数据更新其他下拉列表的选项。 - 数据处理:在JavaScript中处理从服务器返回的数据格式,如JSON,解析数据并动态地更新下拉列表的内容。 4. 技术选型: - AJAX:用于前后端数据交换,无需重新加载整个页面即可更新部分页面的内容。 - jQuery:简化DOM操作和事件处理,提升开发效率。 - Bootstrap或其他CSS框架:帮助快速搭建响应式和美观的界面。 - JSON:数据交换格式,易于阅读,也易于JavaScript解析。 5. 注意事项: - 数据的一致性:在省市县三级联动中,必须确保数据的准确性和一致性,避免出现数据错误或不匹配的问题。 - 用户体验:在数据加载过程中,应该给予用户明确的反馈,比如加载指示器,以免用户对操作过程感到困惑。 - 网络和性能优化:对联动数据进行合理的分页、缓存等处理,确保数据加载的流畅性和系统的响应速度。 6. 可能遇到的问题及解决方案: - 数据量大时的性能问题:通过分页、延迟加载等技术减少一次性加载的数据量。 - 用户输入错误:提供输入校验,例如正则表达式校验省份名称的正确性。 - 兼容性问题:确保前端代码兼容主流的浏览器,对不支持JavaScript的环境提供回退方案。 通过上述知识点的介绍,我们可以了解到省市县三级联动的实现原理、前端与后端如何协作以及在实施过程中需要关注的技术细节和用户体验。实际开发中,结合具体需求和项目条件,开发者需要灵活运用各种技术和方法来构建一个高效、易用的省市县三级联动功能。
recommend-type

【性能测试基准】:为RK3588选择合适的NVMe性能测试工具指南

# 1. NVMe性能测试基础 ## 1.1 NVMe协议简介 NVMe,全称为Non-Volatile Memory Express,是专为固态驱动器设计的逻辑设备接口规范。与传统的SATA接口相比,NVMe通过使用PCI Express(PCIe)总线,大大提高了存储设备的数据吞吐量和IOPS(每秒输入输出操作次数),特别适合于高速的固态存储设备。
recommend-type

软件工程题目补充5:求解杨辉三角形系数

<think>我们正在讨论杨辉三角形及其在计算二项式系数中的应用。用户要求提供生成杨辉三角形系数的算法或编程实现。根据引用内容,我们可以使用递推方法,利用杨辉三角形的性质:每个数等于它肩上的两个数之和。同时,我们注意到杨辉三角形的第n行(n从0开始)对应n次二项式展开的系数。算法设计:1.我们可以用一个一维数组来存储当前行的系数,并利用前一行的数据计算当前行。2.为了节省空间,我们可以从后往前计算,这样不会覆盖还需要使用的上一行的数据。3.第i行(0-indexed)有i+1个元素,其中第一个和最后一个元素都是1。4.对于第i行,从第i-1个元素开始往前计算,直到第1个元素(0-indexed
recommend-type

YOYOPlayer1.1.3版发布,功能更新与源码分享

YOYOPlayer是一款基于Java开发的音频播放器,它具备了丰富的功能,并且源代码完全开放,用户可以在遵循相应许可的前提下自由下载和修改。根据提供的信息,我们可以探讨YOYOPlayer开发中涉及的诸多知识点: 1. Java编程与开发环境 YOYOPlayer是使用Java语言编写的,这表明开发者需要对Java开发环境非常熟悉,包括Java语法、面向对象编程、异常处理等。同时,还可能使用了Java开发工具包(JDK)以及集成开发环境(IDE),比如Eclipse或IntelliJ IDEA进行开发。 2. 网络编程与搜索引擎API YOYOPlayer使用了百度的filetype:lrc搜索API来获取歌词,这涉及到Java网络编程的知识,需要使用URL、URLConnection等类来发送网络请求并处理响应。开发者需要熟悉如何解析和使用搜索引擎提供的API。 3. 文件操作与管理 YOYOPlayer提供了多种文件操作功能,比如设置歌词搜索目录、保存目录、以及文件关联等,这需要开发者掌握Java中的文件I/O操作,例如使用File类、RandomAccessFile类等进行文件的读写和目录管理。 4. 多线程编程 YOYOPlayer在进行歌词搜索和下载时,需要同时处理多个任务,这涉及到多线程编程。Java中的Thread类和Executor框架等是实现多线程的关键。 5. 用户界面设计 YOYOPlayer具有图形用户界面(GUI),这意味着开发者需要使用Java图形界面API,例如Swing或JavaFX来设计和实现用户界面。此外,GUI的设计还需要考虑用户体验和交互设计的原则。 6. 音频处理 YOYOPlayer是一个音频播放器,因此需要处理音频文件的解码、播放、音量控制等音频处理功能。Java中与音频相关的API,如javax.sound.sampled可能被用于实现这些功能。 7. 跨平台兼容性 YOYOPlayer支持在Windows和Linux系统下运行,这意味着它的代码需要对操作系统的差异进行处理,确保在不同平台上的兼容性和性能。跨平台编程是Java的一个显著优势,利用Java虚拟机(JVM)可以在不同操作系统上运行相同的应用程序。 8. 配置文件和偏好设置 YOYOPlayer允许用户通过首选项设置来配置播放器的行为,这通常涉及到配置文件的读写操作,例如使用java.util.Properties类来处理用户设置的持久化。 9. 软件版本控制 YOYOPlayer的版本更新记录显示了软件开发中的版本控制概念。开发者可能使用Git或SVN等版本控制工具来管理源代码的版本和迭代。 10. 社区支持与开源项目管理 YOYOPlayer作为一个开源项目,其管理和维护涉及社区协作。这包括通过论坛、博客和社交媒体等渠道与用户沟通,获取反馈并提供支持。 YOYOPlayer1.0版本的发布及之后的1.1.3更新记录了程序在功能和性能上的改进,以及对用户反馈的响应。更新记录中的变更点涉及对搜索功能的优化、用户界面的改进、标签支持的增强、音频设备选择的添加、代理服务器连接的支持,以及一些用户界面细节的调整。 通过上述知识点的讲解,我们可以看到YOYOPlayer不仅是一个功能全面的音频播放器,而且还是一个展示Java编程能力、多线程处理、网络编程、图形用户界面设计和跨平台开发能力的综合性项目。
recommend-type

【固态硬盘寿命延长】:RK3588平台NVMe维护技巧大公开

# 1. 固态硬盘寿命延长的基础知识 ## 1.1 固态硬盘的基本概念 固态硬盘(SSD)是现代计算设备中不可或缺的存储设备之一。与传统的机械硬盘(HDD)相比,SSD拥有更快的读写速度、更小的体积和更低的功耗。但是,SSD也有其生命周期限制,主要受限于NAND闪存的写入次数。 ## 1.2 SSD的写入次数和寿命 每块SSD中的NAND闪存单元都有有限的写入次数。这意味着,随着时间的推移,SSD的
recommend-type

centOS7如何加入Windowsserver AD域

<think>嗯,用户想将CentOS7加入Windows AD域,这是个经典的跨平台认证集成问题。用户可能是系统管理员,需要实现Linux服务器与现有Windows域的整合,可能是为了统一身份认证或满足安全合规要求。从技术实现看,核心步骤是配置DNS解析、主机名、安装realmd/sssd套件、执行域加入操作。特别要注意DNS配置——很多失败案例都源于此。用户提供的引用[3]详细描述了操作流程,但需要根据实际环境调整:比如AD域名可能是"example.com"而非"ad.example.com",主机名需符合NetBIOS命名规范。 用户可能遇到的坑点包括:防火墙未放行AD端口(389/