活动介绍

anaconda怎么安装CUDA 11.8 + cuDNN 8.6已有tenseflow库和虚拟环境

时间: 2025-07-14 17:00:59 浏览: 16
<think>嗯,用户现在的问题是关于在Anaconda环境中安装CUDA 11.8和cuDNN 8.6,并且已经有TensorFlow库和虚拟环境。首先,我需要确定用户的具体需求。他们可能已经创建了一个虚拟环境,安装了TensorFlow,但现在需要配置对应的CUDA和cuDNN版本,以支持GPU加速。 首先,用户可能遇到的问题是在使用TensorFlow时,GPU没有被正确识别或使用。这可能是因为CUDA和cuDNN的版本不匹配,或者没有正确安装。TensorFlow的不同版本对CUDA和cuDNN有特定的要求,用户提到CUDA 11.8和cuDNN 8.6,需要确认这些版本是否兼容他们现有的TensorFlow版本。例如,TensorFlow 2.10及以后可能需要CUDA 11.8和cuDNN 8.6,而更早的版本可能需要不同的版本组合。 接下来,用户可能已经通过Anaconda创建了虚拟环境,并安装了TensorFlow,但可能没有正确安装对应的CUDA和cuDNN。Anaconda的优势在于可以通过conda包管理器来安装这些库,这样可以避免手动安装的繁琐和潜在的版本冲突。所以,我需要指导用户使用conda命令来安装指定版本的CUDA和cuDNN。 需要注意的是,虽然CUDA通常是通过NVIDIA官网下载安装,但在conda环境中,可以使用conda-forge或nvidia的频道来安装对应的工具包。这样可以确保库的版本兼容性,并且自动处理依赖关系。例如,使用`conda install -c conda-forge cudatoolkit=11.8`和`conda install -c conda-forge cudnn=8.6`。同时,用户需要激活他们的虚拟环境,确保安装的库在正确的环境中。 另外,用户可能已经安装了TensorFlow,但需要检查是否安装了支持GPU的版本。例如,通过pip安装的TensorFlow通常分为`tensorflow`(CPU版本)和`tensorflow-gpu`(GPU版本),但现在官方推荐使用`tensorflow`包,并根据CUDA的存在自动使用GPU。所以,用户需要确认他们的TensorFlow是否正确识别了CUDA和cuDNN。 验证步骤也很重要,用户需要运行一些命令来检查CUDA和cuDNN是否被正确识别,例如在Python中导入TensorFlow并检查GPU是否可用。如果不可用,可能需要检查环境变量,如LD_LIBRARY_PATH是否包含CUDA和cuDNN的库路径,或者是否安装了正确的驱动版本。 可能遇到的常见问题包括版本不兼容、环境变量未正确设置、驱动版本过低等。需要提醒用户检查NVIDIA驱动是否支持CUDA 11.8,使用`nvidia-smi`查看驱动版本,并确保其兼容性。此外,如果用户之前手动安装了CUDA,可能会与conda安装的版本冲突,建议优先使用conda管理这些依赖,以避免路径问题。 最后,总结步骤应该是:激活虚拟环境,安装对应版本的cudatoolkit和cudnn,验证TensorFlow是否检测到GPU,处理可能的环境变量问题,并提供解决常见问题的方法。这样用户就能一步步完成配置,确保他们的TensorFlow能够正确使用GPU加速。</think>在已有TensorFlow库和Anaconda虚拟环境的情况下,安装CUDA 11.8 + cuDNN 8.6的步骤如下: --- ### **1. 激活虚拟环境** ```bash conda activate 你的环境名 ``` --- ### **2. 安装CUDA 11.8(通过conda管理)** 使用conda直接安装CUDA工具包(无需手动下载NVIDIA安装包): ```bash conda install -c conda-forge cudatoolkit=11.8 ``` - 注:conda会自动处理依赖关系和路径配置 --- ### **3. 安装cuDNN 8.6** ```bash conda install -c conda-forge cudnn=8.6 ``` - 验证安装: ```bash conda list | grep "cudnn" ``` 应显示`cudnn 8.6.0`类似信息 --- ### **4. 验证TensorFlow是否识别GPU** 在Python中运行: ```python import tensorflow as tf print(tf.config.list_physical_devices('GPU')) ``` - **期望输出**:显示GPU设备信息(如`[PhysicalDevice(name='/physical_device:GPU:0', device_type='GPU')]`) - **若报错**:检查TensorFlow版本与CUDA/cuDNN是否兼容 --- ### **5. 版本兼容性对照** - **TensorFlow 2.10+** 要求: - CUDA 11.8 + cuDNN 8.6 - Python 3.7-3.10 - 若TensorFlow版本过低,升级: ```bash pip install tensorflow>=2.10 ``` --- ### **6. 环境变量配置(可选)** 若遇到`libcudart.so`或`libcudnn.so`缺失错误,手动添加库路径: ```bash export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:$CONDA_PREFIX/lib/ ``` (建议将此命令写入虚拟环境的激活脚本) --- ### **常见问题解决** 1. **GPU未识别**: - 检查NVIDIA驱动版本:`nvidia-smi` - 驱动需支持CUDA 11.8(最低驱动版本 450.80.02) 2. **版本冲突**: - 清除缓存后重装: ```bash conda clean --all conda install --force-reinstall cudatoolkit=11.8 cudnn=8.6 ``` 3. **混合安装问题**: - 避免同时使用`conda`和`pip`安装CUDA相关包 --- ### **总结步骤** ```mermaid graph TD A[激活虚拟环境] --> B[安装cudatoolkit=11.8] B --> C[安装cudnn=8.6] C --> D[验证TensorFlow GPU识别] D --> E{成功?} E -- 是 --> F[完成] E -- 否 --> G[检查驱动/版本/路径] ``` 通过conda管理CUDA/cuDNN可避免系统级安装的复杂性,适合深度学习开发环境隔离需求。
阅读全文

相关推荐

E:\SJ\anaconda\envs\roy\python.exe E:\SJ\Llama_finance\finetune_qlora.py WARNING: Failed to find CUDA. bin E:\SJ\anaconda\envs\roy\Lib\site-packages\bitsandbytes\libbitsandbytes_cuda124.dll False ===================================BUG REPORT=================================== ================================================================================ The following directories listed in your path were found to be non-existent: {WindowsPath('E:/SJ/anaconda/envs/roy/bin')} CUDA SETUP: PyTorch settings found: CUDA_VERSION=124, Highest Compute Capability: 8.6. CUDA SETUP: To manually override the PyTorch CUDA version please see:https://github.com/TimDettmers/bitsandbytes/blob/main/how_to_use_nonpytorch_cuda.md CUDA SETUP: Required library version not found: libbitsandbytes_cuda124.dll. Maybe you need to compile it from source? CUDA SETUP: Defaulting to libbitsandbytes_cpu.dll... ================================================ERROR===================================== CUDA SETUP: CUDA detection failed! Possible reasons: 1. You need to manually override the PyTorch CUDA version. Please see: "https://github.com/TimDettmers/bitsandbytes/blob/main/how_to_use_nonpytorch_cuda.md 2. CUDA driver not installed 3. CUDA not installed 4. You have multiple conflicting CUDA libraries 5. Required library not pre-compiled for this bitsandbytes release! CUDA SETUP: If you compiled from source, try again with make CUDA_VERSION=DETECTED_CUDA_VERSION for example, make CUDA_VERSION=113. CUDA SETUP: The CUDA version for the compile might depend on your conda install. Inspect CUDA version via conda list | grep cuda. ================================================================================ CUDA SETUP: Something unexpected happened. Please compile from source: git clone https://github.com/TimDettmers/bitsandbytes.git cd bitsandbytes CUDA_VERSION=124 python setup.py install CUDA SETUP: Setup Failed! E:\SJ\anaconda\envs\roy\Lib\site-packages\bitsandbytes\cuda_setup\main.py:17

(li) lenovo@lenovo-ThinkStation-P920:/media/lenovo/PHILIPS/Mamba_20250409_ torch22_cuda118/VMamba-main/kernels/selective_scan$ pip install -v --no-cache-dir --force-reinstall . 2>&1 | tee build.log Using pip 25.1 from /home/lenovo/anaconda3/envs/li/lib/python3.10/site-packages/pip (python 3.10) Looking in indexes: https://mirrors.tuna.tsinghua.edu.cn/pypi/web/simple Processing /media/lenovo/PHILIPS/Mamba_20250409_ torch22_cuda118/VMamba-main/kernels/selective_scan Preparing metadata (setup.py): started Running command python setup.py egg_info A module that was compiled using NumPy 1.x cannot be run in NumPy 2.2.6 as it may crash. To support both 1.x and 2.x versions of NumPy, modules must be compiled with NumPy 2.0. Some module may need to rebuild instead e.g. with 'pybind11>=2.12'. If you are a user of the module, the easiest solution will be to downgrade to 'numpy<2' or try to upgrade the affected module. We expect that some modules will need time to support NumPy 2. Traceback (most recent call last): File "<string>", line 2, in <module> File "", line 35, in <module> File "/media/lenovo/PHILIPS/Mamba_20250409_ torch22_cuda118/VMamba-main/kernels/selective_scan/setup.py", line 17, in <module> import torch File "/home/lenovo/anaconda3/envs/li/lib/python3.10/site-packages/torch/__init__.py", line 1471, in <module> from .functional import * # noqa: F403 File "/home/lenovo/anaconda3/envs/li/lib/python3.10/site-packages/torch/functional.py", line 9, in <module> import torch.nn.functional as F File "/home/lenovo/anaconda3/envs/li/lib/python3.10/site-packages/torch/nn/__init__.py", line 1, in <module> from .modules import * # noqa: F403 File "/home/lenovo/anaconda3/envs/li/lib/python3.10/site-packages/torch/nn/modules/__init__.py", line 35, in <module> from .transformer import TransformerEncoder, TransformerDecoder, \ File "/home/lenovo/anaconda3/envs/li/lib/python3.10/site-packages/torch/nn/modules/transformer.py", line 20, in <module> device: torch.device = torch.device(torch._C._get_default_device()), # torch.device('cpu'), /home/lenovo/anaconda3/envs/li/lib/python3.10/site-packages/torch/nn/modules/transformer.py:20: UserWarning: Failed to initialize NumPy: _ARRAY_API not found (Triggered internally at ../torch/csrc/utils/tensor_numpy.cpp:84.) device: torch.device = torch.device(torch._C._get_default_device()), # torch.device('cpu'), torch.__version__ = 2.2.0+cu118 CUDA_HOME = /home/lenovo/anaconda3/envs/li CUDA version: 11.8 /home/lenovo/anaconda3/envs/li/lib/python3.10/site-packages/setuptools/dist.py:759: SetuptoolsDeprecationWarning: License classifiers are deprecated. !! ******************************************************************************** Please consider removing the following classifiers in favor of a SPDX license expression: License :: OSI Approved :: BSD License See https://packaging.python.org/en/latest/guides/writing-pyproject-toml/#license for details. ******************************************************************************** !! self._finalize_license_expression() running egg_info creating /tmp/pip-pip-egg-info-w2djvsss/selective_scan.egg-info writing /tmp/pip-pip-egg-info-w2djvsss/selective_scan.egg-info/PKG-INFO writing dependency_links to /tmp/pip-pip-egg-info-w2djvsss/selective_scan.egg-info/dependency_links.txt writing requirements to /tmp/pip-pip-egg-info-w2djvsss/selective_scan.egg-info/requires.txt writing top-level names to /tmp/pip-pip-egg-info-w2djvsss/selective_scan.egg-info/top_level.txt writing manifest file '/tmp/pip-pip-egg-info-w2djvsss/selective_scan.egg-info/SOURCES.txt' reading manifest file '/tmp/pip-pip-egg-info-w2djvsss/selective_scan.egg-info/SOURCES.txt' writing manifest file '/tmp/pip-pip-egg-info-w2djvsss/selective_scan.egg-info/SOURCES.txt' Preparing metadata (setup.py): finished with status 'done' Collecting torch (from selective_scan==0.0.2) Downloading https://mirrors.tuna.tsinghua.edu.cn/pypi/web/packages/0a/7c/0a5b3aee977596459ec45be2220370fde8e017f651fecc40522fd478cb1e/torch-2.7.1-cp310-cp310-manylinux_2_28_x86_64.whl (821.2 MB) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 821.2/821.2 MB 1.1 MB/s eta 0:00:00 Collecting packaging (from selective_scan==0.0.2) Downloading https://mirrors.tuna.tsinghua.edu.cn/pypi/web/packages/20/12/38679034af332785aac8774540895e234f4d07f7545804097de4b666afd8/packaging-25.0-py3-none-any.whl (66 kB) Collecting ninja (from selective_scan==0.0.2) Downloading https://mirrors.tuna.tsinghua.edu.cn/pypi/web/packages/eb/7a/455d2877fe6cf99886849c7f9755d897df32eaf3a0fba47b56e615f880f7/ninja-1.11.1.4-py3-none-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (422 kB) Collecting einops (from selective_scan==0.0.2) Downloading https://mirrors.tuna.tsinghua.edu.cn/pypi/web/packages/87/62/9773de14fe6c45c23649e98b83231fffd7b9892b6cf863251dc2afa73643/einops-0.8.1-py3-none-any.whl (64 kB) Collecting filelock (from torch->selective_scan==0.0.2) Downloading https://mirrors.tuna.tsinghua.edu.cn/pypi/web/packages/4d/36/2a115987e2d8c300a974597416d9de88f2444426de9571f4b59b2cca3acc/filelock-3.18.0-py3-none-any.whl (16 kB) Collecting typing-extensions>=4.10.0 (from torch->selective_scan==0.0.2) Downloading https://mirrors.tuna.tsinghua.edu.cn/pypi/web/packages/69/e0/552843e0d356fbb5256d21449fa957fa4eff3bbc135a74a691ee70c7c5da/typing_extensions-4.14.0-py3-none-any.whl (43 kB) Collecting sympy>=1.13.3 (from torch->selective_scan==0.0.2) Downloading https://mirrors.tuna.tsinghua.edu.cn/pypi/web/packages/a2/09/77d55d46fd61b4a135c444fc97158ef34a095e5681d0a6c10b75bf356191/sympy-1.14.0-py3-none-any.whl (6.3 MB) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 6.3/6.3 MB 946.1 kB/s eta 0:00:00 Link requires a different Python (3.10.18 not in: '>=3.11'): https://mirrors.tuna.tsinghua.edu.cn/pypi/web/packages/eb/8d/776adee7bbf76365fdd7f2552710282c79a4ead5d2a46408c9043a2b70ba/networkx-3.5-py3-none-any.whl (from https://mirrors.tuna.tsinghua.edu.cn/pypi/web/simple/networkx/) (requires-python:>=3.11) Link requires a different Python (3.10.18 not in: '>=3.11'): https://mirrors.tuna.tsinghua.edu.cn/pypi/web/packages/6c/4f/ccdb8ad3a38e583f214547fd2f7ff1fc160c43a75af88e6aec213404b96a/networkx-3.5.tar.gz (from https://mirrors.tuna.tsinghua.edu.cn/pypi/web/simple/networkx/) (requires-python:>=3.11) Link requires a different Python (3.10.18 not in: '>=3.11'): https://mirrors.tuna.tsinghua.edu.cn/pypi/web/packages/3f/a1/46c1b6e202e3109d2a035b21a7e5534c5bb233ee30752d7f16a0bd4c3989/networkx-3.5rc0-py3-none-any.whl (from https://mirrors.tuna.tsinghua.edu.cn/pypi/web/simple/networkx/) (requires-python:>=3.11) Link requires a different Python (3.10.18 not in: '>=3.11'): https://mirrors.tuna.tsinghua.edu.cn/pypi/web/packages/90/7e/0319606a20ced20730806b9f7fe91d8a92f7da63d76a5c388f87d3f7d294/networkx-3.5rc0.tar.gz (from https://mirrors.tuna.tsinghua.edu.cn/pypi/web/simple/networkx/) (requires-python:>=3.11) Collecting networkx (from torch->selective_scan==0.0.2) Downloading https://mirrors.tuna.tsinghua.edu.cn/pypi/web/packages/b9/54/dd730b32ea14ea797530a4479b2ed46a6fb250f682a9cfb997e968bf0261/networkx-3.4.2-py3-none-any.whl (1.7 MB) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 1.7/1.7 MB 883.3 kB/s eta 0:00:00 Collecting jinja2 (from torch->selective_scan==0.0.2) Downloading https://mirrors.tuna.tsinghua.edu.cn/pypi/web/packages/62/a1/3d680cbfd5f4b8f15abc1d571870c5fc3e594bb582bc3b64ea099db13e56/jinja2-3.1.6-py3-none-any.whl (134 kB) Collecting fsspec (from torch->selective_scan==0.0.2) Downloading https://mirrors.tuna.tsinghua.edu.cn/pypi/web/packages/bb/61/78c7b3851add1481b048b5fdc29067397a1784e2910592bc81bb3f608635/fsspec-2025.5.1-py3-none-any.whl (199 kB) Collecting nvidia-cuda-nvrtc-cu12==12.6.77 (from torch->selective_scan==0.0.2) Downloading https://mirrors.tuna.tsinghua.edu.cn/pypi/web/packages/75/2e/46030320b5a80661e88039f59060d1790298b4718944a65a7f2aeda3d9e9/nvidia_cuda_nvrtc_cu12-12.6.77-py3-none-manylinux2014_x86_64.whl (23.7 MB) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 23.7/23.7 MB 1.1 MB/s eta 0:00:00 Collecting nvidia-cuda-runtime-cu12==12.6.77 (from torch->selective_scan==0.0.2) Downloading https://mirrors.tuna.tsinghua.edu.cn/pypi/web/packages/e1/23/e717c5ac26d26cf39a27fbc076240fad2e3b817e5889d671b67f4f9f49c5/nvidia_cuda_runtime_cu12-12.6.77-py3-none-manylinux2014_x86_64.manylinux_2_17_x86_64.whl (897 kB) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 897.7/897.7 kB 1.7 MB/s eta 0:00:00 Collecting nvidia-cuda-cupti-cu12==12.6.80 (from torch->selective_scan==0.0.2) Downloading https://mirrors.tuna.tsinghua.edu.cn/pypi/web/packages/49/60/7b6497946d74bcf1de852a21824d63baad12cd417db4195fc1bfe59db953/nvidia_cuda_cupti_cu12-12.6.80-py3-none-manylinux2014_x86_64.manylinux_2_17_x86_64.whl (8.9 MB) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 8.9/8.9 MB 1.1 MB/s eta 0:00:00 Collecting nvidia-cudnn-cu12==9.5.1.17 (from torch->selective_scan==0.0.2) Downloading https://mirrors.tuna.tsinghua.edu.cn/pypi/web/packages/2a/78/4535c9c7f859a64781e43c969a3a7e84c54634e319a996d43ef32ce46f83/nvidia_cudnn_cu12-9.5.1.17-py3-none-manylinux_2_28_x86_64.whl (571.0 MB) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 571.0/571.0 MB 1.1 MB/s eta 0:00:00 Collecting nvidia-cublas-cu12==12.6.4.1 (from torch->selective_scan==0.0.2) Downloading https://mirrors.tuna.tsinghua.edu.cn/pypi/web/packages/af/eb/ff4b8c503fa1f1796679dce648854d58751982426e4e4b37d6fce49d259c/nvidia_cublas_cu12-12.6.4.1-py3-none-manylinux2014_x86_64.manylinux_2_17_x86_64.whl (393.1 MB) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 393.1/393.1 MB 889.2 kB/s eta 0:00:00 Collecting nvidia-cufft-cu12==11.3.0.4 (from torch->selective_scan==0.0.2) Downloading https://mirrors.tuna.tsinghua.edu.cn/pypi/web/packages/8f/16/73727675941ab8e6ffd86ca3a4b7b47065edcca7a997920b831f8147c99d/nvidia_cufft_cu12-11.3.0.4-py3-none-manylinux2014_x86_64.manylinux_2_17_x86_64.whl (200.2 MB) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 200.2/200.2 MB 761.5 kB/s eta 0:00:00 Collecting nvidia-curand-cu12==10.3.7.77 (from torch->selective_scan==0.0.2) Downloading https://mirrors.tuna.tsinghua.edu.cn/pypi/web/packages/73/1b/44a01c4e70933637c93e6e1a8063d1e998b50213a6b65ac5a9169c47e98e/nvidia_curand_cu12-10.3.7.77-py3-none-manylinux2014_x86_64.manylinux_2_17_x86_64.whl (56.3 MB) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 56.3/56.3 MB 1.1 MB/s eta 0:00:00 Collecting nvidia-cusolver-cu12==11.7.1.2 (from torch->selective_scan==0.0.2) Downloading https://mirrors.tuna.tsinghua.edu.cn/pypi/web/packages/f0/6e/c2cf12c9ff8b872e92b4a5740701e51ff17689c4d726fca91875b07f655d/nvidia_cusolver_cu12-11.7.1.2-py3-none-manylinux2014_x86_64.manylinux_2_17_x86_64.whl (158.2 MB) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 158.2/158.2 MB 881.4 kB/s eta 0:00:00 Collecting nvidia-cusparse-cu12==12.5.4.2 (from torch->selective_scan==0.0.2) Downloading https://mirrors.tuna.tsinghua.edu.cn/pypi/web/packages/06/1e/b8b7c2f4099a37b96af5c9bb158632ea9e5d9d27d7391d7eb8fc45236674/nvidia_cusparse_cu12-12.5.4.2-py3-none-manylinux2014_x86_64.manylinux_2_17_x86_64.whl (216.6 MB) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 216.6/216.6 MB 1.4 MB/s eta 0:00:00 Collecting nvidia-cusparselt-cu12==0.6.3 (from torch->selective_scan==0.0.2) Downloading https://mirrors.tuna.tsinghua.edu.cn/pypi/web/packages/3b/9a/72ef35b399b0e183bc2e8f6f558036922d453c4d8237dab26c666a04244b/nvidia_cusparselt_cu12-0.6.3-py3-none-manylinux2014_x86_64.whl (156.8 MB) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 156.8/156.8 MB 887.6 kB/s eta 0:00:00 Collecting nvidia-nccl-cu12==2.26.2 (from torch->selective_scan==0.0.2) Downloading https://mirrors.tuna.tsinghua.edu.cn/pypi/web/packages/67/ca/f42388aed0fddd64ade7493dbba36e1f534d4e6fdbdd355c6a90030ae028/nvidia_nccl_cu12-2.26.2-py3-none-manylinux2014_x86_64.manylinux_2_17_x86_64.whl (201.3 MB) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 201.3/201.3 MB 1.1 MB/s eta 0:00:00 Collecting nvidia-nvtx-cu12==12.6.77 (from torch->selective_scan==0.0.2) Downloading https://mirrors.tuna.tsinghua.edu.cn/pypi/web/packages/56/9a/fff8376f8e3d084cd1530e1ef7b879bb7d6d265620c95c1b322725c694f4/nvidia_nvtx_cu12-12.6.77-py3-none-manylinux2014_x86_64.manylinux_2_17_x86_64.whl (89 kB) Collecting nvidia-nvjitlink-cu12==12.6.85 (from torch->selective_scan==0.0.2) Downloading https://mirrors.tuna.tsinghua.edu.cn/pypi/web/packages/9d/d7/c5383e47c7e9bf1c99d5bd2a8c935af2b6d705ad831a7ec5c97db4d82f4f/nvidia_nvjitlink_cu12-12.6.85-py3-none-manylinux2010_x86_64.manylinux_2_12_x86_64.whl (19.7 MB) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 19.7/19.7 MB 1.9 MB/s eta 0:00:00 Collecting nvidia-cufile-cu12==1.11.1.6 (from torch->selective_scan==0.0.2) Downloading https://mirrors.tuna.tsinghua.edu.cn/pypi/web/packages/b2/66/cc9876340ac68ae71b15c743ddb13f8b30d5244af344ec8322b449e35426/nvidia_cufile_cu12-1.11.1.6-py3-none-manylinux2014_x86_64.manylinux_2_17_x86_64.whl (1.1 MB) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 1.1/1.1 MB 1.9 MB/s eta 0:00:00 Collecting triton==3.3.1 (from torch->selective_scan==0.0.2) Downloading https://mirrors.tuna.tsinghua.edu.cn/pypi/web/packages/8d/a9/549e51e9b1b2c9b854fd761a1d23df0ba2fbc60bd0c13b489ffa518cfcb7/triton-3.3.1-cp310-cp310-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl (155.6 MB) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 155.6/155.6 MB 758.4 kB/s eta 0:00:00 Collecting setuptools>=40.8.0 (from triton==3.3.1->torch->selective_scan==0.0.2) Downloading https://mirrors.tuna.tsinghua.edu.cn/pypi/web/packages/a3/dc/17031897dae0efacfea57dfd3a82fdd2a2aeb58e0ff71b77b87e44edc772/setuptools-80.9.0-py3-none-any.whl (1.2 MB) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 1.2/1.2 MB 872.9 kB/s eta 0:00:00 Collecting mpmath<1.4,>=1.1.0 (from sympy>=1.13.3->torch->selective_scan==0.0.2) Downloading https://mirrors.tuna.tsinghua.edu.cn/pypi/web/packages/43/e3/7d92a15f894aa0c9c4b49b8ee9ac9850d6e63b03c9c32c0367a13ae62209/mpmath-1.3.0-py3-none-any.whl (536 kB) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 536.2/536.2 kB 919.5 kB/s eta 0:00:00 Collecting MarkupSafe>=2.0 (from jinja2->torch->selective_scan==0.0.2) Downloading https://mirrors.tuna.tsinghua.edu.cn/pypi/web/packages/22/35/137da042dfb4720b638d2937c38a9c2df83fe32d20e8c8f3185dbfef05f7/MarkupSafe-3.0.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (20 kB) Building wheels for collected packages: selective_scan DEPRECATION: Building 'selective_scan' using the legacy setup.py bdist_wheel mechanism, which will be removed in a future version. pip 25.3 will enforce this behaviour change. A possible replacement is to use the standardized build interface by setting the --use-pep517 option, (possibly combined with --no-build-isolation), or adding a pyproject.toml file to the source tree of 'selective_scan'. Discussion can be found at https://github.com/pypa/pip/issues/6334 Building wheel for selective_scan (setup.py): started Running command python setup.py bdist_wheel A module that was compiled using NumPy 1.x cannot be run in NumPy 2.2.6 as it may crash. To support both 1.x and 2.x versions of NumPy, modules must be compiled with NumPy 2.0. Some module may need to rebuild instead e.g. with 'pybind11>=2.12'. If you are a user of the module, the easiest solution will be to downgrade to 'numpy<2' or try to upgrade the affected module. We expect that some modules will need time to support NumPy 2. Traceback (most recent call last): File "<string>", line 2, in <module> File "", line 35, in <module> File "/media/lenovo/PHILIPS/Mamba_20250409_ torch22_cuda118/VMamba-main/kernels/selective_scan/setup.py", line 17, in <module> import torch File "/home/lenovo/anaconda3/envs/li/lib/python3.10/site-packages/torch/__init__.py", line 1471, in <module> from .functional import * # noqa: F403 File "/home/lenovo/anaconda3/envs/li/lib/python3.10/site-packages/torch/functional.py", line 9, in <module> import torch.nn.functional as F File "/home/lenovo/anaconda3/envs/li/lib/python3.10/site-packages/torch/nn/__init__.py", line 1, in <module> from .modules import * # noqa: F403 File "/home/lenovo/anaconda3/envs/li/lib/python3.10/site-packages/torch/nn/modules/__init__.py", line 35, in <module> from .transformer import TransformerEncoder, TransformerDecoder, \ File "/home/lenovo/anaconda3/envs/li/lib/python3.10/site-packages/torch/nn/modules/transformer.py", line 20, in <module> device: torch.device = torch.device(torch._C._get_default_device()), # torch.device('cpu'), /home/lenovo/anaconda3/envs/li/lib/python3.10/site-packages/torch/nn/modules/transformer.py:20: UserWarning: Failed to initialize NumPy: _ARRAY_API not found (Triggered internally at ../torch/csrc/utils/tensor_numpy.cpp:84.) device: torch.device = torch.device(torch._C._get_default_device()), # torch.device('cpu'), torch.__version__ = 2.2.0+cu118 CUDA_HOME = /home/lenovo/anaconda3/envs/li CUDA version: 11.8 /home/lenovo/anaconda3/envs/li/lib/python3.10/site-packages/setuptools/dist.py:759: SetuptoolsDeprecationWarning: License classifiers are deprecated. !! ******************************************************************************** Please consider removing the following classifiers in favor of a SPDX license expression: License :: OSI Approved :: BSD License See https://packaging.python.org/en/latest/guides/writing-pyproject-toml/#license for details. ******************************************************************************** !! self._finalize_license_expression() running bdist_wheel running build running build_ext /home/lenovo/anaconda3/envs/li/lib/python3.10/site-packages/torch/utils/cpp_extension.py:425: UserWarning: There are no g++ version bounds defined for CUDA version 11.8 warnings.warn(f'There are no {compiler_name} version bounds defined for CUDA version {cuda_str_version}') building 'selective_scan_cuda_core' extension creating /media/lenovo/PHILIPS/Mamba_20250409_ torch22_cuda118/VMamba-main/kernels/selective_scan/build/temp.linux-x86_64-cpython-310/csrc/selective_scan/cus Emitting ninja build file /media/lenovo/PHILIPS/Mamba_20250409_ torch22_cuda118/VMamba-main/kernels/selective_scan/build/temp.linux-x86_64-cpython-310/build.ninja... Compiling objects... Allowing ninja to set a default number of workers... (overridable by setting the environment variable MAX_JOBS=N) [1/3] c++ -MMD -MF '/media/lenovo/PHILIPS/Mamba_20250409_ torch22_cuda118/VMamba-main/kernels/selective_scan/build/temp.linux-x86_64-cpython-310/csrc/selective_scan/cus/selective_scan.o'.d -pthread -B /home/lenovo/anaconda3/envs/li/compiler_compat -Wno-unused-result -Wsign-compare -DNDEBUG -fwrapv -O2 -Wall -fPIC -O2 -isystem /home/lenovo/anaconda3/envs/li/include -fPIC -O2 -isystem /home/lenovo/anaconda3/envs/li/include -fPIC '-I/media/lenovo/PHILIPS/Mamba_20250409_ torch22_cuda118/VMamba-main/kernels/selective_scan/csrc/selective_scan' -I/home/lenovo/anaconda3/envs/li/lib/python3.10/site-packages/torch/include -I/home/lenovo/anaconda3/envs/li/lib/python3.10/site-packages/torch/include/torch/csrc/api/include -I/home/lenovo/anaconda3/envs/li/lib/python3.10/site-packages/torch/include/TH -I/home/lenovo/anaconda3/envs/li/lib/python3.10/site-packages/torch/include/THC -I/home/lenovo/anaconda3/envs/li/include -I/home/lenovo/anaconda3/envs/li/include/python3.10 -c -c '/media/lenovo/PHILIPS/Mamba_20250409_ torch22_cuda118/VMamba-main/kernels/selective_scan/csrc/selective_scan/cus/selective_scan.cpp' -o '/media/lenovo/PHILIPS/Mamba_20250409_ torch22_cuda118/VMamba-main/kernels/selective_scan/build/temp.linux-x86_64-cpython-310/csrc/selective_scan/cus/selective_scan.o' -O3 -std=c++17 -DTORCH_API_INCLUDE_EXTENSION_H '-DPYBIND11_COMPILER_TYPE="_gcc"' '-DPYBIND11_STDLIB="_libstdcpp"' '-DPYBIND11_BUILD_ABI="_cxxabi1011"' -DTORCH_EXTENSION_NAME=selective_scan_cuda_core -D_GLIBCXX_USE_CXX11_ABI=0 FAILED: /media/lenovo/PHILIPS/Mamba_20250409_ torch22_cuda118/VMamba-main/kernels/selective_scan/build/temp.linux-x86_64-cpython-310/csrc/selective_scan/cus/selective_scan.o c++ -MMD -MF '/media/lenovo/PHILIPS/Mamba_20250409_ torch22_cuda118/VMamba-main/kernels/selective_scan/build/temp.linux-x86_64-cpython-310/csrc/selective_scan/cus/selective_scan.o'.d -pthread -B /home/lenovo/anaconda3/envs/li/compiler_compat -Wno-unused-result -Wsign-compare -DNDEBUG -fwrapv -O2 -Wall -fPIC -O2 -isystem /home/lenovo/anaconda3/envs/li/include -fPIC -O2 -isystem /home/lenovo/anaconda3/envs/li/include -fPIC '-I/media/lenovo/PHILIPS/Mamba_20250409_ torch22_cuda118/VMamba-main/kernels/selective_scan/csrc/selective_scan' -I/home/lenovo/anaconda3/envs/li/lib/python3.10/site-packages/torch/include -I/home/lenovo/anaconda3/envs/li/lib/python3.10/site-packages/torch/include/torch/csrc/api/include -I/home/lenovo/anaconda3/envs/li/lib/python3.10/site-packages/torch/include/TH -I/home/lenovo/anaconda3/envs/li/lib/python3.10/site-packages/torch/include/THC -I/home/lenovo/anaconda3/envs/li/include -I/home/lenovo/anaconda3/envs/li/include/python3.10 -c -c '/media/lenovo/PHILIPS/Mamba_20250409_ torch22_cuda118/VMamba-main/kernels/selective_scan/csrc/selective_scan/cus/selective_scan.cpp' -o '/media/lenovo/PHILIPS/Mamba_20250409_ torch22_cuda118/VMamba-main/kernels/selective_scan/build/temp.linux-x86_64-cpython-310/csrc/selective_scan/cus/selective_scan.o' -O3 -std=c++17 -DTORCH_API_INCLUDE_EXTENSION_H '-DPYBIND11_COMPILER_TYPE="_gcc"' '-DPYBIND11_STDLIB="_libstdcpp"' '-DPYBIND11_BUILD_ABI="_cxxabi1011"' -DTORCH_EXTENSION_NAME=selective_scan_cuda_core -D_GLIBCXX_USE_CXX11_ABI=0 In file included from /home/lenovo/anaconda3/envs/li/lib/python3.10/site-packages/torch/include/ATen/cuda/CUDAContext.h:3, from /media/lenovo/PHILIPS/Mamba_20250409_ torch22_cuda118/VMamba-main/kernels/selective_scan/csrc/selective_scan/cus/selective_scan.cpp:5: /home/lenovo/anaconda3/envs/li/lib/python3.10/site-packages/torch/include/ATen/cuda/CUDAContextLight.h:6:10: fatal error: cuda_runtime_api.h: 没有那个文件或目录 6 | #include <cuda_runtime_api.h> | ^~~~~~~~~~~~~~~~~~~~ compilation terminated. [2/3] /home/lenovo/anaconda3/envs/li/bin/nvcc --generate-dependencies-with-compile --dependency-output '/media/lenovo/PHILIPS/Mamba_20250409_ torch22_cuda118/VMamba-main/kernels/selective_scan/build/temp.linux-x86_64-cpython-310/csrc/selective_scan/cus/selective_scan_core_fwd.o'.d '-I/media/lenovo/PHILIPS/Mamba_20250409_ torch22_cuda118/VMamba-main/kernels/selective_scan/csrc/selective_scan' -I/home/lenovo/anaconda3/envs/li/lib/python3.10/site-packages/torch/include -I/home/lenovo/anaconda3/envs/li/lib/python3.10/site-packages/torch/include/torch/csrc/api/include -I/home/lenovo/anaconda3/envs/li/lib/python3.10/site-packages/torch/include/TH -I/home/lenovo/anaconda3/envs/li/lib/python3.10/site-packages/torch/include/THC -I/home/lenovo/anaconda3/envs/li/include -I/home/lenovo/anaconda3/envs/li/include/python3.10 -c -c '/media/lenovo/PHILIPS/Mamba_20250409_ torch22_cuda118/VMamba-main/kernels/selective_scan/csrc/selective_scan/cus/selective_scan_core_fwd.cu' -o '/media/lenovo/PHILIPS/Mamba_20250409_ torch22_cuda118/VMamba-main/kernels/selective_scan/build/temp.linux-x86_64-cpython-310/csrc/selective_scan/cus/selective_scan_core_fwd.o' -D__CUDA_NO_HALF_OPERATORS__ -D__CUDA_NO_HALF_CONVERSIONS__ -D__CUDA_NO_BFLOAT16_CONVERSIONS__ -D__CUDA_NO_HALF2_OPERATORS__ --expt-relaxed-constexpr --compiler-options ''"'"'-fPIC'"'"'' -O3 -std=c++17 -U__CUDA_NO_HALF_OPERATORS__ -U__CUDA_NO_HALF_CONVERSIONS__ -U__CUDA_NO_BFLOAT16_OPERATORS__ -U__CUDA_NO_BFLOAT16_CONVERSIONS__ -U__CUDA_NO_BFLOAT162_OPERATORS__ -U__CUDA_NO_BFLOAT162_CONVERSIONS__ --expt-relaxed-constexpr --expt-extended-lambda --use_fast_math --ptxas-options=-v -lineinfo -arch=sm_86 --threads 4 -DTORCH_API_INCLUDE_EXTENSION_H '-DPYBIND11_COMPILER_TYPE="_gcc"' '-DPYBIND11_STDLIB="_libstdcpp"' '-DPYBIND11_BUILD_ABI="_cxxabi1011"' -DTORCH_EXTENSION_NAME=selective_scan_cuda_core -D_GLIBCXX_USE_CXX11_ABI=0 FAILED: /media/lenovo/PHILIPS/Mamba_20250409_ torch22_cuda118/VMamba-main/kernels/selective_scan/build/temp.linux-x86_64-cpython-310/csrc/selective_scan/cus/selective_scan_core_fwd.o /home/lenovo/anaconda3/envs/li/bin/nvcc --generate-dependencies-with-compile --dependency-output '/media/lenovo/PHILIPS/Mamba_20250409_ torch22_cuda118/VMamba-main/kernels/selective_scan/build/temp.linux-x86_64-cpython-310/csrc/selective_scan/cus/selective_scan_core_fwd.o'.d '-I/media/lenovo/PHILIPS/Mamba_20250409_ torch22_cuda118/VMamba-main/kernels/selective_scan/csrc/selective_scan' -I/home/lenovo/anaconda3/envs/li/lib/python3.10/site-packages/torch/include -I/home/lenovo/anaconda3/envs/li/lib/python3.10/site-packages/torch/include/torch/csrc/api/include -I/home/lenovo/anaconda3/envs/li/lib/python3.10/site-packages/torch/include/TH -I/home/lenovo/anaconda3/envs/li/lib/python3.10/site-packages/torch/include/THC -I/home/lenovo/anaconda3/envs/li/include -I/home/lenovo/anaconda3/envs/li/include/python3.10 -c -c '/media/lenovo/PHILIPS/Mamba_20250409_ torch22_cuda118/VMamba-main/kernels/selective_scan/csrc/selective_scan/cus/selective_scan_core_fwd.cu' -o '/media/lenovo/PHILIPS/Mamba_20250409_ torch22_cuda118/VMamba-main/kernels/selective_scan/build/temp.linux-x86_64-cpython-310/csrc/selective_scan/cus/selective_scan_core_fwd.o' -D__CUDA_NO_HALF_OPERATORS__ -D__CUDA_NO_HALF_CONVERSIONS__ -D__CUDA_NO_BFLOAT16_CONVERSIONS__ -D__CUDA_NO_HALF2_OPERATORS__ --expt-relaxed-constexpr --compiler-options ''"'"'-fPIC'"'"'' -O3 -std=c++17 -U__CUDA_NO_HALF_OPERATORS__ -U__CUDA_NO_HALF_CONVERSIONS__ -U__CUDA_NO_BFLOAT16_OPERATORS__ -U__CUDA_NO_BFLOAT16_CONVERSIONS__ -U__CUDA_NO_BFLOAT162_OPERATORS__ -U__CUDA_NO_BFLOAT162_CONVERSIONS__ --expt-relaxed-constexpr --expt-extended-lambda --use_fast_math --ptxas-options=-v -lineinfo -arch=sm_86 --threads 4 -DTORCH_API_INCLUDE_EXTENSION_H '-DPYBIND11_COMPILER_TYPE="_gcc"' '-DPYBIND11_STDLIB="_libstdcpp"' '-DPYBIND11_BUILD_ABI="_cxxabi1011"' -DTORCH_EXTENSION_NAME=selective_scan_cuda_core -D_GLIBCXX_USE_CXX11_ABI=0 <command-line>: fatal error: cuda_runtime.h: 没有那个文件或目录 compilation terminated. <command-line>: fatal error: cuda_runtime.h: 没有那个文件或目录 compilation terminated. fatal : Could not open input file /tmp/tmpxft_00005756_00000000-7_selective_scan_core_fwd.cpp1.ii [3/3] /home/lenovo/anaconda3/envs/li/bin/nvcc --generate-dependencies-with-compile --dependency-output '/media/lenovo/PHILIPS/Mamba_20250409_ torch22_cuda118/VMamba-main/kernels/selective_scan/build/temp.linux-x86_64-cpython-310/csrc/selective_scan/cus/selective_scan_core_bwd.o'.d '-I/media/lenovo/PHILIPS/Mamba_20250409_ torch22_cuda118/VMamba-main/kernels/selective_scan/csrc/selective_scan' -I/home/lenovo/anaconda3/envs/li/lib/python3.10/site-packages/torch/include -I/home/lenovo/anaconda3/envs/li/lib/python3.10/site-packages/torch/include/torch/csrc/api/include -I/home/lenovo/anaconda3/envs/li/lib/python3.10/site-packages/torch/include/TH -I/home/lenovo/anaconda3/envs/li/lib/python3.10/site-packages/torch/include/THC -I/home/lenovo/anaconda3/envs/li/include -I/home/lenovo/anaconda3/envs/li/include/python3.10 -c -c '/media/lenovo/PHILIPS/Mamba_20250409_ torch22_cuda118/VMamba-main/kernels/selective_scan/csrc/selective_scan/cus/selective_scan_core_bwd.cu' -o '/media/lenovo/PHILIPS/Mamba_20250409_ torch22_cuda118/VMamba-main/kernels/selective_scan/build/temp.linux-x86_64-cpython-310/csrc/selective_scan/cus/selective_scan_core_bwd.o' -D__CUDA_NO_HALF_OPERATORS__ -D__CUDA_NO_HALF_CONVERSIONS__ -D__CUDA_NO_BFLOAT16_CONVERSIONS__ -D__CUDA_NO_HALF2_OPERATORS__ --expt-relaxed-constexpr --compiler-options ''"'"'-fPIC'"'"'' -O3 -std=c++17 -U__CUDA_NO_HALF_OPERATORS__ -U__CUDA_NO_HALF_CONVERSIONS__ -U__CUDA_NO_BFLOAT16_OPERATORS__ -U__CUDA_NO_BFLOAT16_CONVERSIONS__ -U__CUDA_NO_BFLOAT162_OPERATORS__ -U__CUDA_NO_BFLOAT162_CONVERSIONS__ --expt-relaxed-constexpr --expt-extended-lambda --use_fast_math --ptxas-options=-v -lineinfo -arch=sm_86 --threads 4 -DTORCH_API_INCLUDE_EXTENSION_H '-DPYBIND11_COMPILER_TYPE="_gcc"' '-DPYBIND11_STDLIB="_libstdcpp"' '-DPYBIND11_BUILD_ABI="_cxxabi1011"' -DTORCH_EXTENSION_NAME=selective_scan_cuda_core -D_GLIBCXX_USE_CXX11_ABI=0 FAILED: /media/lenovo/PHILIPS/Mamba_20250409_ torch22_cuda118/VMamba-main/kernels/selective_scan/build/temp.linux-x86_64-cpython-310/csrc/selective_scan/cus/selective_scan_core_bwd.o /home/lenovo/anaconda3/envs/li/bin/nvcc --generate-dependencies-with-compile --dependency-output '/media/lenovo/PHILIPS/Mamba_20250409_ torch22_cuda118/VMamba-main/kernels/selective_scan/build/temp.linux-x86_64-cpython-310/csrc/selective_scan/cus/selective_scan_core_bwd.o'.d '-I/media/lenovo/PHILIPS/Mamba_20250409_ torch22_cuda118/VMamba-main/kernels/selective_scan/csrc/selective_scan' -I/home/lenovo/anaconda3/envs/li/lib/python3.10/site-packages/torch/include -I/home/lenovo/anaconda3/envs/li/lib/python3.10/site-packages/torch/include/torch/csrc/api/include -I/home/lenovo/anaconda3/envs/li/lib/python3.10/site-packages/torch/include/TH -I/home/lenovo/anaconda3/envs/li/lib/python3.10/site-packages/torch/include/THC -I/home/lenovo/anaconda3/envs/li/include -I/home/lenovo/anaconda3/envs/li/include/python3.10 -c -c '/media/lenovo/PHILIPS/Mamba_20250409_ torch22_cuda118/VMamba-main/kernels/selective_scan/csrc/selective_scan/cus/selective_scan_core_bwd.cu' -o '/media/lenovo/PHILIPS/Mamba_20250409_ torch22_cuda118/VMamba-main/kernels/selective_scan/build/temp.linux-x86_64-cpython-310/csrc/selective_scan/cus/selective_scan_core_bwd.o' -D__CUDA_NO_HALF_OPERATORS__ -D__CUDA_NO_HALF_CONVERSIONS__ -D__CUDA_NO_BFLOAT16_CONVERSIONS__ -D__CUDA_NO_HALF2_OPERATORS__ --expt-relaxed-constexpr --compiler-options ''"'"'-fPIC'"'"'' -O3 -std=c++17 -U__CUDA_NO_HALF_OPERATORS__ -U__CUDA_NO_HALF_CONVERSIONS__ -U__CUDA_NO_BFLOAT16_OPERATORS__ -U__CUDA_NO_BFLOAT16_CONVERSIONS__ -U__CUDA_NO_BFLOAT162_OPERATORS__ -U__CUDA_NO_BFLOAT162_CONVERSIONS__ --expt-relaxed-constexpr --expt-extended-lambda --use_fast_math --ptxas-options=-v -lineinfo -arch=sm_86 --threads 4 -DTORCH_API_INCLUDE_EXTENSION_H '-DPYBIND11_COMPILER_TYPE="_gcc"' '-DPYBIND11_STDLIB="_libstdcpp"' '-DPYBIND11_BUILD_ABI="_cxxabi1011"' -DTORCH_EXTENSION_NAME=selective_scan_cuda_core -D_GLIBCXX_USE_CXX11_ABI=0 <command-line>: fatal error: cuda_runtime.h: 没有那个文件或目录 compilation terminated. <command-line>: fatal error: cuda_runtime.h: 没有那个文件或目录 compilation terminated. fatal : Could not open input file /tmp/tmpxft_00005755_00000000-7_selective_scan_core_bwd.cpp1.ii ninja: build stopped: subcommand failed. Traceback (most recent call last): File "/home/lenovo/anaconda3/envs/li/lib/python3.10/site-packages/torch/utils/cpp_extension.py", line 2096, in _run_ninja_build subprocess.run( File "/home/lenovo/anaconda3/envs/li/lib/python3.10/subprocess.py", line 526, in run raise CalledProcessError(retcode, process.args, subprocess.CalledProcessError: Command '['ninja', '-v']' returned non-zero exit status 1. The above exception was the direct cause of the following exception: Traceback (most recent call last): File "<string>", line 2, in <module> File "", line 35, in <module> File "/media/lenovo/PHILIPS/Mamba_20250409_ torch22_cuda118/VMamba-main/kernels/selective_scan/setup.py", line 146, in <module> setup( File "/home/lenovo/anaconda3/envs/li/lib/python3.10/site-packages/setuptools/__init__.py", line 117, in setup return distutils.core.setup(**attrs) File "/home/lenovo/anaconda3/envs/li/lib/python3.10/site-packages/setuptools/_distutils/core.py", line 186, in setup return run_commands(dist) File "/home/lenovo/anaconda3/envs/li/lib/python3.10/site-packages/setuptools/_distutils/core.py", line 202, in run_commands dist.run_commands() File "/home/lenovo/anaconda3/envs/li/lib/python3.10/site-packages/setuptools/_distutils/dist.py", line 1002, in run_commands self.run_command(cmd) File "/home/lenovo/anaconda3/envs/li/lib/python3.10/site-packages/setuptools/dist.py", line 1104, in run_command super().run_command(command) File "/home/lenovo/anaconda3/envs/li/lib/python3.10/site-packages/setuptools/_distutils/dist.py", line 1021, in run_command cmd_obj.run() File "/home/lenovo/anaconda3/envs/li/lib/python3.10/site-packages/setuptools/command/bdist_wheel.py", line 370, in run self.run_command("build") File "/home/lenovo/anaconda3/envs/li/lib/python3.10/site-packages/setuptools/_distutils/cmd.py", line 357, in run_command self.distribution.run_command(command) File "/home/lenovo/anaconda3/envs/li/lib/python3.10/site-packages/setuptools/dist.py", line 1104, in run_command super().run_command(command) File "/home/lenovo/anaconda3/envs/li/lib/python3.10/site-packages/setuptools/_distutils/dist.py", line 1021, in run_command cmd_obj.run() File "/home/lenovo/anaconda3/envs/li/lib/python3.10/site-packages/setuptools/_distutils/command/build.py", line 135, in run self.run_command(cmd_name) File "/home/lenovo/anaconda3/envs/li/lib/python3.10/site-packages/setuptools/_distutils/cmd.py", line 357, in run_command self.distribution.run_command(command) File "/home/lenovo/anaconda3/envs/li/lib/python3.10/site-packages/setuptools/dist.py", line 1104, in run_command super().run_command(command) File "/home/lenovo/anaconda3/envs/li/lib/python3.10/site-packages/setuptools/_distutils/dist.py", line 1021, in run_command cmd_obj.run() File "/home/lenovo/anaconda3/envs/li/lib/python3.10/site-packages/setuptools/command/build_ext.py", line 99, in run _build_ext.run(self) File "/home/lenovo/anaconda3/envs/li/lib/python3.10/site-packages/setuptools/_distutils/command/build_ext.py", line 368, in run self.build_extensions() File "/home/lenovo/anaconda3/envs/li/lib/python3.10/site-packages/torch/utils/cpp_extension.py", line 871, in build_extensions build_ext.build_extensions(self) File "/home/lenovo/anaconda3/envs/li/lib/python3.10/site-packages/setuptools/_distutils/command/build_ext.py", line 484, in build_extensions self._build_extensions_serial() File "/home/lenovo/anaconda3/envs/li/lib/python3.10/site-packages/setuptools/_distutils/command/build_ext.py", line 510, in _build_extensions_serial self.build_extension(ext) File "/home/lenovo/anaconda3/envs/li/lib/python3.10/site-packages/setuptools/command/build_ext.py", line 264, in build_extension _build_ext.build_extension(self, ext) File "/home/lenovo/anaconda3/envs/li/lib/python3.10/site-packages/setuptools/_distutils/command/build_ext.py", line 565, in build_extension objects = self.compiler.compile( File "/home/lenovo/anaconda3/envs/li/lib/python3.10/site-packages/torch/utils/cpp_extension.py", line 684, in unix_wrap_ninja_compile _write_ninja_file_and_compile_objects( File "/home/lenovo/anaconda3/envs/li/lib/python3.10/site-packages/torch/utils/cpp_extension.py", line 1774, in _write_ninja_file_and_compile_objects _run_ninja_build( File "/home/lenovo/anaconda3/envs/li/lib/python3.10/site-packages/torch/utils/cpp_extension.py", line 2112, in _run_ninja_build raise RuntimeError(message) from e RuntimeError: Error compiling objects for extension error: subprocess-exited-with-error × python setup.py bdist_wheel did not run successfully. │ exit code: 1 ╰─> See above for output. note: This error originates from a subprocess, and is likely not a problem with pip. full command: /home/lenovo/anaconda3/envs/li/bin/python3.10 -u -c ' exec(compile('"'"''"'"''"'"' # This is -- a caller that pip uses to run setup.py # # - It imports setuptools before invoking setup.py, to enable projects that directly # import from distutils.core to work with newer packaging standards. # - It provides a clear error message when setuptools is not installed. # - It sets sys.argv[0] to the underlying setup.py, when invoking setup.py so # setuptools doesn'"'"'t think the script is -c. This avoids the following warning: # manifest_maker: standard file '"'"'-c'"'"' not found". # - It generates a shim setup.py, for handling setup.cfg-only projects. import os, sys, tokenize, traceback try: import setuptools except ImportError: print( "ERROR: Can not execute setup.py since setuptools failed to import in " "the build environment with exception:", file=sys.stderr, ) traceback.print_exc() sys.exit(1) __file__ = %r sys.argv[0] = __file__ if os.path.exists(__file__): filename = __file__ with tokenize.open(__file__) as f: setup_py_code = f.read() else: filename = "<auto-generated setuptools caller>" setup_py_code = "from setuptools import setup; setup()" exec(compile(setup_py_code, filename, "exec")) '"'"''"'"''"'"' % ('"'"'/media/lenovo/PHILIPS/Mamba_20250409_ torch22_cuda118/VMamba-main/kernels/selective_scan/setup.py'"'"',), "", "exec"))' bdist_wheel -d /tmp/pip-wheel-fm2tmb40 cwd: /media/lenovo/PHILIPS/Mamba_20250409_ torch22_cuda118/VMamba-main/kernels/selective_scan/ Building wheel for selective_scan (setup.py): finished with status 'error' ERROR: Failed building wheel for selective_scan Running setup.py clean for selective_scan Running command python setup.py clean A module that was compiled using NumPy 1.x cannot be run in NumPy 2.2.6 as it may crash. To support both 1.x and 2.x versions of NumPy, modules must be compiled with NumPy 2.0. Some module may need to rebuild instead e.g. with 'pybind11>=2.12'. If you are a user of the module, the easiest solution will be to downgrade to 'numpy<2' or try to upgrade the affected module. We expect that some modules will need time to support NumPy 2. Traceback (most recent call last): File "<string>", line 2, in <module> File "", line 35, in <module> File "/media/lenovo/PHILIPS/Mamba_20250409_ torch22_cuda118/VMamba-main/kernels/selective_scan/setup.py", line 17, in <module> import torch File "/home/lenovo/anaconda3/envs/li/lib/python3.10/site-packages/torch/__init__.py", line 1471, in <module> from .functional import * # noqa: F403 File "/home/lenovo/anaconda3/envs/li/lib/python3.10/site-packages/torch/functional.py", line 9, in <module> import torch.nn.functional as F File "/home/lenovo/anaconda3/envs/li/lib/python3.10/site-packages/torch/nn/__init__.py", line 1, in <module> from .modules import * # noqa: F403 File "/home/lenovo/anaconda3/envs/li/lib/python3.10/site-packages/torch/nn/modules/__init__.py", line 35, in <module> from .transformer import TransformerEncoder, TransformerDecoder, \ File "/home/lenovo/anaconda3/envs/li/lib/python3.10/site-packages/torch/nn/modules/transformer.py", line 20, in <module> device: torch.device = torch.device(torch._C._get_default_device()), # torch.device('cpu'), /home/lenovo/anaconda3/envs/li/lib/python3.10/site-packages/torch/nn/modules/transformer.py:20: UserWarning: Failed to initialize NumPy: _ARRAY_API not found (Triggered internally at ../torch/csrc/utils/tensor_numpy.cpp:84.) device: torch.device = torch.device(torch._C._get_default_device()), # torch.device('cpu'), torch.__version__ = 2.2.0+cu118 CUDA_HOME = /home/lenovo/anaconda3/envs/li CUDA version: 11.8 /home/lenovo/anaconda3/envs/li/lib/python3.10/site-packages/setuptools/dist.py:759: SetuptoolsDeprecationWarning: License classifiers are deprecated. !! ******************************************************************************** Please consider removing the following classifiers in favor of a SPDX license expression: License :: OSI Approved :: BSD License See https://packaging.python.org/en/latest/guides/writing-pyproject-toml/#license for details. ******************************************************************************** !! self._finalize_license_expression() running clean removing 'build/temp.linux-x86_64-cpython-310' (and everything under it) 'build/lib.linux-x86_64-cpython-310' does not exist -- can't clean it 'build/bdist.linux-x86_64' does not exist -- can't clean it 'build/scripts-3.10' does not exist -- can't clean it removing 'build' Failed to build selective_scan ERROR: Failed to build installable wheels for some pyproject.toml based projects (selective_scan)

(swin1) C:\Users\CD\apex>pip install -v --no-build-isolation --config-settings "--build-option=--cpp_ext" --config-settings "--build-option=--cuda_ext" . Using pip 24.2 from D:\Anaconda3\envs\swin1\lib\site-packages\pip (python 3.8) Processing c:\users\cd\apex Running command Preparing metadata (pyproject.toml) torch.__version__ = 1.5.0+cu92 running dist_info creating C:\Users\CD\AppData\Local\Temp\pip-modern-metadata-1tgq6phy\apex.egg-info writing C:\Users\CD\AppData\Local\Temp\pip-modern-metadata-1tgq6phy\apex.egg-info\PKG-INFO writing dependency_links to C:\Users\CD\AppData\Local\Temp\pip-modern-metadata-1tgq6phy\apex.egg-info\dependency_links.txt writing top-level names to C:\Users\CD\AppData\Local\Temp\pip-modern-metadata-1tgq6phy\apex.egg-info\top_level.txt writing manifest file 'C:\Users\CD\AppData\Local\Temp\pip-modern-metadata-1tgq6phy\apex.egg-info\SOURCES.txt' reading manifest file 'C:\Users\CD\AppData\Local\Temp\pip-modern-metadata-1tgq6phy\apex.egg-info\SOURCES.txt' adding license file 'LICENSE' writing manifest file 'C:\Users\CD\AppData\Local\Temp\pip-modern-metadata-1tgq6phy\apex.egg-info\SOURCES.txt' creating 'C:\Users\CD\AppData\Local\Temp\pip-modern-metadata-1tgq6phy\apex-0.1.dist-info' <string>:67: UserWarning: Option --pyprof not specified. Not installing PyProf dependencies! Preparing metadata (pyproject.toml) ... done Building wheels for collected packages: apex Running command Building wheel for apex (pyproject.toml) <string>:67: UserWarning: Option --pyprof not specified. Not installing PyProf dependencies! torch.__version__ = 1.5.0+cu92 Compiling cuda extensions with nvcc: NVIDIA (R) Cuda compiler driver Copyright (c) 2005-2022 NVIDIA Corporation Built on Wed_Sep_21_10:41:10_Pacific_Daylight_Time_2022 Cuda compilation tools, release 11.8, V11.8.89 Build cuda_11.8.r11.8/compiler.31833905_0 from C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.8/bin Traceback (most recent call

最新推荐

recommend-type

langchain4j-anthropic-spring-boot-starter-0.31.0.jar中文文档.zip

1、压缩文件中包含: 中文文档、jar包下载地址、Maven依赖、Gradle依赖、源代码下载地址。 2、使用方法: 解压最外层zip,再解压其中的zip包,双击 【index.html】 文件,即可用浏览器打开、进行查看。 3、特殊说明: (1)本文档为人性化翻译,精心制作,请放心使用; (2)只翻译了该翻译的内容,如:注释、说明、描述、用法讲解 等; (3)不该翻译的内容保持原样,如:类名、方法名、包名、类型、关键字、代码 等。 4、温馨提示: (1)为了防止解压后路径太长导致浏览器无法打开,推荐在解压时选择“解压到当前文件夹”(放心,自带文件夹,文件不会散落一地); (2)有时,一套Java组件会有多个jar,所以在下载前,请仔细阅读本篇描述,以确保这就是你需要的文件。 5、本文件关键字: jar中文文档.zip,java,jar包,Maven,第三方jar包,组件,开源组件,第三方组件,Gradle,中文API文档,手册,开发手册,使用手册,参考手册。
recommend-type

Visual C++.NET编程技术实战指南

根据提供的文件信息,可以生成以下知识点: ### Visual C++.NET编程技术体验 #### 第2章 定制窗口 - **设置窗口风格**:介绍了如何通过编程自定义窗口的外观和行为。包括改变窗口的标题栏、边框样式、大小和位置等。这通常涉及到Windows API中的`SetWindowLong`和`SetClassLong`函数。 - **创建六边形窗口**:展示了如何创建一个具有特殊形状边界的窗口,这类窗口不遵循标准的矩形形状。它需要使用`SetWindowRgn`函数设置窗口的区域。 - **创建异形窗口**:扩展了定制窗口的内容,提供了创建非标准形状窗口的方法。这可能需要创建一个不规则的窗口区域,并将其应用到窗口上。 #### 第3章 菜单和控制条高级应用 - **菜单编程**:讲解了如何创建和修改菜单项,处理用户与菜单的交互事件,以及动态地添加或删除菜单项。 - **工具栏编程**:阐述了如何使用工具栏,包括如何创建工具栏按钮、分配事件处理函数,并实现工具栏按钮的响应逻辑。 - **状态栏编程**:介绍了状态栏的创建、添加不同类型的指示器(如文本、进度条等)以及状态信息的显示更新。 - **为工具栏添加皮肤**:展示了如何为工具栏提供更加丰富的视觉效果,通常涉及到第三方的控件库或是自定义的绘图代码。 #### 第5章 系统编程 - **操作注册表**:解释了Windows注册表的结构和如何通过程序对其进行读写操作,这对于配置软件和管理软件设置非常关键。 - **系统托盘编程**:讲解了如何在系统托盘区域创建图标,并实现最小化到托盘、从托盘恢复窗口的功能。 - **鼠标钩子程序**:介绍了钩子(Hook)技术,特别是鼠标钩子,如何拦截和处理系统中的鼠标事件。 - **文件分割器**:提供了如何将文件分割成多个部分,并且能够重新组合文件的技术示例。 #### 第6章 多文档/多视图编程 - **单文档多视**:展示了如何在同一个文档中创建多个视图,这在文档编辑软件中非常常见。 #### 第7章 对话框高级应用 - **实现无模式对话框**:介绍了无模式对话框的概念及其应用场景,以及如何实现和管理无模式对话框。 - **使用模式属性表及向导属性表**:讲解了属性表的创建和使用方法,以及如何通过向导性质的对话框引导用户完成多步骤的任务。 - **鼠标敏感文字**:提供了如何实现点击文字触发特定事件的功能,这在阅读器和编辑器应用中很有用。 #### 第8章 GDI+图形编程 - **图像浏览器**:通过图像浏览器示例,展示了GDI+在图像处理和展示中的应用,包括图像的加载、显示以及基本的图像操作。 #### 第9章 多线程编程 - **使用全局变量通信**:介绍了在多线程环境下使用全局变量进行线程间通信的方法和注意事项。 - **使用Windows消息通信**:讲解了通过消息队列在不同线程间传递信息的技术,包括发送消息和处理消息。 - **使用CriticalSection对象**:阐述了如何使用临界区(CriticalSection)对象防止多个线程同时访问同一资源。 - **使用Mutex对象**:介绍了互斥锁(Mutex)的使用,用以同步线程对共享资源的访问,保证资源的安全。 - **使用Semaphore对象**:解释了信号量(Semaphore)对象的使用,它允许一个资源由指定数量的线程同时访问。 #### 第10章 DLL编程 - **创建和使用Win32 DLL**:介绍了如何创建和链接Win32动态链接库(DLL),以及如何在其他程序中使用这些DLL。 - **创建和使用MFC DLL**:详细说明了如何创建和使用基于MFC的动态链接库,适用于需要使用MFC类库的场景。 #### 第11章 ATL编程 - **简单的非属性化ATL项目**:讲解了ATL(Active Template Library)的基础使用方法,创建一个不使用属性化组件的简单项目。 - **使用ATL开发COM组件**:详细阐述了使用ATL开发COM组件的步骤,包括创建接口、实现类以及注册组件。 #### 第12章 STL编程 - **list编程**:介绍了STL(标准模板库)中的list容器的使用,讲解了如何使用list实现复杂数据结构的管理。 #### 第13章 网络编程 - **网上聊天应用程序**:提供了实现基本聊天功能的示例代码,包括客户端和服务器的通信逻辑。 - **简单的网页浏览器**:演示了如何创建一个简单的Web浏览器程序,涉及到网络通信和HTML解析。 - **ISAPI服务器扩展编程**:介绍了如何开发ISAPI(Internet Server API)服务器扩展来扩展IIS(Internet Information Services)的功能。 #### 第14章 数据库编程 - **ODBC数据库编程**:解释了ODBC(开放数据库互联)的概念,并提供了使用ODBC API进行数据库访问的示例。 - **ADO编程**:介绍了ADO(ActiveX Data Objects)技术,讲解了如何使用ADO进行数据库的增删改查等操作。 #### 第15章 HTML帮助系统编程 - **创建HTML帮助文件**:讲解了如何创建HTML帮助文件(.chm),这是微软帮助系统的一种形式。 - **区分上下文帮助**:提供了在应用程序中实现上下文敏感帮助的技术示例。 #### 第16章 安装和部署项目 - **用安装程序向导创建安装项目**:介绍了如何使用Visual Studio中的安装和部署项目向导,快速创建安装程序。 - **部署应用程序**:阐述了部署应用程序到目标系统的过程,以及如何确保应用程序的正确安装和运行。 以上内容涵盖了Visual C++.NET编程技术体验一书中涉及的各个技术点,并对每个章节中的示例做了详细的说明。这些知识点对于理解和掌握Visual C++.NET编程非常重要,并能够帮助读者在实际项目开发中应用这些技术。
recommend-type

HarmonyOS内核深度探秘:优化自由行旅游系统的策略

# 1. HarmonyOS内核概述与旅游系统需求分析 ## 1.1 HarmonyOS内核概述 HarmonyOS(鸿蒙操作系统)是由华为开发的一个分布式操作系统,旨在提供跨多种设备的无缝体验。其内核设计理念强调高效、安全和模块化,以微内核架构和分布式能力
recommend-type

tkinter模块所有控件

<think>好的,我现在需要回答用户关于Tkinter模块中所有控件列表的问题。首先,我需要回忆Tkinter的基础知识,确保自己了解各个控件的名称和用途。用户希望得到所有支持的控件列表,所以必须全面覆盖,不能遗漏。 首先,我应该从Tkinter的标准控件开始。常见的控件包括Label、Button、Entry这些基础部件。然后是Frame,用于布局,还有Canvas用于绘图。接下来是Checkbutton、Radiobutton,这些属于选择类控件。Listbox和Scrollbar通常一起使用,处理滚动内容。还有Scale(滑块)、Spinbox、Menu、Menubutton这些可能
recommend-type

局域网五子棋游戏:娱乐与聊天的完美结合

标题“网络五子棋”和描述“适合于局域网之间娱乐和聊天!”以及标签“五子棋 网络”所涉及的知识点主要围绕着五子棋游戏的网络版本及其在局域网中的应用。以下是详细的知识点: 1. 五子棋游戏概述: 五子棋是一种两人对弈的纯策略型棋类游戏,又称为连珠、五子连线等。游戏的目标是在一个15x15的棋盘上,通过先后放置黑白棋子,使得任意一方先形成连续五个同色棋子的一方获胜。五子棋的规则简单,但策略丰富,适合各年龄段的玩家。 2. 网络五子棋的意义: 网络五子棋是指可以在互联网或局域网中连接进行对弈的五子棋游戏版本。通过网络版本,玩家不必在同一地点即可进行游戏,突破了空间限制,满足了现代人们快节奏生活的需求,同时也为玩家们提供了与不同对手切磋交流的机会。 3. 局域网通信原理: 局域网(Local Area Network,LAN)是一种覆盖较小范围如家庭、学校、实验室或单一建筑内的计算机网络。它通过有线或无线的方式连接网络内的设备,允许用户共享资源如打印机和文件,以及进行游戏和通信。局域网内的计算机之间可以通过网络协议进行通信。 4. 网络五子棋的工作方式: 在局域网中玩五子棋,通常需要一个客户端程序(如五子棋.exe)和一个服务器程序。客户端负责显示游戏界面、接受用户输入、发送落子请求给服务器,而服务器负责维护游戏状态、处理玩家的游戏逻辑和落子请求。当一方玩家落子时,客户端将该信息发送到服务器,服务器确认无误后将更新后的棋盘状态传回给所有客户端,更新显示。 5. 五子棋.exe程序: 五子棋.exe是一个可执行程序,它使得用户可以在个人计算机上安装并运行五子棋游戏。该程序可能包含了游戏的图形界面、人工智能算法(如果支持单机对战AI的话)、网络通信模块以及游戏规则的实现。 6. put.wav文件: put.wav是一个声音文件,很可能用于在游戏进行时提供声音反馈,比如落子声。在网络环境中,声音文件可能被用于提升玩家的游戏体验,尤其是在局域网多人游戏场景中。当玩家落子时,系统会播放.wav文件中的声音,为游戏增添互动性和趣味性。 7. 网络五子棋的技术要求: 为了确保多人在线游戏的顺利进行,网络五子棋需要具备一些基本的技术要求,包括但不限于稳定的网络连接、高效的数据传输协议(如TCP/IP)、以及安全的数据加密措施(如果需要的话)。此外,还需要有一个良好的用户界面设计来提供直观和舒适的用户体验。 8. 社交与娱乐: 网络五子棋除了是一个娱乐游戏外,它还具有社交功能。玩家可以通过游戏内的聊天系统进行交流,分享经验和策略,甚至通过网络寻找新的朋友。这使得网络五子棋不仅是一个个人娱乐工具,同时也是一种社交活动。 总结来说,网络五子棋结合了五子棋游戏的传统魅力和现代网络技术,使得不同地区的玩家能够在局域网内进行娱乐和聊天,既丰富了人们的娱乐生活,又加强了人际交流。而实现这一切的基础在于客户端程序的设计、服务器端的稳定运行、局域网的高效通信,以及音效文件增强的游戏体验。
recommend-type

自由行旅游新篇章:HarmonyOS技术融合与系统架构深度解析

# 1. HarmonyOS技术概述 ## 1.1 HarmonyOS的起源与发展 HarmonyOS(鸿蒙操作系统)由华为公司开发,旨在构建全场景分布式OS,以应对不同设备间的互联问题。自从2019年首次发布以来,HarmonyOS迅速成长,并迅速应用于智能手机、平板、智能穿戴、车载设备等多种平台。该系
recommend-type

足底支撑相到达73%是什么问题

<think>好的,我现在要处理用户的问题:“足底支撑相达到73%可能的原因及影响”。首先,需要理解用户提到的“足底支撑相73%”具体指什么。足底支撑相通常指步态周期中脚与地面接触的时间占比,正常范围大约在60%-62%左右。如果达到73%,明显超出正常范围,可能意味着步态异常。 接下来,需要确定可能的原因。可能的原因包括生物力学异常,比如足弓异常(扁平足或高弓足)、踝关节活动度受限,或者肌肉力量不足,特别是小腿和足部肌肉。另外,神经系统疾病如脑卒中或帕金森病可能影响步态控制。骨骼关节问题如关节炎、髋膝关节病变也可能导致支撑时间延长。还有代偿性步态,比如因疼痛或受伤而改变步态模式。 然后是
recommend-type

宾馆预约系统开发与优化建议

宾馆预约系统是一个典型的在线服务应用,它允许用户通过互联网平台预定宾馆房间。这种系统通常包含多个模块,比如用户界面、房态管理、预订处理、支付处理和客户评价等。从技术层面来看,构建一个宾馆预约系统涉及到众多的IT知识和技术细节,下面将详细说明。 ### 标题知识点 - 宾馆预约系统 #### 1. 系统架构设计 宾馆预约系统作为一个完整的应用,首先需要进行系统架构设计,决定其采用的软件架构模式,如B/S架构或C/S架构。此外,系统设计还需要考虑扩展性、可用性、安全性和维护性。一般会采用三层架构,包括表示层、业务逻辑层和数据访问层。 #### 2. 前端开发 前端开发主要负责用户界面的设计与实现,包括用户注册、登录、房间搜索、预订流程、支付确认、用户反馈等功能的页面展示和交互设计。常用的前端技术栈有HTML, CSS, JavaScript, 以及各种前端框架如React, Vue.js或Angular。 #### 3. 后端开发 后端开发主要负责处理业务逻辑,包括用户管理、房间状态管理、订单处理等。后端技术包括但不限于Java (使用Spring Boot框架), Python (使用Django或Flask框架), PHP (使用Laravel框架)等。 #### 4. 数据库设计 数据库设计对系统的性能和可扩展性至关重要。宾馆预约系统可能需要设计的数据库表包括用户信息表、房间信息表、预订记录表、支付信息表等。常用的数据库系统有MySQL, PostgreSQL, MongoDB等。 #### 5. 网络安全 网络安全是宾馆预约系统的重要考虑因素,包括数据加密、用户认证授权、防止SQL注入、XSS攻击、CSRF攻击等。系统需要实现安全的认证机制,比如OAuth或JWT。 #### 6. 云服务和服务器部署 现代的宾馆预约系统可能部署在云平台上,如AWS, Azure, 腾讯云或阿里云。在云平台上,系统可以按需分配资源,提高系统的稳定性和弹性。 #### 7. 付款接口集成 支付模块需要集成第三方支付接口,如支付宝、微信支付、PayPal等,需要处理支付请求、支付状态确认、退款等业务。 #### 8. 接口设计与微服务 系统可能采用RESTful API或GraphQL等接口设计方式,提供服务的微服务化,以支持不同设备和服务的接入。 ### 描述知识点 - 这是我个人自己做的 请大家帮忙修改哦 #### 个人项目经验与团队合作 描述中的这句话暗示了该宾馆预约系统可能是由一个个人开发者创建的。个人开发和团队合作在软件开发流程中有着显著的不同。个人开发者需要关注的方面包括项目管理、需求分析、代码质量保证、测试和部署等。而在团队合作中,每个成员会承担不同的职责,需要有效的沟通和协作。 #### 用户反馈与迭代 描述还暗示了该系统目前处于需要外部反馈和修改的阶段。这表明系统可能还处于开发或测试阶段,需要通过用户的实际使用反馈来不断迭代改进。 ### 标签知识点 - 200 #### 未提供信息 “200”这个标签可能指的是HTTP状态码中表示请求成功(OK)的200状态码。但是,由于没有提供更多的上下文信息,无法进一步分析其在本例中的具体含义。 ### 压缩包子文件的文件名称列表知识点 - 1111 #### 文件命名与管理 “1111”这个文件名称可能是一个版本号、日期标记或者是一个简单的标识符。文件命名应当遵循一定的规则,以确保文件的可追溯性和管理的便利性。在软件开发过程中,合理组织文件和版本控制(如使用Git)是必不可少的。 综上所述,宾馆预约系统的开发是一项复杂的工程,它涉及前后端的开发、数据库设计、系统安全、接口设计等多个方面。开发者在开发过程中需要不断学习和应用各类IT知识,以确保系统能够安全、高效、稳定地运行。而对于个人开发项目,如何合理利用有限资源、高效地管理和优化项目过程也是至关重要的。
recommend-type

HarmonyOS在旅游领域的创新:揭秘最前沿应用实践

# 1. HarmonyOS旅游应用的市场前景分析 随着数字化转型的不断深入,旅游行业正面临着前所未有的变革。在这样的背景下,HarmonyOS作为一种新兴的操作系统,带来了全新的市场前景和机遇。本章将深入分析HarmonyOS在旅游应用领域的市场潜力、用户需求、以及技术创新对旅游体验的改善。 ## 1.1 市场需求与用户画像分析 旅游市场的需求持续增
recommend-type

数据架构师需要具备什么能力

<think>嗯,用户现在转向询问数据架构师的能力要求了,而且特别提到要参考站内引用内容。看来ta正在规划职业方向,可能是个技术岗位的进阶者或转行者。之前对话历史显示用户对技术细节有深度需求(比如C语言底层特性),这次提问虽然跨度大,但延续了“技术职业发展”这条主线。用户引用的三段材料其实很有意思:第一篇强调综合能力,第二篇突出编程基础,第三篇提到商业洞察力——这正好构成数据架构师的三个能力象限。用户给出的引用里埋了个关键矛盾:第二篇说“速成只能做码农”,第三篇说“需要持续学习”,暗示ta可能担心速成班的局限性。回应时得强调“扎实基础+持续成长”的平衡。技术层面需要覆盖三个维度:硬技能(数据库