活动介绍

python写ui界面,第一步选择文件夹,第二步指定存储路径,第三步,运行按钮,运行后需要检测文件是否是图片格式,第四步生成一个表格,标记识别失败的图片,第五步将识别到的图片文件保存到输出路径,并将生成的表格也保存到输出路径,表格为xlsx格式

时间: 2024-03-02 16:47:50 浏览: 166
好的,这是一个比较复杂的需求,需要使用多个Python库和模块来实现。以下是一个示例代码,可以满足您的要求: ```python import os import tkinter as tk from tkinter import filedialog, messagebox from PIL import Image import openpyxl class ImageRecognitionGUI(tk.Frame): def __init__(self, master=None): super().__init__(master) self.master = master self.folder_path = "" self.output_path = "" self.images = [] self.failed_images = [] self.create_widgets() def create_widgets(self): self.folder_label = tk.Label(self.master, text="请选择文件夹:") self.folder_label.grid(row=0, column=0, padx=5, pady=5) self.folder_button = tk.Button(self.master, text="选择文件夹", command=self.select_folder) self.folder_button.grid(row=0, column=1, padx=5, pady=5) self.output_label = tk.Label(self.master, text="请选择存储路径:") self.output_label.grid(row=1, column=0, padx=5, pady=5) self.output_button = tk.Button(self.master, text="选择路径", command=self.select_output_path) self.output_button.grid(row=1, column=1, padx=5, pady=5) self.run_button = tk.Button(self.master, text="运行", command=self.run) self.run_button.grid(row=2, column=0, columnspan=2, padx=5, pady=5) def select_folder(self): self.folder_path = filedialog.askdirectory() messagebox.showinfo("提示", "已选择文件夹:" + self.folder_path) def select_output_path(self): self.output_path = filedialog.askdirectory() messagebox.showinfo("提示", "已选择输出路径:" + self.output_path) def run(self): if not self.folder_path or not self.output_path: messagebox.showerror("错误", "请选择文件夹和输出路径") return self.images = [] self.failed_images = [] for file_name in os.listdir(self.folder_path): file_path = os.path.join(self.folder_path, file_name) if os.path.isfile(file_path): try: img = Image.open(file_path) self.images.append(file_path) except: self.failed_images.append(file_path) self.generate_table() self.save_output() def generate_table(self): wb = openpyxl.Workbook() ws = wb.active ws.title = "识别结果表格" row_num = 1 for img in self.images: ws.cell(row=row_num, column=1, value=img) row_num += 1 for img in self.failed_images: ws.cell(row=row_num, column=1, value=img) ws.cell(row=row_num, column=2, value="识别失败") row_num += 1 self.table_path = os.path.join(self.output_path, "识别结果表格.xlsx") wb.save(self.table_path) def save_output(self): for img in self.images: output_path = os.path.join(self.output_path, os.path.basename(img)) os.rename(img, output_path) messagebox.showinfo("提示", "已完成识别并保存文件和表格") if __name__ == "__main__": root = tk.Tk() root.title("图片识别程序") root.geometry("300x150") ImageRecognitionGUI(root).pack() root.mainloop() ``` 这个程序使用了tkinter库来创建一个图形用户界面。首先,用户需要选择文件夹和输出路径,然后点击运行按钮来开始识别图片。程序会检查文件夹中的所有文件,并将其转换成图片格式进行识别,如果识别失败则会标记为失败。最后,程序会生成一个表格来显示识别结果,并将识别成功的图片保存到输出路径中。这个程序可以根据您的需求进行修改和调整。
阅读全文

相关推荐

用python 图形化界面用pyqt5写一个程序完成以下要求 一.完成一个对服务器(多台,也就是多条数据)连接信息文件的加解密,及对该文件数据 的添加,修改,删除的功能。该文件包含的信息如下jump_ip(跳板机IP),jump_port(跳板机端口默认22),jump_name(跳板机用户名默认root),jump_password(跳板机密码),ip(目标机ip),port(目标机端口默认22),name(目标机用户名默认root),password(目标机密码),remark(备注),checks(启动该服务器上/home/mss_tool/analyzer_tool.sh 的参数)(参数格式为 nginx=‘/home/nginx/sbin/nginx -s reload’ jar='/home/jar/'),search_path(在该服务器上发现各种服务的搜索路径默认/home)。其中jump_ip,jump_port,jump_name,jump_password为非必填项,ssh连接时如果jump_ip为空则直接连接,如果有值则跳板机连接 二,1.创建一个图形界面,有如下功能,一个添加配置文件数据的按钮(点击后出现弹窗添加配置文件中所需的数据,改界面中需要一个确认添加按钮,测试按钮用来测试是否可以ssh连接,点击确认后需要自动重新加载配置文件),一个重新加载配置文件的按钮,一个输入读取配置文件密码的按钮,一个添加在远程服务器nohup运行/home/mss_tool/main.py 的按钮。log文件为main。log,一个停止/home/mss_tool/main.py的按钮(main.py所在服务器的ip,port,username,password需要进行保存,如果没有改值,弹一个框进行输入相关信息)(在读取配置文件时没有则创建)。2.在输入配置文件密码后读取配置文件的每条数据,并进行展示,每条数据对应的UI(1.展示remark备注,2.展示目标机ip,3,展示跳板机ip,4,展示checks,5,服务监控按钮,点击后开启一个新的界面(开启前先进行ssh测试,如果不能连接则不开器,并进行相应的提示),该界面的UI在第三条) 三,1.通过配置文件对应的信息,每隔60秒查看cpu占用率(并添加一个按钮,点击后可以查看占用最高的三个进程,名称,在每个进程后添加一个按钮用来杀死该进程),内存占用率(并添加一个按钮,点击后可以查看占用最高的三个进程,名称,在每个进程后添加一个按钮用来杀死该进程,硬盘使用情况(并添加一个按钮,点击后可以查看占用最高的三个文件名称,大小,及路径,在每个文件后加按钮用来清空对应的文件),2.在对应的search_path的目录下查找是否有nginx,nacos,minio,roketmq,mysql,redis,dm8,的可执行文件。只展示已经安装了对应服务的结果(该ui为,展示是否在运行,端口号,进程号,再增加一个按钮可以用来杀死该服务,一个按钮用开启动该服务(开启前先杀死),使用该可执行文件启动,nacos为单机版)3.在对应的search_path的目录下查找是否有。jar文件(满足的要求为不为库文件,必须可执行,在同目录下必须有同名的.jar.log文件,例如hello.jar ,hello.jar.log 对发现的每个jar展示jar名,添加启动(启动前先杀死),和停止按钮,并增加一个输入框(非必填,)用来添加启动jar的所需内存参数),再添加一个按钮用来上传同名的jar包,上传前修改该jar包的名为jar包名加日期。4.在对应的search_path的目录下查找是否有dist文件夹(可以为多个),查到后显示对应的路径,然后添加一个按钮用来上传对应的dist文件夹,该文件为.zip文件,上传成功后对dist重新命名为dist加日期,解压.zip,删除.zip。5.增加两个按钮,一个为nohup启动 /home/mss_tool/anas.sh log为anas。log (启动前先杀死),一个停止按钮/home/mss_tool/analyzer_tool.sh。6.添加一个窗口用来执行shell命令(回车后执行)。(如果没有发现请显示无发现) 四。需要注意监控ssh连接是否断开了,这个尤其重要,保证能够长时间连接。并且确保执行的命令能够生效(ssh实现心跳检测和自动重连机制)

import os import pandas as pd import tkinter as tk from tkinter import ttk, filedialog, scrolledtext, messagebox from tkinter.colorchooser import askcolor from difflib import SequenceMatcher import re import openpyxl import threading import numpy as np from openpyxl.utils import get_column_letter import xlrd import gc import hashlib import json import tempfile from concurrent.futures import ThreadPoolExecutor, as_completed import unicodedata class EnhancedSignalComparator: def __init__(self, root): self.root = root self.root.title("增强版信号功能对比工具") self.root.geometry("1200x800") self.root.configure(bg="#f0f0f0") # 初始化变量 self.folder_path = tk.StringVar() self.search_text = tk.StringVar() self.files = [] self.results = {} # 存储信号对比结果 self.highlight_color = "#FFD700" # 默认高亮色 self.search_running = False self.stop_requested = False self.cache_dir = os.path.join(tempfile.gettempdir(), "excel_cache") self.file_cache = {} # 文件缓存 self.column_cache = {} # 列名缓存 self.max_workers = 4 # 最大并发线程数 # 创建缓存目录 os.makedirs(self.cache_dir, exist_ok=True) # 创建界面 self.create_widgets() def create_widgets(self): # 顶部控制面板 control_frame = ttk.Frame(self.root, padding=10) control_frame.pack(fill=tk.X) # 文件夹选择 ttk.Label(control_frame, text="选择文件夹:").grid(row=0, column=0, sticky=tk.W) folder_entry = ttk.Entry(control_frame, textvariable=self.folder_path, width=50) folder_entry.grid(row=0, column=1, padx=5, sticky=tk.EW) ttk.Button(control_frame, text="浏览...", command=self.browse_folder).grid(row=0, column=2) # 搜索输入 ttk.Label(control_frame, text="搜索信号:").grid(row=1, column=0, sticky=tk.W, pady=(10,0)) search_entry = ttk.Entry(control_frame, textvariable=self.search_text, width=50) search_entry.grid(row=1, column=1, padx=5, pady=(10,0), sticky=tk.EW) search_entry.bind("<Return>", lambda event: self.start_search_thread()) ttk.Button(control_frame, text="搜索", command=self.start_search_thread).grid(row=1, column=2, pady=(10,0)) ttk.Button(control_frame, text="停止", command=self.stop_search).grid(row=1, column=3, pady=(10,0), padx=5) # 高级选项 ttk.Label(control_frame, text="并发线程:").grid(row=2, column=0, sticky=tk.W, pady=(10,0)) self.thread_var = tk.StringVar(value="4") ttk.Combobox(control_frame, textvariable=self.thread_var, values=["1", "2", "4", "8"], width=5).grid(row=2, column=1, sticky=tk.W, padx=5, pady=(10,0)) # 文件过滤 ttk.Label(control_frame, text="文件过滤:").grid(row=2, column=2, sticky=tk.W, pady=(10,0)) self.filter_var = tk.StringVar(value="*.xlsx;*.xlsm;*.xls") ttk.Entry(control_frame, textvariable=self.filter_var, width=20).grid(row=2, column=3, sticky=tk.W, padx=5, pady=(10,0)) # 高亮颜色选择 ttk.Label(control_frame, text="高亮颜色:").grid(row=3, column=0, sticky=tk.W, pady=(10,0)) self.color_btn = tk.Button(control_frame, bg=self.highlight_color, width=3, command=self.choose_color) self.color_btn.grid(row=3, column=1, sticky=tk.W, padx=5, pady=(10,0)) # 进度条 self.progress = ttk.Progressbar(control_frame, orient="horizontal", length=200, mode="determinate") self.progress.grid(row=3, column=2, columnspan=2, sticky=tk.EW, padx=5, pady=(10,0)) # 结果标签 self.result_label = ttk.Label(control_frame, text="") self.result_label.grid(row=3, column=4, sticky=tk.W, padx=5, pady=(10,0)) # 对比面板 notebook = ttk.Notebook(self.root) notebook.pack(fill=tk.BOTH, expand=True, padx=10, pady=10) # 表格视图 self.table_frame = ttk.Frame(notebook) notebook.add(self.table_frame, text="表格视图") # 文本对比视图 self.text_frame = ttk.Frame(notebook) notebook.add(self.text_frame, text="行内容对比") # 状态栏 self.status_var = tk.StringVar() status_bar = ttk.Label(self.root, textvariable=self.status_var, relief=tk.SUNKEN, anchor=tk.W) status_bar.pack(side=tk.BOTTOM, fill=tk.X) # 初始化表格和文本区域 self.init_table_view() self.init_text_view() def init_table_view(self): """初始化表格视图""" # 创建树状表格 columns = ("信号", "文件", "行内容摘要") self.tree = ttk.Treeview(self.table_frame, columns=columns, show="headings") # 设置列标题 for col in columns: self.tree.heading(col, text=col) self.tree.column(col, width=200, anchor=tk.W) # 添加滚动条 scrollbar = ttk.Scrollbar(self.table_frame, orient=tk.VERTICAL, command=self.tree.yview) self.tree.configure(yscrollcommand=scrollbar.set) self.tree.pack(side=tk.LEFT, fill=tk.BOTH, expand=True) scrollbar.pack(side=tk.RIGHT, fill=tk.Y) # 绑定选择事件 self.tree.bind("<<TreeviewSelect>>", self.on_table_select) def init_text_view(self): """初始化文本对比视图""" self.text_panes = {} self.text_frame.columnconfigure(0, weight=1) self.text_frame.rowconfigure(0, weight=1) # 创建对比容器 self.compare_container = ttk.Frame(self.text_frame) self.compare_container.grid(row=0, column=0, sticky="nsew", padx=5, pady=5) # 添加差异高亮按钮 btn_frame = ttk.Frame(self.text_frame) btn_frame.grid(row=1, column=0, sticky="ew", padx=5, pady=5) ttk.Button(btn_frame, text="高亮显示差异", command=self.highlight_differences).pack(side=tk.LEFT) ttk.Button(btn_frame, text="导出差异报告", command=self.export_report).pack(side=tk.LEFT, padx=5) ttk.Button(btn_frame, text="清除缓存", command=self.clear_cache).pack(side=tk.LEFT, padx=5) ttk.Button(btn_frame, text="手动指定列名", command=self.manual_column_select).pack(side=tk.LEFT, padx=5) def browse_folder(self): """选择文件夹""" folder = filedialog.askdirectory(title="选择包含Excel文件的文件夹") if folder: self.folder_path.set(folder) self.load_files() def load_files(self): """加载文件夹中的Excel文件(优化特殊字符处理)""" folder = self.folder_path.get() if not folder or not os.path.isdir(folder): return # 获取文件过滤模式 filter_patterns = self.filter_var.get().split(';') self.files = [] for file in os.listdir(folder): file_path = os.path.join(folder, file) # 跳过临时文件 if file.startswith('~$'): continue # 检查文件扩展名 file_lower = file.lower() matched = False for pattern in filter_patterns: # 移除通配符并转换为小写 ext = pattern.replace('*', '').lower() if file_lower.endswith(ext): matched = True break if matched: # 规范化文件名处理特殊字符 normalized_path = self.normalize_file_path(file_path) if normalized_path and os.path.isfile(normalized_path): self.files.append(normalized_path) self.status_var.set(f"找到 {len(self.files)} 个Excel文件") def normalize_file_path(self, path): """规范化文件路径,处理特殊字符""" try: # 尝试直接访问文件 if os.path.exists(path): return path # 尝试Unicode规范化 normalized = unicodedata.normalize('NFC', path) if os.path.exists(normalized): return normalized # 尝试不同编码方案 encodings = ['utf-8', 'shift_jis', 'euc-jp', 'cp932'] for encoding in encodings: try: decoded = path.encode('latin1').decode(encoding) if os.path.exists(decoded): return decoded except: continue # 最终尝试原始路径 return path except Exception as e: self.status_var.set(f"文件路径处理错误: {str(e)}") return path def get_file_hash(self, file_path): """计算文件哈希值用于缓存""" try: hash_md5 = hashlib.md5() with open(file_path, "rb") as f: for chunk in iter(lambda: f.read(4096), b""): hash_md5.update(chunk) return hash_md5.hexdigest() except Exception as e: self.status_var.set(f"计算文件哈希失败: {str(e)}") return str(os.path.getmtime(file_path)) def get_cache_filename(self, file_path): """获取缓存文件名""" file_hash = self.get_file_hash(file_path) return os.path.join(self.cache_dir, f"{os.path.basename(file_path)}_{file_hash}.cache") def load_header_cache(self, file_path): """加载列名缓存""" cache_file = self.get_cache_filename(file_path) if os.path.exists(cache_file): try: with open(cache_file, "r", encoding='utf-8') as f: return json.load(f) except: return None return None def save_header_cache(self, file_path, header_info): """保存列名缓存""" cache_file = self.get_cache_filename(file_path) try: with open(cache_file, "w", encoding='utf-8') as f: json.dump(header_info, f) return True except: return False def find_header_row(self, file_path): """查找列名行(增强版)""" # 检查缓存 cache = self.load_header_cache(file_path) if cache: return cache.get("header_row"), cache.get("signal_col") # 没有缓存则重新查找 if file_path.lower().endswith((".xlsx", ".xlsm")): return self.find_header_row_openpyxl(file_path) elif file_path.lower().endswith(".xls"): return self.find_header_row_xlrd(file_path) return None, None def find_header_row_openpyxl(self, file_path): """使用openpyxl查找列名行(增强版)""" try: wb = openpyxl.load_workbook(file_path, read_only=True, data_only=True) ws = wb.active # 尝试多种列名匹配模式 patterns = [ r'データ名', # 半角片假名 r'データ名', # 全角片假名 r'信号名', # 中文 r'Signal Name', # 英文 r'Data Name', r'信号名称', r'データ名称' ] # 扩大搜索范围:前100行和前100列 for row_idx in range(1, 101): # 1-100行 # 扩大列搜索范围到100列 for col_idx in range(1, 101): # 1-100列 try: cell = ws.cell(row=row_idx, column=col_idx) cell_value = cell.value if not cell_value: continue # 尝试所有匹配模式 cell_str = str(cell_value) for pattern in patterns: if re.search(pattern, cell_str, re.IGNORECASE): # 找到列名行后,尝试确定信号列 signal_col = None # 在同行中查找信号列 for col_idx2 in range(1, 101): # 1-100列 try: cell2 = ws.cell(row=row_idx, column=col_idx2) cell2_value = cell2.value if not cell2_value: continue cell2_str = str(cell2_value) if re.search(pattern, cell2_str, re.IGNORECASE): signal_col = col_idx2 break except: continue # 保存缓存 if signal_col is not None: header_info = {"header_row": row_idx, "signal_col": signal_col} self.save_header_cache(file_path, header_info) wb.close() return row_idx, signal_col except: continue wb.close() except Exception as e: self.status_var.set(f"查找列名行出错: {str(e)}") return None, None def find_header_row_xlrd(self, file_path): """使用xlrd查找列名行(增强版)""" try: wb = xlrd.open_workbook(file_path) ws = wb.sheet_by_index(0) # 尝试多种列名匹配模式 patterns = [ r'データ名', # 半角片假名 r'データ名', # 全角片假名 r'信号名', # 中文 r'Signal Name', # 英文 r'Data Name', r'信号名称', r'データ名称' ] # 扩大搜索范围:前100行和前100列 for row_idx in range(0, 100): # 0-99行 # 扩大列搜索范围到100列 for col_idx in range(0, 100): # 0-99列 try: cell_value = ws.cell_value(row_idx, col_idx) if not cell_value: continue # 尝试所有匹配模式 cell_str = str(cell_value) for pattern in patterns: if re.search(pattern, cell_str, re.IGNORECASE): # 找到列名行后,尝试确定信号列 signal_col = None # 在同行中查找信号列 for col_idx2 in range(0, 100): # 0-99列 try: cell2_value = ws.cell_value(row_idx, col_idx2) if not cell2_value: continue cell2_str = str(cell2_value) if re.search(pattern, cell2_str, re.IGNORECASE): signal_col = col_idx2 break except: continue # 保存缓存 if signal_col is not None: header_info = {"header_row": row_idx, "signal_col": signal_col} self.save_header_cache(file_path, header_info) return row_idx, signal_col except: continue except Exception as e: self.status_var.set(f"查找列名行出错: {str(e)}") return None, None def extract_row_content(self, ws, row_idx, header_row, max_cols=100): """高效提取行内容(最多到100列)""" content = [] # 扩展到100列 for col_idx in range(1, max_cols + 1): try: cell = ws.cell(row=row_idx, column=col_idx) if cell.value is not None and str(cell.value).strip() != '': # 使用列名缓存 col_key = f"{header_row}-{col_idx}" if col_key in self.column_cache: col_name = self.column_cache[col_key] else: col_name_cell = ws.cell(row=header_row, column=col_idx) col_name = col_name_cell.value if col_name_cell.value else f"列{get_column_letter(col_idx)}" self.column_cache[col_key] = col_name content.append(f"{col_name}: {str(cell.value).strip()}") except: continue return "\n".join(content) def start_search_thread(self): """启动搜索线程""" if self.search_running: return self.search_running = True self.stop_requested = False self.max_workers = int(self.thread_var.get()) threading.Thread(target=self.search_files, daemon=True).start() def stop_search(self): """停止搜索""" self.stop_requested = True self.status_var.set("正在停止搜索...") def search_files(self): """在文件中搜索内容(优化特殊文件处理)""" search_term = self.search_text.get().strip() if not search_term: self.status_var.set("请输入搜索内容") self.search_running = False return if not self.files: self.status_var.set("请先选择文件夹") self.search_running = False return # 重置结果和UI self.results = {} for item in self.tree.get_children(): self.tree.delete(item) total_files = len(self.files) processed_files = 0 found_signals = 0 # 使用线程池处理文件 with ThreadPoolExecutor(max_workers=self.max_workers) as executor: futures = {} for file_path in self.files: if self.stop_requested: break future = executor.submit(self.process_file, file_path, search_term) futures[future] = file_path # 处理完成的任务 for future in as_completed(futures): if self.stop_requested: break file_path = futures[future] try: found = future.result() found_signals += found processed_files += 1 # 更新进度 progress = int(processed_files / total_files * 100) self.progress["value"] = progress self.status_var.set(f"已处理 {processed_files}/{total_files} 个文件") self.root.update_idletasks() except Exception as e: self.status_var.set(f"处理文件 {os.path.basename(file_path)} 出错: {str(e)}") # 更新结果 if self.stop_requested: self.status_var.set(f"搜索已停止,已处理 {processed_files}/{total_files} 个文件") elif found_signals == 0: self.status_var.set(f"未找到包含 '{search_term}' 的信号") else: self.status_var.set(f"找到 {len(self.results)} 个匹配信号,共 {found_signals} 处匹配") self.update_text_view() self.progress["value"] = 0 self.search_running = False gc.collect() # 强制垃圾回收释放内存 def process_file(self, file_path, search_term): """处理单个文件(增强异常处理)""" found = 0 try: # 获取列名行和信号列 header_row, signal_col = self.find_header_row(file_path) # 如果自动查找失败,尝试手动模式 if header_row is None or signal_col is None: self.status_var.set(f"文件 {os.path.basename(file_path)} 未找到列名行,尝试手动查找...") header_row, signal_col = self.manual_find_header_row(file_path) if header_row is None or signal_col is None: self.status_var.set(f"文件 {os.path.basename(file_path)} 无法确定列名行,已跳过") return found # 根据文件类型处理 if file_path.lower().endswith((".xlsx", ".xlsm")): found = self.process_openpyxl_file(file_path, search_term, header_row, signal_col) elif file_path.lower().endswith(".xls"): found = self.process_xlrd_file(file_path, search_term, header_row, signal_col) except Exception as e: self.status_var.set(f"处理文件 {os.path.basename(file_path)} 出错: {str(e)}") return found def manual_find_header_row(self, file_path): """手动查找列名行(当自动查找失败时使用)""" try: # 尝试打开文件 if file_path.lower().endswith((".xlsx", ".xlsm")): wb = openpyxl.load_workbook(file_path, read_only=True, data_only=True) ws = wb.active # 扫描整个工作表(最多1000行) for row_idx in range(1, 1001): for col_idx in range(1, 101): try: cell = ws.cell(row=row_idx, column=col_idx) if cell.value and "データ" in str(cell.value): # 找到可能的列名行 return row_idx, col_idx except: continue wb.close() elif file_path.lower().endswith(".xls"): wb = xlrd.open_workbook(file_path) ws = wb.sheet_by_index(0) # 扫描整个工作表(最多1000行) for row_idx in range(0, 1000): for col_idx in range(0, 100): try: cell_value = ws.cell_value(row_idx, col_idx) if cell_value and "データ" in str(cell_value): # 找到可能的列名行 return row_idx, col_idx except: continue except: pass return None, None def get_file_cache_key(self, file_path, header_row, signal_col): """生成唯一的文件缓存键""" file_hash = self.get_file_hash(file_path) return f"{file_hash}_{header_row}_{signal_col}" def process_openpyxl_file(self, file_path, search_term, header_row, signal_col): found = 0 try: cache_key = self.get_file_cache_key(file_path, header_row, signal_col) if cache_key in self.file_cache: signal_data = self.file_cache[cache_key] else: wb = openpyxl.load_workbook(file_path, data_only=True, read_only=True) ws = wb.active min_row = header_row + 1 max_row = min(ws.max_row, min_row + 5000) # 只读取信号列和行号 signal_data = [] for row_idx in range(min_row, max_row + 1): cell = ws.cell(row=row_idx, column=signal_col) if cell.value: signal_data.append((row_idx, str(cell.value))) self.file_cache[cache_key] = signal_data wb.close() # 收集匹配的行号 match_rows = [] for row_idx, value in signal_data: if search_term.lower() in value.lower(): match_rows.append(row_idx) # 批量处理匹配行 if match_rows: wb = openpyxl.load_workbook(file_path, data_only=True, read_only=True) ws = wb.active for row_idx in match_rows: # 只提取必要的列:信号名和关键元数据 signal = ws.cell(row=row_idx, column=signal_col).value data_name = ws.cell(row=row_idx, column=signal_col + 1).value if signal_col + 1 <= 100 else "" data_type = ws.cell(row=row_idx, column=signal_col + 2).value if signal_col + 2 <= 100 else "" row_content = f"信号名: {signal}\n数据名: {data_name}\n数据类型: {data_type}" # 添加到结果集 if signal not in self.results: self.results[signal] = {} short_name = os.path.basename(file_path) self.results[signal][short_name] = row_content # 添加到表格 summary = row_content[:50] + "..." if len(row_content) > 50 else row_content self.tree.insert("", tk.END, values=(signal, short_name, summary)) found += 1 wb.close() except Exception as e: self.status_var.set(f"处理文件 {os.path.basename(file_path)} 出错: {str(e)}") return found def process_xlrd_file(self, file_path, search_term, header_row, signal_col): """高效处理xls文件(增强异常处理)""" found = 0 try: # 使用缓存 file_key = f"{file_path}_{header_row}_{signal_col}" if file_key in self.file_cache: ws = self.file_cache[file_key] else: wb = xlrd.open_workbook(file_path) ws = wb.sheet_by_index(0) self.file_cache[file_key] = ws # 优化搜索范围 min_row = header_row + 1 max_row = min(ws.nrows, min_row + 5000) # 限制搜索行数 # 批量读取信号列数据 signal_values = ws.col_values(signal_col, min_row, max_row) # 搜索匹配的信号 for idx, value in enumerate(signal_values): if self.stop_requested: break if not value: continue cell_str = str(value) if search_term.lower() in cell_str.lower(): signal = cell_str row_idx = min_row + idx # 提取整行内容 row_content = self.extract_xlrd_row_content(ws, row_idx, header_row) # 添加到结果集 if signal not in self.results: self.results[signal] = {} # 使用短文件名避免特殊字符问题 short_name = os.path.basename(file_path) self.results[signal][short_name] = row_content # 添加到表格(显示前50字符摘要) summary = row_content[:50] + "..." if len(row_content) > 50 else row_content self.tree.insert("", tk.END, values=(signal, short_name, summary)) found += 1 except Exception as e: self.status_var.set(f"处理文件 {os.path.basename(file_path)} 出错: {str(e)}") return found def extract_xlrd_row_content(self, ws, row_idx, header_row): """为xls文件高效提取行内容""" content = [] try: row_values = ws.row_values(row_idx) except: return "" # 扩展到100列 for col_idx in range(min(len(row_values), 100)): try: cell_value = row_values[col_idx] if cell_value is not None and str(cell_value).strip() != '': # 使用列名缓存 col_key = f"{header_row}-{col_idx}" if col_key in self.column_cache: col_name = self.column_cache[col_key] else: try: col_name = ws.cell_value(header_row, col_idx) if not col_name: col_name = f"列{col_idx+1}" except: col_name = f"列{col_idx+1}" self.column_cache[col_key] = col_name content.append(f"{col_name}: {str(cell_value).strip()}") except: continue return "\n".join(content) def update_text_view(self): """更新文本对比视图""" # 清除现有文本区域 for widget in self.compare_container.winfo_children(): widget.destroy() if not self.results: return # 获取第一个信号作为默认显示 first_signal = next(iter(self.results.keys())) self.display_signal_comparison(first_signal) def on_table_select(self, event): """表格选择事件处理""" selected = self.tree.selection() if not selected: return item = self.tree.item(selected[0]) signal = item["values"][0] self.display_signal_comparison(signal) def display_signal_comparison(self, signal): """显示指定信号的对比""" # 清除现有文本区域 for widget in self.compare_container.winfo_children(): widget.destroy() if signal not in self.results: return signal_data = self.results[signal] files = list(signal_data.keys()) contents = list(signal_data.values()) # 创建列框架 for i, (file, content) in enumerate(zip(files, contents)): col_frame = ttk.Frame(self.compare_container) col_frame.grid(row=0, column=i, sticky="nsew", padx=5, pady=5) self.compare_container.columnconfigure(i, weight=1) # 文件名标签 file_label = ttk.Label(col_frame, text=file, font=("Arial", 10, "bold")) file_label.pack(fill=tk.X, pady=(0, 5)) # 文本区域 text_area = scrolledtext.ScrolledText(col_frame, wrap=tk.WORD, width=30, height=15) text_area.insert(tk.INSERT, content) text_area.configure(state="disabled") text_area.pack(fill=tk.BOTH, expand=True) # 保存引用 self.text_panes[file] = text_area def highlight_differences(self): """高亮显示文本差异""" if not self.text_panes: return # 获取所有行内容 all_contents = [] for text_area in self.text_panes.values(): text_area.configure(state="normal") text = text_area.get("1.0", tk.END).strip() text_area.configure(state="disabled") all_contents.append(text) # 如果所有内容相同,则不需要高亮 if len(set(all_contents)) == 1: self.status_var.set("所有文件行内容完全一致") return # 使用第一个文件作为基准 base_text = all_contents[0] # 对比并高亮差异 for i, (file, text_area) in enumerate(self.text_panes.items()): if i == 0: # 基准文件不需要处理 continue text_area.configure(state="normal") text_area.tag_configure("diff", background=self.highlight_color) # 清除之前的高亮 text_area.tag_remove("diff", "1.0", tk.END) # 获取当前文本 compare_text = text_area.get("1.0", tk.END).strip() # 使用序列匹配器查找差异 s = SequenceMatcher(None, base_text, compare_text) # 高亮差异部分 for tag in s.get_opcodes(): opcode = tag[0] start = tag[3] end = tag[4] if opcode != "equal": # 添加高亮标签 text_area.tag_add("diff", f"1.0+{start}c", f"1.0+{end}c") text_area.configure(state="disabled") self.status_var.set("差异已高亮显示") def choose_color(self): """选择高亮颜色""" color = askcolor(title="选择高亮颜色", initialcolor=self.highlight_color) if color[1]: self.highlight_color = color[1] self.color_btn.configure(bg=self.highlight_color) def export_report(self): """导出差异报告""" if not self.results: messagebox.showwarning("警告", "没有可导出的结果") return try: # 创建报告数据结构 report_data = [] for signal, files_data in self.results.items(): for file, content in files_data.items(): report_data.append({ "信号": signal, "文件": file, "行内容": content }) # 转换为DataFrame df = pd.DataFrame(report_data) # 保存到Excel save_path = filedialog.asksaveasfilename( defaultextension=".xlsx", filetypes=[("Excel文件", "*.xlsx")], title="保存差异报告" ) if save_path: df.to_excel(save_path, index=False) self.status_var.set(f"报告已保存到: {save_path}") except Exception as e: messagebox.showerror("错误", f"导出报告失败: {str(e)}") def clear_cache(self): """清除缓存""" try: for file in os.listdir(self.cache_dir): if file.endswith(".cache"): os.remove(os.path.join(self.cache_dir, file)) self.file_cache = {} self.column_cache = {} self.status_var.set("缓存已清除") except Exception as e: self.status_var.set(f"清除缓存失败: {str(e)}") def manual_column_select(self): """手动指定列名位置""" if not self.files: messagebox.showinfo("提示", "请先选择文件夹") return # 创建手动选择窗口 manual_window = tk.Toplevel(self.root) manual_window.title("手动指定列名位置") manual_window.geometry("400x300") # 文件选择 ttk.Label(manual_window, text="选择文件:").pack(pady=(10, 5)) file_var = tk.StringVar() file_combo = ttk.Combobox(manual_window, textvariable=file_var, values=[os.path.basename(f) for f in self.files]) file_combo.pack(fill=tk.X, padx=20, pady=5) file_combo.current(0) # 行号输入 ttk.Label(manual_window, text="列名行号:").pack(pady=(10, 5)) row_var = tk.StringVar(value="1") row_entry = ttk.Entry(manual_window, textvariable=row_var) row_entry.pack(fill=tk.X, padx=20, pady=5) # 列号输入 ttk.Label(manual_window, text="信号列号:").pack(pady=(10, 5)) col_var = tk.StringVar(value="1") col_entry = ttk.Entry(manual_window, textvariable=col_var) col_entry.pack(fill=tk.X, padx=20, pady=5) # 确认按钮 def confirm_selection(): try: file_idx = file_combo.current() file_path = self.files[file_idx] header_row = int(row_var.get()) signal_col = int(col_var.get()) # 保存到缓存 header_info = {"header_row": header_row, "signal_col": signal_col} self.save_header_cache(file_path, header_info) messagebox.showinfo("成功", f"已为 {os.path.basename(file_path)} 设置列名位置:行{header_row} 列{signal_col}") manual_window.destroy() except Exception as e: messagebox.showerror("错误", f"无效输入: {str(e)}") ttk.Button(manual_window, text="确认", command=confirm_selection).pack(pady=20) if __name__ == "__main__": root = tk.Tk() app = EnhancedSignalComparator(root) root.mainloop() 1、现在更改之后,读取的速度更慢了,在大文件的搜索中,一直在已处理中,速度太慢了,甚至没有改之前快,请搜索网络上类似的处理,优化处理流程

最新推荐

recommend-type

PLC控制变频器:三菱与汇川PLC通过485通讯板实现变频器正反转及调速控制

内容概要:本文介绍了如何利用三菱和汇川PLC通过485通讯板实现变频器的正转、反转及调速控制。主要内容涵盖硬件配置、软件编程、具体控制逻辑及上机测试。文中详细描述了各个步骤的操作方法和注意事项,包括关键寄存器的设置及其含义。程序中有详细的中文注释,便于理解和维护。最终通过上机测试验证系统的稳定性和可靠性。 适合人群:从事工业自动化领域的工程师和技术人员,尤其是熟悉PLC编程和变频器控制的专业人士。 使用场景及目标:适用于需要对电机进行精确控制的工业应用场景,如生产线、机械设备等。目标是提高控制系统灵活性和效率,确保系统稳定可靠。 其他说明:本文不仅提供理论指导,还附带实际操作经验,有助于读者更好地掌握相关技术和应用。
recommend-type

Python桌面版数独(五版)-优化选择模式触发新棋盘生成

Python桌面版数独(五版)-优化选择模式触发新棋盘生成
recommend-type

jmeter 下载使用5.6.3

jmeter 下载使用5.6.3
recommend-type

数据工程ETL工程师全解析:从数据抽取到加载的技术要点与职业发展路径

内容概要:文章详细介绍了ETL工程师这一职业,解释了ETL(Extract-Transform-Load)的概念及其在数据处理中的重要性。ETL工程师负责将分散、不统一的数据整合为有价值的信息,支持企业的决策分析。日常工作包括数据整合、存储管理、挖掘设计支持和多维分析展现。文中强调了ETL工程师所需的核心技能,如数据库知识、ETL工具使用、编程能力、业务理解能力和问题解决能力。此外,还盘点了常见的ETL工具,包括开源工具如Kettle、XXL-JOB、Oozie、Azkaban和海豚调度,以及企业级工具如TASKCTL和Moia Comtrol。最后,文章探讨了ETL工程师的职业发展路径,从初级到高级的技术晋升,以及向大数据工程师或数据产品经理的横向发展,并提供了学习资源和求职技巧。 适合人群:对数据处理感兴趣,尤其是希望从事数据工程领域的人士,如数据分析师、数据科学家、软件工程师等。 使用场景及目标:①了解ETL工程师的职责和技能要求;②选择适合自己的ETL工具;③规划ETL工程师的职业发展路径;④获取相关的学习资源和求职建议。 其他说明:随着大数据技术的发展和企业数字化转型的加速,ETL工程师的需求不断增加,尤其是在金融、零售、制造、人工智能、物联网和区块链等领域。数据隐私保护法规的完善也使得ETL工程师在数据安全和合规处理方面的作用更加重要。
recommend-type

基于51单片机的嵌入式系统开发_DS18B20温度传感器_LCD1602显示_I2C通信_24C02存储_Proteus仿真_Keil开发_温度监测与智能调控系统_包含温度上下限设.zip

基于51单片机的嵌入式系统开发_DS18B20温度传感器_LCD1602显示_I2C通信_24C02存储_Proteus仿真_Keil开发_温度监测与智能调控系统_包含温度上下限设.zip
recommend-type

Web前端开发:CSS与HTML设计模式深入解析

《Pro CSS and HTML Design Patterns》是一本专注于Web前端设计模式的书籍,特别针对CSS(层叠样式表)和HTML(超文本标记语言)的高级应用进行了深入探讨。这本书籍属于Pro系列,旨在为专业Web开发人员提供实用的设计模式和实践指南,帮助他们构建高效、美观且可维护的网站和应用程序。 在介绍这本书的知识点之前,我们首先需要了解CSS和HTML的基础知识,以及它们在Web开发中的重要性。 HTML是用于创建网页和Web应用程序的标准标记语言。它允许开发者通过一系列的标签来定义网页的结构和内容,如段落、标题、链接、图片等。HTML5作为最新版本,不仅增强了网页的表现力,还引入了更多新的特性,例如视频和音频的内置支持、绘图API、离线存储等。 CSS是用于描述HTML文档的表现(即布局、颜色、字体等样式)的样式表语言。它能够让开发者将内容的表现从结构中分离出来,使得网页设计更加模块化和易于维护。随着Web技术的发展,CSS也经历了多个版本的更新,引入了如Flexbox、Grid布局、过渡、动画以及Sass和Less等预处理器技术。 现在让我们来详细探讨《Pro CSS and HTML Design Patterns》中可能包含的知识点: 1. CSS基础和选择器: 书中可能会涵盖CSS基本概念,如盒模型、边距、填充、边框、背景和定位等。同时还会介绍CSS选择器的高级用法,例如属性选择器、伪类选择器、伪元素选择器以及选择器的组合使用。 2. CSS布局技术: 布局是网页设计中的核心部分。本书可能会详细讲解各种CSS布局技术,包括传统的浮动(Floats)布局、定位(Positioning)布局,以及最新的布局模式如Flexbox和CSS Grid。此外,也会介绍响应式设计的媒体查询、视口(Viewport)单位等。 3. 高级CSS技巧: 这些技巧可能包括动画和过渡效果,以及如何优化性能和兼容性。例如,CSS3动画、关键帧动画、转换(Transforms)、滤镜(Filters)和混合模式(Blend Modes)。 4. HTML5特性: 书中可能会深入探讨HTML5的新标签和语义化元素,如`<article>`、`<section>`、`<nav>`等,以及如何使用它们来构建更加标准化和语义化的页面结构。还会涉及到Web表单的新特性,比如表单验证、新的输入类型等。 5. 可访问性(Accessibility): Web可访问性越来越受到重视。本书可能会介绍如何通过HTML和CSS来提升网站的无障碍访问性,比如使用ARIA标签(Accessible Rich Internet Applications)来增强屏幕阅读器的使用体验。 6. 前端性能优化: 性能优化是任何Web项目成功的关键。本书可能会涵盖如何通过优化CSS和HTML来提升网站的加载速度和运行效率。内容可能包括代码压缩、合并、避免重绘和回流、使用Web字体的最佳实践等。 7. JavaScript与CSS/HTML的交互: 在现代Web开发中,JavaScript与CSS及HTML的交云并用是不可或缺的。书中可能会讲解如何通过JavaScript动态地修改样式、操作DOM元素以及使用事件监听和响应用户交互。 8. Web框架和预处理器: 这本书可能会提到流行的Web开发框架和预处理器,比如Bootstrap、Foundation、Sass和Less等,它们是如何简化和加速开发流程的。 9. 测试和维护: 书中也可能包含关于如何测试网页以及如何持续优化和维护CSS和HTML代码的章节。例如,使用断言测试、自动化测试、性能分析工具等。 最后,鉴于文件名称列表中的“压缩包子文件”的表述,这可能是对“压缩包”文件的一种误译或误用,此处“压缩包”应该指的是包含该书籍PDF文件的压缩文件格式,如ZIP或RAR。而“Pro CSS and HTML Design Patterns.pdf”指的就是该书籍的PDF格式电子版文件。 以上所述,构成了《Pro CSS and HTML Design Patterns》一书可能包含的核心知识点。通过学习这些内容,Web前端开发者可以掌握更为高效和优雅的设计模式,从而在日常工作中更高效地解决实际问题。
recommend-type

Zotero 7数据同步:Attanger插件安装&设置,打造文献管理利器

/i.s3.glbimg.com/v1/AUTH_08fbf48bc0524877943fe86e43087e7a/internal_photos/bs/2018/L/j/ipKA8TRPyt4ptaG1DGww/t-m-01.png) # 1. Zotero 7数据同步简介 在数字时代,管理研究数据变得日益重要,而Zot
recommend-type

卷积神经网络的基础理论200字

<think>我们正在回答用户关于卷积神经网络(CNN)基础理论的询问。根据提供的引用资料,我们可以概述CNN的基本结构和工作原理。引用[1]提到CNN是一种前馈神经网络,信息从输入单向流动到输出。引用[2]指出CNN在图像处理等领域应用广泛,通过层次结构和参数调整实现模式识别。引用[3]说明CNN包含卷积层,使用卷积核提取局部特征,减少参数量,提高效率。引用[4]则提到了训练过程,包括前向传播、误差计算和反向传播(梯度下降)。因此,我们将从以下几个方面概述CNN:1.CNN的基本结构(卷积层、池化层、全连接层)2.卷积操作的工作原理(局部感受野、权重共享)3.训练过程(前向传播、损失函数、反
recommend-type

轻便实用的Java库类查询工具介绍

标题 "java2库类查询" 和描述表明,所提及的工具是一个专门用于查询Java库类的应用程序。此软件旨在帮助开发者快速地查找和引用Java的标准开发工具包(SDK)中包含的所有应用程序编程接口(API)类。通过这样的工具,开发者可以节省大量在官方文档或搜索引擎上寻找类定义和使用方法的时间。它被描述为轻巧且方便,这表明其占用的系统资源相对较少,同时提供直观的用户界面,使得查询过程简洁高效。 从描述中可以得出几个关键知识点: 1. Java SDK:Java的软件开发工具包(SDK)是Java平台的一部分,提供了一套用于开发Java应用软件的软件包和库。这些软件包通常被称为API,为开发者提供了编程界面,使他们能够使用Java语言编写各种类型的应用程序。 2. 库类查询:这个功能对于开发者来说非常关键,因为它提供了一个快速查找特定库类及其相关方法、属性和使用示例的途径。良好的库类查询工具可以帮助开发者提高工作效率,减少因查找文档而中断编程思路的时间。 3. 轻巧性:软件的轻巧性通常意味着它对计算机资源的要求较低。这样的特性对于资源受限的系统尤为重要,比如老旧的计算机、嵌入式设备或是当开发者希望最小化其开发环境占用空间时。 4. 方便性:软件的方便性通常关联于其用户界面设计,一个直观、易用的界面可以让用户快速上手,并减少在使用过程中遇到的障碍。 5. 包含所有API:一个优秀的Java库类查询软件应当能够覆盖Java所有标准API,这包括Java.lang、Java.util、Java.io等核心包,以及Java SE平台的所有其他标准扩展包。 从标签 "java 库 查询 类" 可知,这个软件紧密关联于Java编程语言的核心功能——库类的管理和查询。这些标签可以关联到以下知识点: - Java:一种广泛用于企业级应用、移动应用(如Android应用)、网站后端、大型系统和许多其他平台的编程语言。 - 库:在Java中,库是一组预打包的类和接口,它们可以被应用程序重复使用。Java提供了庞大的标准库,以支持各种常见的任务和功能。 - 查询:查询指的是利用软件工具搜索、定位和检索信息的过程。对于Java库类查询工具来说,这意味着可以通过类名、方法签名或其他标识符来查找特定的API条目。 最后,压缩包文件列表包含了两个文件:“java.dit”和“Java.exe”。其中“Java.exe”很可能是程序的可执行文件,而“java.dit”可能是一个数据文件,用于存储Java类的索引或数据。由于文件名后缀通常与文件类型相关联,但“dit”并不是一个常见的文件扩展名。这可能是一个特定于软件的自定义格式,或是一个打字错误。 总结来说,"java2库类查询" 是一个针对Java开发者的实用工具,它提供了一个轻量级、易用的平台来查询和定位Java标准库中的所有类和API。此工具对优化开发流程,减少查找Java类文档的时间大有裨益,尤其适合需要频繁查阅Java API的开发者使用。
recommend-type

【Zotero 7终极指南】:新手必备!Attanger插件全攻略与数据同步神技

# 1. Zotero 7与Attanger插件的介绍 在当今的学术研究和知识管理领域,高效的文献管理工具至关重要。Zotero 7作为一个流行的参考文献管理软件,因其强大的功能和用户友好的界面而受到专业人士的青睐。而Attanger插件则为Zotero 7带来了更多定制化和高级功能,极大地增强