yolov8改进c2f
时间: 2025-01-11 21:53:35 浏览: 135
### YOLOv8 中 C2F 特征融合方法的改进
#### 1. Context-Guided Network (CGNet)
为了提高YOLOv8在语义分割任务中的表现,可以引入Context-Guided Network (CGNet),该网络通过上下文信息提取机制增强了特征表示能力[^1]。具体来说,CGNet的设计使得模型能够在保持轻量级的同时,在移动设备上实现高效的语义分割。
```python
class CGBlock(nn.Module):
def __init__(self, in_channels, out_channels):
super(CGBlock, self).__init__()
self.conv = nn.Conv2d(in_channels, out_channels, kernel_size=3, padding=1)
self.norm = nn.BatchNorm2d(out_channels)
self.relu = nn.ReLU(inplace=True)
def forward(self, x):
return self.relu(self.norm(self.conv(x)))
```
#### 2. Spatial and Channel-wise Convolution (ScConv)
另一种改进方式是在C2f结构中集成Spatial and Channel-wise Convolution (ScConv)[^2]。这种卷积操作能够更好地捕捉空间和通道维度上的特征关系,从而提升目标检测的效果。ScConv被嵌入到C2f模块中作为瓶颈层的一部分,进一步优化了特征表达的质量。
```python
import torch.nn as nn
class SCConv(nn.Module):
def __init__(self, channels):
super(SCConv, self).__init__()
reduction_ratio = 16
# 定义空间注意力分支
self.spatial_attention = nn.Sequential(
nn.AdaptiveAvgPool2d(1),
nn.Conv2d(channels, channels // reduction_ratio, 1),
nn.ReLU(),
nn.Conv2d(channels // reduction_ratio, channels, 1),
nn.Sigmoid()
)
# 定义通道注意力分支
self.channel_attention = nn.Sequential(
nn.Conv2d(channels, channels // reduction_ratio, 1),
nn.ReLU(),
nn.Conv2d(channels // reduction_ratio, channels, 1),
nn.Sigmoid()
)
def forward(self, x):
spatial_att = self.spatial_attention(x).expand_as(x)
channel_att = self.channel_attention(x.permute(0, 2, 3, 1)).permute(0, 3, 1, 2)
output = x * spatial_att * channel_att
return output
```
#### 3. 组合应用
将上述两种技术结合起来应用于YOLOv8框架内,可以通过构建新的`C2f_ContextGuided`类来完成:
```python
from yolov8.backbone import BackboneBase
class C2f_ContextGuided(BackboneBase):
def __init__(self, base_model_config):
super(C2f_ContextGuided, self).__init__(base_model_config)
self.cg_blocks = nn.ModuleList([CGBlock(base_model_config['in_channels'],
base_model_config['out_channels'])])
self.sc_convs = nn.ModuleList([SCConv(base_model_config['channels'])])
def forward(self, inputs):
features = []
for cg_block, sc_conv in zip(self.cg_blocks, self.sc_convs):
feature = cg_block(inputs)
enhanced_feature = sc_conv(feature)
features.append(enhanced_feature)
return tuple(features)
```
阅读全文
相关推荐


















