np.roll的功能是什么

时间: 2025-03-12 16:20:44 浏览: 50
<think>好的,我需要详细解释numpy中的roll函数的功能和使用方法。首先,得明确roll函数的基本作用,即循环位移数组元素。根据提供的引用资料,特别是引用[3]和[4],了解到它可以在指定轴上移动元素,超出边界的元素会回到另一端。 接下来,要整理使用说明。参数方面,包括a(输入数组)、shift(位移量)、axis(指定轴,可选)。需要举例说明不同情况下的效果,比如一维、二维数组,以及不同轴的操作。比如引用[4]中的例子,当axis为None时,数组会被扁平化后位移;axis=0时垂直方向滚动,axis=1时水平方向滚动。 还要注意返回值是新数组,原数组不变。可能的应用场景,如数据处理、信号处理中的循环移位,图像处理中的像素位移等,如引用[3]提到的。 需要确保解释清晰,结构合理,分点说明功能、参数、示例和注意事项。同时,引用相关部分,如引用[3]和[4]中的例子和说明,末尾添加引用标识。最后生成相关问题,可能涉及其他numpy函数、性能优化或应用实例。</think>### np.roll函数的功能与使用说明 #### 1. 核心功能 `np.roll` 是NumPy中用于实现数组元素**循环位移**的函数。其特点是将数组元素沿着指定轴(axis)移动指定步长(shift),超出边界的元素会从另一端重新进入数组[^3]。例如,一维数组 `[1,2,3,4]` 向右移动1位后变为 `[4,1,2,3]`。 #### 2. 参数说明 - **`a`**: 输入数组,支持任意维度。 - **`shift`**: 位移量,正数表示向右/向下移动,负数表示向左/向上移动。 - **`axis`** (可选): 指定位移的轴,默认值为`None`(将数组展平后水平位移)[^4]。 #### 3. 使用示例 ##### 一维数组 ```python import numpy as np a = np.arange(10) # [0,1,2,3,4,5,6,7,8,9] np.roll(a, 2) # 输出: [8,9,0,1,2,3,4,5,6,7] ``` ##### 二维数组按轴位移 ```python b = np.reshape(a, (2,5)) # [[0,1,2,3,4], [5,6,7,8,9]] np.roll(b, 1, axis=0) # 垂直方向滚动1位 → [[5,6,7,8,9], [0,1,2,3,4]] np.roll(b, 1, axis=1) # 水平方向滚动1位 → [[4,0,1,2,3], [9,5,6,7,8]] ``` ##### 未指定轴(展平后位移) ```python np.roll(b, 2) # 展平为[0,1,2,3,4,5,6,7,8,9]后右移2位 → [8,9,0,1,2,3,4,5,6,7] ``` #### 4. 注意事项 - **不修改原数组**:返回新数组,原数据保持不变。 - **支持高维数组**:例如三维数组可通过指定`axis=2`进行位移。 - **应用场景**:信号周期延拓(如傅里叶变换)、图像像素循环平移等。 ---
阅读全文

相关推荐

解释:target = self.survey.source.target collection = self.survey.source.collection '''Mesh''' # Conductivity in S/m (or resistivity in Ohm m) background_conductivity = 1e-6 air_conductivity = 1e-8 # Permeability in H/m background_permeability = mu_0 air_permeability = mu_0 dh = 0.1 # base cell width dom_width = 20.0 # domain width # num. base cells nbc = 2 ** int(np.round(np.log(dom_width / dh) / np.log(2.0))) # Define the base mesh h = [(dh, nbc)] mesh = TreeMesh([h, h, h], x0="CCC") # Mesh refinement near transmitters and receivers mesh = refine_tree_xyz( mesh, collection.receiver_location, octree_levels=[2, 4], method="radial", finalize=False ) # Refine core mesh region xp, yp, zp = np.meshgrid([-1.5, 1.5], [-1.5, 1.5], [-6, -4]) xyz = np.c_[mkvc(xp), mkvc(yp), mkvc(zp)] mesh = refine_tree_xyz(mesh, xyz, octree_levels=[0, 6], method="box", finalize=False) mesh.finalize() '''Maps''' # Find cells that are active in the forward modeling (cells below surface) ind_active = mesh.gridCC[:, 2] < 0 # Define mapping from model to active cells active_sigma_map = maps.InjectActiveCells(mesh, ind_active, air_conductivity) active_mu_map = maps.InjectActiveCells(mesh, ind_active, air_permeability) # Define model. Models in SimPEG are vector arrays N = int(ind_active.sum()) model = np.kron(np.ones((N, 1)), np.c_[background_conductivity, background_permeability]) ind_cylinder = self.getIndicesCylinder( [target.position[0], target.position[1], target.position[2]], target.radius, target.length, [target.pitch, target.roll], mesh.gridCC ) ind_cylinder = ind_cylinder[ind_active] model[ind_cylinder, :] = np.c_[target.conductivity, target.permeability] # Create model vector and wires model = mkvc(model) wire_map = maps.Wires(("sigma", N), ("mu", N)) # Use combo maps to map from model to mesh sigma_map = active_sigma_map * wire_map.sigma mu_map = active_mu_map * wire_map.mu '''Simulation''' simulation = fdem.simulation.Simulation3DMagneticFluxDensity( mesh, survey=self.survey.survey, sigmaMap=sigma_map, muMap=mu_map, Solver=Solver ) '''Predict''' # Compute predicted data for your model. dpred = simulation.dpred(model) dpred = dpred * 1e9 # Data are organized by frequency, transmitter location, then by receiver. # We had nFreq transmitters and each transmitter had 2 receivers (real and # imaginary component). So first we will pick out the real and imaginary # data bx_real = dpred[0: len(dpred): 6] bx_imag = dpred[1: len(dpred): 6] bx_total = np.sqrt(np.square(bx_real) + np.square(bx_imag)) by_real = dpred[2: len(dpred): 6] by_imag = dpred[3: len(dpred): 6] by_total = np.sqrt(np.square(by_real) + np.square(by_imag)) bz_real = dpred[4: len(dpred): 6] bz_imag = dpred[5: len(dpred): 6] bz_total = np.sqrt(np.square(bz_real) + np.square(bz_imag)) mag_data = np.c_[mkvc(bx_total), mkvc(by_total), mkvc(bz_total)] if collection.SNR is not None: mag_data = self.mag_data_add_noise(mag_data, collection.SNR) data = np.c_[collection.receiver_location, mag_data] # data = (data, ) return data

import sys import numpy as np from PySide2.QtWidgets import QApplication, QMainWindow, QWidget, QVBoxLayout, QHBoxLayout, QPushButton from PySide2.QtCore import QTimer from matplotlib.backends.backend_qt5agg import FigureCanvasQTAgg as FigureCanvas from matplotlib.figure import Figure import matplotlib.pyplot as plt import random import time class DataSimulator: """模拟ADXL345传感器数据生成器""" def __init__(self, file_path=None): self.file_path = file_path if file_path: try: with open(file_path, 'r') as f: self.data_lines = f.readlines() self.index = 0 print(f"从文件加载了{len(self.data_lines)}条模拟数据") except FileNotFoundError: print("模拟数据文件未找到,将生成随机数据") self.data_lines = None else: self.data_lines = None def read_data(self): """读取模拟数据点""" if self.data_lines and self.index < len(self.data_lines): line = self.data_lines[self.index].strip() self.index += 1 if self.index >= len(self.data_lines): self.index = 0 # 循环读取 try: return [float(x) for x in line.split()] except Exception as e: print(f"数据解析错误: {e}, 行内容: {line}") return [0.0, 0.0, 0.0] else: # 生成包含多种频率成分的随机数据 t = time.time() return [ 0.5 * np.sin(2 * np.pi * 5 * t) + 0.3 * np.random.randn(), 0.8 * np.sin(2 * np.pi * 12 * t) + 0.2 * np.random.randn(), 1.0 * np.sin(2 * np.pi * 2 * t) + 0.4 * np.random.randn() ] class MainWindow(QMainWindow): def __init__(self): super().__init__() self.setWindowTitle("ADXL345数据采集系统") self.setGeometry(100, 100, 1200, 800) # 初始化参数 self.sampling_rate = 100 # 采样率 (Hz) self.buffer_size = 100 # 数据缓冲区大小(显示1秒数据) self.is_collecting = False self.data_buffer = [] # 存储原始数据 self.last_fft_update = 0 # 上次FFT更新时间 # 创建模拟数据源 self.data_simulator = DataSimulator("sensor_data.txt") # 创建UI self.init_ui() # 初始化数据缓冲区 self.reset_buffers() # 设置定时器 self.timer = QTimer() self.timer.timeout.connect(self.update_data) def init_ui(self): """初始化用户界面""" main_widget = QWidget() main_layout = QVBoxLayout() # 按钮区域 btn_layout = QHBoxLayout() self.start_btn = QPushButton("开始采集数据") self.stop_btn = QPushButton("停止采集数据") self.start_btn.clicked.connect(self.start_collection) self.stop_btn.clicked.connect(self.stop_collection) self.stop_btn.setEnabled(False) btn_layout.addWidget(self.start_btn) btn_layout.addWidget(self.stop_btn) main_layout.addLayout(btn_layout) # 图表区域 fig_layout = QHBoxLayout() # 原始数据图表 self.raw_fig = Figure(figsize=(10, 4)) self.raw_canvas = FigureCanvas(self.raw_fig) self.ax_raw = self.raw_fig.add_subplot(111) self.ax_raw.set_title("原始加速度数据") self.ax_raw.set_xlabel("时间 (ms)") self.ax_raw.set_ylabel("加速度 (g)") self.ax_raw.grid(True) # 初始化三条曲线 self.raw_lines = [ self.ax_raw.plot([], [], 'r-', label='X轴')[0], self.ax_raw.plot([], [], 'g-', label='Y轴')[0], self.ax_raw.plot([], [], 'b-', label='Z轴')[0] ] self.ax_raw.legend() fig_layout.addWidget(self.raw_canvas) # FFT数据图表 self.fft_fig = Figure(figsize=(10, 4)) self.fft_canvas = FigureCanvas(self.fft_fig) self.ax_fft = self.fft_fig.add_subplot(111) self.ax_fft.set_title("FFT频谱分析") self.ax_fft.set_xlabel("频率 (Hz)") self.ax_fft.set_ylabel("幅度") self.ax_fft.grid(True) # 初始化FFT曲线 self.fft_lines = [ self.ax_fft.plot([], [], 'r-', label='X轴')[0], self.ax_fft.plot([], [], 'g-', label='Y轴')[0], self.ax_fft.plot([], [], 'b-', label='Z轴')[0] ] self.ax_fft.legend() fig_layout.addWidget(self.fft_canvas) main_layout.addLayout(fig_layout) main_widget.setLayout(main_layout) self.setCentralWidget(main_widget) def reset_buffers(self): """重置数据缓冲区""" # 使用列表存储三轴数据 self.data_x = np.zeros(self.buffer_size) self.data_y = np.zeros(self.buffer_size) self.data_z = np.zeros(self.buffer_size) # 正确的时间轴计算(单位:毫秒) self.time_axis = np.linspace(0, 1000, self.buffer_size) # 1秒时间范围 self.last_fft_update = 0 def start_collection(self): """开始数据采集""" self.is_collecting = True self.start_btn.setEnabled(False) self.stop_btn.setEnabled(True) self.reset_buffers() # 初始绘图 self.update_plots() # 根据采样率设置定时器 (100Hz => 10ms间隔) self.timer.start(10) def stop_collection(self): """停止数据采集""" self.is_collecting = False self.start_btn.setEnabled(True) self.stop_btn.setEnabled(False) self.timer.stop() def update_data(self): """更新数据并刷新图表""" if not self.is_collecting: return # 获取新数据点 new_data = self.data_simulator.read_data() # 更新数据缓冲区 (先进先出) self.data_x = np.roll(self.data_x, -1) self.data_y = np.roll(self.data_y, -1) self.data_z = np.roll(self.data_z, -1) self.data_x[-1] = new_data[0] self.data_y[-1] = new_data[1] self.data_z[-1] = new_data[2] # 更新图表 self.update_plots() # 每0.5秒更新一次FFT (避免频繁计算) current_time = time.time() if current_time - self.last_fft_update > 0.5: self.update_fft() self.last_fft_update = current_time def update_plots(self): """更新原始数据图表""" # 更新原始数据曲线 self.raw_lines[0].set_data(self.time_axis, self.data_x) self.raw_lines[1].set_data(self.time_axis, self.data_y) self.raw_lines[2].set_data(self.time_axis, self.data_z) # 调整坐标轴范围 self.ax_raw.set_xlim(0, 1000) # 1秒时间范围 self.ax_raw.set_ylim(-3, 3) self.raw_canvas.draw() def update_fft(self): """计算并更新FFT图表""" # 计算FFT n = len(self.data_x) freq = np.fft.rfftfreq(n, d=1.0/self.sampling_rate) # 更新FFT图表 for i, data in enumerate([self.data_x, self.data_y, self.data_z]): # 移除直流分量 data_no_dc = data - np.mean(data) # 计算FFT并取绝对值 fft_result = np.abs(np.fft.rfft(data_no_dc)) # 归一化处理 fft_result = fft_result / n * 2 # 更新曲线数据 self.fft_lines[i].set_data(freq, fft_result) # 调整坐标轴范围 self.ax_fft.set_xlim(0, self.sampling_rate / 2) # 动态调整Y轴范围 max_amp = max( np.max(fft_result) if len(fft_result) > 0 else 0, np.max(self.fft_lines[0].get_ydata()) if len(self.fft_lines[0].get_ydata()) > 0 else 0, np.max(self.fft_lines[1].get_ydata()) if len(self.fft_lines[1].get_ydata()) > 0 else 0, np.max(self.fft_lines[2].get_ydata()) if len(self.fft_lines[2].get_ydata()) > 0 else 0 ) y_max = max(0.1, max_amp * 1.2) # 设置合理的Y轴范围 self.ax_fft.set_ylim(0, y_max) # 重绘图 self.fft_canvas.draw() def generate_test_data(filename="sensor_data.txt", num_points=5000): """生成测试数据文件""" print(f"生成测试数据到 {filename}...") with open(filename, 'w') as f: for i in range(num_points): # 生成包含多种频率成分的测试数据 t = i / 100.0 # 采样率100Hz x = 0.5 * np.sin(2 * np.pi * 5 * t) + 0.3 * np.random.randn() y = 0.8 * np.sin(2 * np.pi * 12 * t) + 0.2 * np.random.randn() z = 1.0 * np.sin(2 * np.pi * 2 * t) + 0.4 * np.random.randn() f.write(f"{x:.4f} {y:.4f} {z:.4f}\n") print(f"已生成 {num_points} 条测试数据") if __name__ == "__main__": # 生成测试数据文件 generate_test_data() # 启动GUI应用 app = QApplication(sys.argv) window = MainWindow() window.show() sys.exit(app.exec_()) 以上程序,对应的相关配置是:Python 3.7.9、PyCharm、Qt 5.12.12、Anaconda、PySide2库、numpy库、matplotlib库等相关依赖库。如果,相关配置修改为是:Python 3.9、PyCharm、Qt 5.15.2、Anaconda、PySide2 5.15.2.1、numpy库、matplotlib 3.7.3等相关依赖库。那么,程序需要对应修改吗?请完整输出程序,并详细注释。

列出代码中的变量、函数、变量的功能或成员函数import swift import roboticstoolbox as rtb import spatialgeometry as sg import spatialmath as sm import qpsolvers as qp import numpy as np import math def step_robot(r: rtb.ERobot, Tep): wTe = r.fkine(r.q) eTep = np.linalg.inv(wTe) @ Tep # Spatial error et = np.sum(np.abs(eTep[:3, -1])) # Gain term (lambda) for control minimisation Y = 0.01 # Quadratic component of objective function Q = np.eye(r.n + 6) # Joint velocity component of Q Q[: r.n, : r.n] *= Y Q[:2, :2] *= 1.0 / et # Slack component of Q Q[r.n :, r.n :] = (1.0 / et) * np.eye(6) v, _ = rtb.p_servo(wTe, Tep, 1.5) v[3:] *= 1.3 # The equality contraints Aeq = np.c_[r.jacobe(r.q), np.eye(6)] beq = v.reshape((6,)) # The inequality constraints for joint limit avoidance Ain = np.zeros((r.n + 6, r.n + 6)) bin = np.zeros(r.n + 6) # The minimum angle (in radians) in which the joint is allowed to approach # to its limit ps = 0.1 # The influence angle (in radians) in which the velocity damper # becomes active pi = 0.9 # Form the joint limit velocity damper Ain[: r.n, : r.n], bin[: r.n] = r.joint_velocity_damper(ps, pi, r.n) # Linear component of objective function: the manipulability Jacobian c = np.concatenate( (np.zeros(2), -r.jacobm(start=r.links[4]).reshape((r.n - 2,)), np.zeros(6)) ) # Get base to face end-effector kε = 0.5 bTe = r.fkine(r.q, include_base=False).A θε = math.atan2(bTe[1, -1], bTe[0, -1]) ε = kε * θε c[0] = -ε # The lower and upper bounds on the joint velocity and slack variable lb = -np.r_[r.qdlim[: r.n], 10 * np.ones(6)] ub = np.r_[r.qdlim[: r.n], 10 * np.ones(6)] # Solve for the joint velocities dq qd = qp.solve_qp(Q, c, Ain, bin, Aeq, beq, lb=lb, ub=ub,solver='piqp').copy() qd = qd[: r.n] if et > 0.5: qd *= 0.7 / et else: qd *= 1.4 if et < 0.

解释代码import swift import roboticstoolbox as rtb import spatialgeometry as sg import spatialmath as sm import qpsolvers as qp import numpy as np import math def step_robot(r: rtb.ERobot, Tep): wTe = r.fkine(r.q) eTep = np.linalg.inv(wTe) @ Tep # Spatial error et = np.sum(np.abs(eTep[:3, -1])) # Gain term (lambda) for control minimisation Y = 0.01 # Quadratic component of objective function Q = np.eye(r.n + 6) # Joint velocity component of Q Q[: r.n, : r.n] *= Y Q[:3, :3] *= 1.0 / et # Slack component of Q Q[r.n :, r.n :] = (1.0 / et) * np.eye(6) v, _ = rtb.p_servo(wTe, Tep, 1.5) v[3:] *= 1.3 # The equality contraints Aeq = np.c_[r.jacobe(r.q), np.eye(6)] beq = v.reshape((6,)) # The inequality constraints for joint limit avoidance Ain = np.zeros((r.n + 6, r.n + 6)) bin = np.zeros(r.n + 6) # The minimum angle (in radians) in which the joint is allowed to approach # to its limit ps = 0.1 # The influence angle (in radians) in which the velocity damper # becomes active pi = 0.9 # Form the joint limit velocity damper Ain[: r.n, : r.n], bin[: r.n] = r.joint_velocity_damper(ps, pi, r.n) # Linear component of objective function: the manipulability Jacobian c = np.concatenate( (np.zeros(3), -r.jacobm(start=r.links[5]).reshape((r.n - 3,)), np.zeros(6)) ) # Get base to face end-effector kε = 0.5 bTe = r.fkine(r.q, include_base=False).A θε = math.atan2(bTe[1, -1], bTe[0, -1]) ε = kε * θε c[0] = -ε # The lower and upper bounds on the joint velocity and slack variable lb = -np.r_[r.qdlim[: r.n], 10 * np.ones(6)] ub = np.r_[r.qdlim[: r.n], 10 * np.ones(6)] # Solve for the joint velocities dq qd = qp.solve_qp(Q, c, Ain, bin, Aeq, beq, lb=lb, ub=ub) qd = qd[: r.n] if et > 0.5: qd *= 0.7 / et else: qd *= 1.4 if et < 0.02: return True, qd else:

import numpy as np from scipy.ndimage import distance_transform_edt, gaussian_filter from PIL import Image import hashlib def generate_blue_noise(size=128, seed=0, phase_shift=(0, 0), sigma=0.0, exponent=1.0): """ 生成单通道蓝噪声模板 :param size: 表格尺寸(默认128x128) :param seed: 随机种子(确保各通道独立性) :param phase_shift: 相位偏移量(破坏通道间周期性) :param sigma: 高斯扰动强度 :param exponent: 非线性映射指数(用于K通道强化) :return: 归一化到[0,1]的噪声矩阵 """ np.random.seed(seed) # 步骤1: 初始随机分布(密度30%) points = np.random.rand(size, size) < 0.3 # 步骤2: Void-and-Cluster迭代优化 for _ in range(50): dist_map = distance_transform_edt(~points) max_pos = np.unravel_index(dist_map.argmax(), dist_map.shape) points[max_pos] = True min_pos = np.unravel_index(dist_map.argmin(), dist_map.shape) points[min_pos] = False # 步骤3: 应用相位偏移 shifted = np.roll(points, phase_shift, axis=(0, 1)) # 步骤4: 高斯扰动(防止通道严格对齐) if sigma > 0: blurred = gaussian_filter(shifted.astype(float), sigma=sigma) threshold = np.percentile(blurred, 70) # 保持近似密度 shifted = blurred > threshold # 步骤5: 非线性映射(特别用于K通道) result = shifted.astype(float) ** exponent return result / result.max() # 归一化 def save_channel(data, filename): """ 保存单通道为8位PNG :param data: [0,1]范围矩阵 :param filename: 输出文件名 """ img_data = (data * 255).astype(np.uint8) img = Image.fromarray(img_data, mode='L') img.save(filename) print(f"Saved {filename} | SHA256: {hashlib.sha256(img.tobytes()).hexdigest()}") # CMYK通道参数配置 channel_config = { 'C': {'seed': 42, 'phase_shift': (0, 0), 'sigma': 0.5, 'exponent': 1.0}, 'M': {'seed': 1024, 'phase_shift': (32, 32), 'sigma': 0.7, 'exponent': 1.0}, 'Y': {'seed': 2048, 'phase_shift': (64, 64), 'sigma': 0.3, 'exponent': 1.0}, 'K': {'seed': 4096, 'phase_shift': (96, 96), 'sigma': 0.0, 'exponent': 1.2} } # 生成并保存所有通道 for channel, config in channel_config.items(): noise = generate_blue_noise( size=128, seed=config['seed'], phase_shift=config['phase_shift'], sigma=config['sigma'], exponent=config['exponent'] ) save_channel(noise, f"blue_noise_{channel}.png") # 可选:生成验证图像(四通道合成预览) c = np.array(Image.open("blue_noise_C.png")) / 255 m = np.array(Image.open("blue_noise_M.png")) / 255 y = np.array(Image.open("blue_noise_Y.png")) / 255 k = np.array(Image.open("blue_noise_K.png")) / 255 # CMYK转RGB预览(简化版) rgb = 1.0 - np.minimum(c + k, 1.0) # 模拟印刷叠加 rgb = np.stack([rgb] * 3, axis=-1) # 转为3通道 Image.fromarray((rgb * 255).astype(np.uint8)).save("preview.png")

import pygame from threading import Thread from queue import Queue import time import numpy as np from mini_bdx_runtime.buttons import Buttons X_RANGE = [-0.15, 0.15] Y_RANGE = [-0.2, 0.2] YAW_RANGE = [-1.0, 1.0] # rads NECK_PITCH_RANGE = [-0.34, 1.1] HEAD_PITCH_RANGE = [-0.78, 0.3] HEAD_YAW_RANGE = [-0.5, 0.5] HEAD_ROLL_RANGE = [-0.5, 0.5] class XBoxController: def __init__(self, command_freq, only_head_control=False): self.command_freq = command_freq self.head_control_mode = only_head_control self.only_head_control = only_head_control self.last_commands = [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0] self.last_left_trigger = 0.0 self.last_right_trigger = 0.0 pygame.init() self.p1 = pygame.joystick.Joystick(0) self.p1.init() print(f"Loaded joystick with {self.p1.get_numaxes()} axes.") self.cmd_queue = Queue(maxsize=1) self.A_pressed = False self.B_pressed = False self.X_pressed = False self.Y_pressed = False self.LB_pressed = False self.RB_pressed = False self.buttons = Buttons() Thread(target=self.commands_worker, daemon=True).start() def commands_worker(self): while True: self.cmd_queue.put(self.get_commands()) time.sleep(1 / self.command_freq) def get_commands(self): last_commands = self.last_commands left_trigger = self.last_left_trigger right_trigger = self.last_right_trigger l_x = -1 * self.p1.get_axis(0) l_y = -1 * self.p1.get_axis(1) r_x = -1 * self.p1.get_axis(2) r_y = -1 * self.p1.get_axis(3) right_trigger = np.around((self.p1.get_axis(4) + 1) / 2, 3) left_trigger = np.around((self.p1.get_axis(5) + 1) / 2, 3) if left_trigger < 0.1: left_trigger = 0 if right_trigger < 0.1: right_trigger = 0 if not self.head_control_mode: lin_vel_y = l_x lin_vel_x = l_y ang_vel = r_x if lin_vel_x >= 0: lin_vel_x *= np.abs(X_RANGE[1]) else: lin_vel_x *= np.abs(X_RANGE[0]) if lin_vel_y >= 0: lin_vel_y *= np.abs(Y_RANGE[1]) else: lin_vel_y *= np.abs(Y_RANGE[0]) if ang_vel >= 0: ang_vel *= np.abs(YAW_RANGE[1]) else: ang_vel *= np.abs(YAW_RANGE[0]) last_commands[0] = lin_vel_x last_commands[1] = lin_vel_y last_commands[2] = ang_vel else: last_commands[0] = 0.0 last_commands[1] = 0.0 last_commands[2] = 0.0 last_commands[3] = 0.0 # neck pitch 0 for now head_yaw = l_x head_pitch = l_y head_roll = r_x if head_yaw >= 0: head_yaw *= np.abs(HEAD_YAW_RANGE[0]) else: head_yaw *= np.abs(HEAD_YAW_RANGE[1]) if head_pitch >= 0: head_pitch *= np.abs(HEAD_PITCH_RANGE[0]) else: head_pitch *= np.abs(HEAD_PITCH_RANGE[1]) if head_roll >= 0: head_roll *= np.abs(HEAD_ROLL_RANGE[0]) else: head_roll *= np.abs(HEAD_ROLL_RANGE[1]) last_commands[4] = head_pitch last_commands[5] = head_yaw last_commands[6] = head_roll for event in pygame.event.get(): if event.type == pygame.JOYBUTTONDOWN: if self.p1.get_button(0): # A button self.A_pressed = True if self.p1.get_button(1): # B button self.B_pressed = True if self.p1.get_button(3): # X button self.X_pressed = True if self.p1.get_button(4): # Y button self.Y_pressed = True if not self.only_head_control: self.head_control_mode = not self.head_control_mode if self.p1.get_button(6): # LB button self.LB_pressed = True if self.p1.get_button(7): # RB button self.RB_pressed = True if event.type == pygame.JOYBUTTONUP: self.A_pressed = False self.B_pressed = False self.X_pressed = False self.Y_pressed = False self.LB_pressed = False self.RB_pressed = False # for i in range(10): # if self.p1.get_button(i): # print(f"Button {i} pressed") up_down = self.p1.get_hat(0)[1] pygame.event.pump() # process event queue return ( np.around(last_commands, 3), self.A_pressed, self.B_pressed, self.X_pressed, self.Y_pressed, self.LB_pressed, self.RB_pressed, left_trigger, right_trigger, up_down, ) def get_last_command(self): A_pressed = False B_pressed = False X_pressed = False Y_pressed = False LB_pressed = False RB_pressed = False up_down = 0 try: ( self.last_commands, A_pressed, B_pressed, X_pressed, Y_pressed, LB_pressed, RB_pressed, self.last_left_trigger, self.last_right_trigger, up_down, ) = self.cmd_queue.get( False ) # non blocking except Exception: pass self.buttons.update( A_pressed, B_pressed, X_pressed, Y_pressed, LB_pressed, RB_pressed, up_down == 1, up_down == -1, ) return ( self.last_commands, self.buttons, self.last_left_trigger, self.last_right_trigger, ) if __name__ == "__main__": controller = XBoxController(20) while True: print(controller.get_last_command()) time.sleep(0.05)

import cv2 import numpy as np import time from collections import defaultdict import math def detect_a4_paper_and_shapes(frame, base_area): """检测A4纸并识别其上的形状,返回处理后的帧、形状数据和变换后区域面积""" frame = cv2.resize(frame, (800, 600)) output_frame = frame.copy() shape_data = [] # 存储形状信息:(形状名称, 面积mm², 占比%) gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY) blurred = cv2.GaussianBlur(gray, (7, 7), 0) edged = cv2.Canny(blurred, 30, 120) contours, _ = cv2.findContours(edged.copy(), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE) a4_contour = None warped_area = 0 # 默认值为0,表示未检测到A4纸 # 筛选A4纸轮廓 for contour in contours: if cv2.contourArea(contour) < 5000: continue peri = cv2.arcLength(contour, True) approx = cv2.approxPolyDP(contour, 0.02 * peri, True) if len(approx) == 4 and cv2.isContourConvex(approx): a4_contour = approx break if a4_contour is not None: cv2.drawContours(output_frame, [a4_contour], -1, (0, 0, 255), 2) cv2.putText(output_frame, "A4 Paper", (a4_contour[0][0][0], a4_contour[0][0][1] - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 0, 255), 2) # 透视变换准备 pts = a4_contour.reshape(4, 2) rect = np.zeros((4, 2), dtype="float32") s = pts.sum(axis=1) rect[0] = pts[np.argmin(s)] rect[2] = pts[np.argmax(s)] diff = np.diff(pts, axis=1) rect[1] = pts[np.argmin(diff)] rect[3] = pts[np.argmax(diff)] (tl, tr, br, bl) = rect widthA = np.sqrt(((br[0] - bl[0]) ** 2) + ((br[1] - bl[1]) ** 2)) widthB = np.sqrt(((tr[0] - tl[0]) ** 2) + ((tr[1] - tl[1]) ** 2)) maxWidth = max(int(widthA), int(widthB)) heightA = np.sqrt(((tr[0] - br[0]) ** 2) + ((tr[1] - br[1]) ** 2)) heightB = np.sqrt(((tl[0] - bl[0]) ** 2) + ((tl[1] - bl[1]) ** 2)) maxHeight = max(int(heightA), int(heightB)) # 计算变换后的区域面积 warped_area = maxWidth * maxHeight dst = np.array([ [0, 0], [maxWidth - 1, 0], [maxWidth - 1, maxHeight - 1], [0, maxHeight - 1]], dtype="float32") try: M = cv2.getPerspectiveTransform(rect, dst) warped = cv2.warpPerspective(frame, M, (maxWidth, maxHeight)) # 形状检测 gray_warped = cv2.cvtColor(warped, cv2.COLOR_BGR2GRAY) thresh = cv2.adaptiveThreshold(gray_warped, 255, cv2.ADAPTIVE_THRESH_GAUSSIAN_C, cv2.THRESH_BINARY_INV, 11, 2) contours_warped, _ = cv2.findContours(thresh.copy(), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE) # 像素到毫米的转换比例(基于基准面积) px_per_mm = maxWidth / math.sqrt(base_area * (maxWidth / maxHeight)) # 适配基准面积的比例计算 # 识别形状并计算面积 for cnt in contours_warped: area_px = cv2.contourArea(cnt) if area_px < 100: continue # 计算实际面积和占比(占空比=图形面积/基准面积) area_mm2 = area_px / (px_per_mm ** 2) ratio = (area_mm2 / base_area) * 100 # 占空比(百分比) peri = cv2.arcLength(cnt, True) approx = cv2.approxPolyDP(cnt, 0.03 * peri, True) shape = "Unknown" if len(approx) == 3: shape = "三角形" elif len(approx) == 4: x, y, w, h = cv2.boundingRect(approx) aspect_ratio = float(w) / h if 0.95 <= aspect_ratio <= 1.05: shape = "正方形" else: shape = "长方形" else: perimeter = cv2.arcLength(cnt, True) circularity = 4 * np.pi * area_px / (perimeter ** 2) if perimeter > 0 else 0 if 0.7 < circularity < 1.3: shape = "圆形" elif 5 <= len(approx) <= 8: shape = "多边形" # 只记录目标形状 if shape in ["三角形", "圆形", "正方形"]: shape_data.append((shape, area_mm2, ratio)) # 在图像上标记 M = cv2.moments(cnt) if M["m00"] != 0: cX = int(M["m10"] / M["m00"]) cY = int(M["m01"] / M["m00"]) cv2.drawContours(warped, [cnt], -1, (0, 255, 0), 2) cv2.putText(warped, f"{shape} {ratio:.1f}%", (cX - 50, cY), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (255, 0, 0), 2) # 放置矫正后的图像 h, w = warped.shape[:2] if h < output_frame.shape[0] and w < output_frame.shape[1]: output_frame[0:h, 0:w] = warped else: scale = min(output_frame.shape[0] / h, output_frame.shape[1] / w) warped = cv2.resize(warped, (int(w * scale), int(h * scale))) h, w = warped.shape[:2] output_frame[0:h, 0:w] = warped except Exception as e: print(f"处理出错: {e}") return output_frame, shape_data, warped_area def calculate_dimensions(shape, avg_area): """根据图形类型和平均面积计算尺寸(边长或直径,单位:毫米)""" if shape == "正方形": # 正方形面积 = 边长² → 边长 = √面积 side_length = math.sqrt(avg_area) return f"边长: {side_length:.2f} mm" elif shape == "圆形": # 圆形面积 = π×(直径/2)² → 直径 = 2×√(面积/π) diameter = 2 * math.sqrt(avg_area / math.pi) return f"直径: {diameter:.2f} mm" elif shape == "三角形": # 假设为等边三角形:面积 = (√3/4)×边长² → 边长 = √(4×面积/√3) side_length = math.sqrt((4 * avg_area) / math.sqrt(3)) return f"等边三角形边长: {side_length:.2f} mm" return "无法计算尺寸" def set_camera_resolution(cap, width=640, height=480): """尝试设置摄像头分辨率""" # 设置目标分辨率 cap.set(cv2.CAP_PROP_FRAME_WIDTH, width) cap.set(cv2.CAP_PROP_FRAME_HEIGHT, height) # 获取实际设置的分辨率 actual_width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH)) actual_height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT)) return actual_width, actual_height def main(): # 设定基准面积(整张纸的面积,单位:平方毫米) base_area = 43690 # 更新为43690平方毫米 cap = cv2.VideoCapture(0) if not cap.isOpened(): print("无法打开摄像头") return # 设置摄像头分辨率为1080p (1920x1080) actual_width, actual_height = set_camera_resolution(cap, 640, 480) print(f"尝试设置摄像头分辨率: 1280x720") print(f"实际分辨率: {actual_width}x{actual_height}") print(f"\n程序启动,以基准面积 {base_area} mm² 计算占空比,将进行4秒检测...") print("按 'q' 键可提前退出") # 存储4秒内的检测数据 detection_history = defaultdict(list) # 格式: {形状: [(面积, 占比), ...]} warped_areas = [] # 存储变换后的区域面积 start_time = time.time() detection_duration = 3 # 检测持续时间(秒) try: while True: # 检查是否达到检测时间 elapsed_time = time.time() - start_time if elapsed_time >= detection_duration: break ret, frame = cap.read() if not ret: print("无法获取视频帧") break frame = cv2.flip(frame, 1) # 镜像翻转 # 显示剩余时间 remaining_time = max(0, int(detection_duration - elapsed_time)) cv2.putText(frame, f"检测剩余: {remaining_time}秒", (10, 30), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 0, 255), 2) # 显示基准面积 cv2.putText(frame, f"基准面积: {base_area} mm²", (10, 70), cv2.FONT_HERSHEY_SIMPLEX, 0.7, (255, 0, 0), 2) # 显示当前分辨率 cv2.putText(frame, f"分辨率: {actual_width}x{actual_height}", (10, 110), cv2.FONT_HERSHEY_SIMPLEX, 0.7, (0, 255, 0), 2) # 处理帧并检测形状(传入基准面积) processed_frame, shape_data, warped_area = detect_a4_paper_and_shapes(frame, base_area) # 如果检测到了A4纸,记录区域面积 if warped_area > 0: warped_areas.append(warped_area) # 记录检测数据 for shape, area, ratio in shape_data: detection_history[shape].append((area, ratio)) cv2.imshow("A4纸形状检测", processed_frame) if cv2.waitKey(1) & 0xFF == ord('q'): print("用户提前退出") return # 计算并打印结果(含尺寸计算) print("\n===== 4秒检测结果 =====") print(f"基准面积(整张纸): {base_area} mm²") print(f"摄像头分辨率: {actual_width}x{actual_height}") # 打印平均变换区域面积 if warped_areas: avg_warped_area = sum(warped_areas) / len(warped_areas) print(f"平均变换区域面积: {avg_warped_area:.2f} 像素") print(f"距离: {17910*avg_warped_area**(-0.501)-3.495:.2f} cm") else: print("未检测到A4纸") if not detection_history: print("未检测到任何图形") else: for shape, data in detection_history.items(): # 计算平均面积和平均占空比 avg_area = sum(area for area, _ in data) / len(data) avg_ratio = sum(ratio for _, ratio in data) / len(data) # 计算尺寸 dimensions = calculate_dimensions(shape, avg_area) print(f"\n{shape}:") print(f" 平均面积: {avg_area:.2f} mm²") print(f" 平均占空比: {avg_ratio:.2f}%(占整张纸面积)") print(f" {dimensions}") print(f" 检测到的次数: {len(data)}") finally: cap.release() cv2.destroyAllWindows() print("\n程序已退出") 用以上代码代替下面代码的可实现功能部分import cv2 import numpy as np import platform import Config from Config import * # noqa: F403 class A4GeometryDetector: def __init__(self): self.object_3d_points = np.array( [ [-A4_WIDTH_MM / 2, -A4_HEIGHT_MM / 2, 0], [A4_WIDTH_MM / 2, -A4_HEIGHT_MM / 2, 0], [A4_WIDTH_MM / 2, A4_HEIGHT_MM / 2, 0], [-A4_WIDTH_MM / 2, A4_HEIGHT_MM / 2, 0], ], dtype=np.float32, ) self.camera_matrix = np.array( Config.camera_matrix, dtype=np.float32, ) self.dist_coeffs = np.array( Config.dist_coeffs, dtype=np.float32, ) self.try_open_camera() self.frame_width = int(self.cap.get(cv2.CAP_PROP_FRAME_WIDTH)) self.frame_height = int(self.cap.get(cv2.CAP_PROP_FRAME_HEIGHT)) print(self.frame_width, self.frame_height) self.camera_matrix[0, 2] = self.frame_width / 2 self.camera_matrix[1, 2] = self.frame_height / 2 self.pixel_per_mm = 1 self.edges = None self.finalWarped = None # 分辨率和id设置 def try_open_camera(self, camera_id=1): if platform.system().lower() == "windows": cap = cv2.VideoCapture(camera_id, cv2.CAP_DSHOW) else: cap = cv2.VideoCapture(camera_id) # 或者设置为你想要的分辨率,比如640x480 cap.set(3, 640) cap.set(4, 480) if cap.isOpened(): print(f"成功打开摄像头: {camera_id}") self.cap = cap return True else: cap.release() print("未找到可用的摄像头") return False def detect_corners(self, frame): def angle_sort(pt): vec = pt - center return np.arctan2(vec[1], vec[0]) gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY) blurred = cv2.GaussianBlur(gray, (5, 5), 0) ret, binary_img = cv2.threshold(blurred, 127, 255, cv2.THRESH_BINARY) edges = cv2.Canny(binary_img, threshold1=50, threshold2=150) contours, _ = cv2.findContours( edges, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE ) # 存储符合条件的轮廓及其面积 valid_contours = [] for cnt in contours: epsilon = 0.01 * cv2.arcLength(cnt, closed=True) approx = cv2.approxPolyDP(cnt, epsilon, True) if len(approx) == 4 and cv2.isContourConvex(approx): area = cv2.contourArea(approx) if area < 1000: # 可选:面积过滤 continue corners = approx.reshape(4, 2) valid_contours.append((area, corners)) # 如果没有找到符合条件的轮廓 if not valid_contours: return None # 按面积从大到小排序 valid_contours.sort(key=lambda x: x[0], reverse=True) # 选择面积最大的轮廓 largest_area, corners = valid_contours[0] # 对角点进行排序 center = corners.mean(axis=0) sorted_corners = sorted(corners, key=angle_sort) start_idx = np.argmin([pt[1] for pt in sorted_corners]) ordered = np.roll(sorted_corners, -start_idx, axis=0) return np.array(ordered, dtype=np.float32) def order_points(self, pts): rect = np.zeros((4, 2), dtype=np.float32) s = pts.sum(axis=1) diff = np.diff(pts, axis=1) rect[0] = pts[np.argmin(s)] rect[2] = pts[np.argmax(s)] rect[1] = pts[np.argmin(diff)] rect[3] = pts[np.argmax(diff)] return rect def calculate_distance_pnp(self, image_points): if image_points is None or len(image_points) != 4: return None, None, None ordered_points = self.order_points(image_points) try: success, rvec, tvec = cv2.solvePnP( self.object_3d_points, ordered_points, self.camera_matrix, self.dist_coeffs, ) if success: horizontal_baseline_distance = float( np.sqrt(tvec[0][0] ** 2 + tvec[2][0] ** 2) ) return horizontal_baseline_distance, rvec, tvec except: return None, None, None return None, None, None def warp_perspective_from_corners(self, frame, corners, output_size=(600, 400)): if corners is None or len(corners) != 4: return None, None, None rect = self.order_points(corners) dst = np.array( [ [0, 0], [output_size[0] - 1, 0], [output_size[0] - 1, output_size[1] - 1], [0, output_size[1] - 1], ], dtype=np.float32, ) M = cv2.getPerspectiveTransform(rect, dst) Minv = cv2.getPerspectiveTransform(dst, rect) warped = cv2.warpPerspective(frame, M, output_size) return warped, M, Minv def resize_warped(self): up_points = (int(A4_WIDTH_MM * 3), int(A4_HEIGHT_MM * 3)) resized_up = cv2.resize(self.warped, up_points, interpolation=cv2.INTER_LINEAR) self.pixel_per_mm = up_points[0] / A4_WIDTH_MM return resized_up def pixels_to_mm(self, pixels): return pixels / self.pixel_per_mm def mm_to_pixels(self, mm): return mm * self.pixel_per_mm def run(self): ret, frame = self.cap.read() if not ret: return self.frame = frame self.corners = self.detect_corners(frame) if self.corners is None: return self.distance, rvec, tvec = self.calculate_distance_pnp(self.corners) if self.distance is None: return self.warped, M, Minv = self.warp_perspective_from_corners(frame, self.corners) if self.warped is None: return self.finalWarped = self.resize_warped() gray = cv2.cvtColor(self.finalWarped, cv2.COLOR_BGR2GRAY) blurred = cv2.GaussianBlur(gray, (3, 3), 0) ret, binary_img = cv2.threshold(blurred, 127, 255, cv2.THRESH_BINARY) self.edges = cv2.Canny(binary_img, 50, 150) # 遮盖多余的边框线 edge_bored_width = int(self.mm_to_pixels(BORDER_WIDTH_MM)) + 5 # Top border self.edges[0:edge_bored_width, :] = 0 # Bottom border self.edges[-edge_bored_width:, :] = 0 # Left border self.edges[:, 0:edge_bored_width] = 0 # Right border self.edges[:, -edge_bored_width:] = 0 # 绘制角点 for i, corner in enumerate(self.corners): cv2.circle(frame, tuple(corner.astype(int)), 5, (255, 0, 0), -1) cv2.putText( frame, str(i), tuple(corner.astype(int) + 10), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (255, 255, 0), 1, ) # 显示距离 cv2.putText( frame, f"A4 Distance: {self.distance:.1f}mm ({self.distance/10:.1f}cm)", (10, 30), cv2.FONT_HERSHEY_SIMPLEX, 0.7, (0, 0, 255), 2, ) class OverlayModelDetector: def __init__(self, geo: A4GeometryDetector): self.geo = geo def extend_edge_endpoints(self, p1, p2, extension_length=30): """ 延申边的两个端点 Args: p1, p2: 边的两个端点 extension_length: 延申长度(像素) Returns: tuple: (延申后的p1, 延申后的p2) """ # 计算边的方向向量 edge_vector = np.array(p2) - np.array(p1) edge_length = np.linalg.norm(edge_vector) if edge_length == 0: return p1, p2 # 单位方向向量 unit_vector = edge_vector / edge_length # 延申端点 extended_p1 = np.array(p1) - unit_vector * extension_length extended_p2 = np.array(p2) + unit_vector * extension_length return extended_p1.astype(int), extended_p2.astype(int) def is_point_in_contour(self, point, contour): """ 使用射线投射算法检测点是否在轮廓内 Args: point: 要检查的点 (x, y) contour: OpenCV轮廓 Returns: bool: True如果点在轮廓内 """ x, y = point[0], point[1] contour_points = contour.reshape(-1, 2) n = len(contour_points) inside = False p1x, p1y = contour_points[0] for i in range(1, n + 1): p2x, p2y = contour_points[i % n] if y > min(p1y, p2y): if y <= max(p1y, p2y): if x <= max(p1x, p2x): if p1y != p2y: xinters = (y - p1y) * (p2x - p1x) / (p2y - p1y) + p1x if p1x == p2x or x <= xinters: inside = not inside p1x, p1y = p2x, p2y return inside def get_edge_perpendicular_directions(self, p1, p2): """ 获取边的两个垂直方向的单位向量 Args: p1, p2: 边的端点 Returns: tuple: (方向1的单位向量, 方向2的单位向量) """ # 边的方向向量 edge_vector = np.array(p2) - np.array(p1) edge_length = np.linalg.norm(edge_vector) if edge_length == 0: return None, None # 垂直向量(顺时针旋转90度) perp_vector1 = np.array([edge_vector[1], -edge_vector[0]]) perp_vector1 = perp_vector1 / np.linalg.norm(perp_vector1) # 另一个垂直向量(逆时针旋转90度) perp_vector2 = -perp_vector1 return perp_vector1, perp_vector2 def create_square_from_edge(self, p1, p2, direction_vector): """ 根据边和方向创建正方形 Args: p1, p2: 边的端点 direction_vector: 垂直方向的单位向量 Returns: np.array: 正方形的四个顶点,如果无法创建则返回None """ edge_vector = np.array(p2) - np.array(p1) edge_length = np.linalg.norm(edge_vector) if edge_length == 0: return None # 计算正方形的另外两个顶点 p3 = np.array(p2) + direction_vector * edge_length p4 = np.array(p1) + direction_vector * edge_length # 返回正方形的四个顶点(按顺序) square = np.array([p1, p2, p3, p4], dtype=np.int32) return square.reshape(-1, 1, 2) # OpenCV轮廓格式 def is_special_edge(self, p1, p2, contour, extension_length=15): """ 检查是否为特殊边(延申后的端点都不在轮廓内) Args: p1, p2: 边的端点 contour: 轮廓 extension_length: 延申长度 Returns: bool: True如果是特殊边 """ extended_p1, extended_p2 = self.extend_edge_endpoints(p1, p2, extension_length) # 检查延申后的端点是否都不在轮廓内 p1_outside = not self.is_point_in_contour(extended_p1, contour) p2_outside = not self.is_point_in_contour(extended_p2, contour) return p1_outside and p2_outside def find_valid_square_for_edge(self, p1, p2, contour): """ 为特殊边找到有效的正方形假设 Args: p1, p2: 边的端点 contour: 轮廓 Returns: np.array or None: 有效的正方形顶点,如果找不到则返回None """ # 获取两个垂直方向 dir1, dir2 = self.get_edge_perpendicular_directions(p1, p2) if dir1 is None or dir2 is None: return None # 尝试两个方向 for direction in [dir1, dir2]: square = self.create_square_from_edge(p1, p2, direction) if square is None: continue # 计算正方形质心 square_points = square.reshape(-1, 2) centroid = np.mean(square_points, axis=0) # 检查质心是否在轮廓内 if self.is_point_in_contour(centroid, contour): return square return None def detect(self): """ 重构后的检测方法 """ # max_edge_length = self.geo.mm_to_pixels(130) min_edge_length = self.geo.mm_to_pixels(50) extension_delta = self.geo.mm_to_pixels(15) center_thresh = 30 # 获取轮廓 contours, _ = cv2.findContours( self.geo.edges, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE ) # 绘制所有轮廓用于调试 # cv2.drawContours( # self.geo.finalWarped, contours, -1, (0, 255, 0), thickness=cv2.FILLED # ) # cv2.imshow("con", self.geo.finalWarped) if not contours: return [] results = [] seen_squares = [] id_counter = 1 for cnt in contours: # 获取轮廓的近似多边形 epsilon = 0.01 * cv2.arcLength(cnt, True) approx = cv2.approxPolyDP(cnt, epsilon, True) if len(approx) < 4: continue points = [p[0] for p in approx] n = len(points) # 检查每条边 for i in range(n): p1 = points[i] p2 = points[(i + 1) % n] # 计算边长 edge_length = np.linalg.norm(np.array(p2) - np.array(p1)) # 过滤不符合长度要求的边 if edge_length < min_edge_length: continue # 检查是否为特殊边 if not self.is_special_edge(p1, p2, cnt, extension_delta): continue # 为特殊边找到有效的正方形 square = self.find_valid_square_for_edge(p1, p2, cnt) if square is None: continue # 检查是否已经检测到相似的正方形 square_points = square.reshape(-1, 2) square_center = np.mean(square_points, axis=0) is_duplicate = False for prev_center in seen_squares: if np.linalg.norm(prev_center - square_center) < center_thresh: is_duplicate = True break if is_duplicate: continue # 记录检测到的正方形 seen_squares.append(square_center) # 绘制特殊边和假设的正方形 cv2.line(self.geo.finalWarped, tuple(p1), tuple(p2), (255, 0, 0), 3) cv2.polylines( self.geo.finalWarped, [square], isClosed=True, color=(255, 0, 0), thickness=2, ) # 绘制正方形质心 cv2.circle( self.geo.finalWarped, tuple(square_center.astype(int)), 3, (255, 255, 0), -1, ) # 添加标签 edge_mid = ((p1[0] + p2[0]) // 2, (p1[1] + p2[1]) // 2) cv2.putText( self.geo.finalWarped, f"#{id_counter}: {self.geo.pixels_to_mm(edge_length):.1f}mm", edge_mid, cv2.FONT_HERSHEY_SIMPLEX, 1.8, (0, 0, 255), 1, cv2.LINE_AA, ) results.append((id_counter, edge_length, square_center)) id_counter += 1 return results class NormalModelDetector: def __init__(self, geo: A4GeometryDetector): self.geo = geo def detect(self): # 寻找轮廓 contours, _ = cv2.findContours( self.geo.edges, cv2.RETR_LIST, cv2.CHAIN_APPROX_SIMPLE ) # 过滤并分析轮廓 for contour in sorted(contours, key=cv2.contourArea, reverse=True): # 分析几何形状 shape_type, size_pixels, shape_contour = self.analyze_shape(contour) if shape_type and size_pixels: # 将像素尺寸转换为实际尺寸 size_mm = self.geo.pixels_to_mm(size_pixels) # 绘制检测到的几何图形 cv2.drawContours( self.geo.finalWarped, [shape_contour], -1, (255, 0, 255), 3 ) shape_info = self.format_shape_info(shape_type, size_mm) cv2.putText( self.geo.finalWarped, shape_info, (10, 70), cv2.FONT_HERSHEY_SIMPLEX, 0.7, (255, 0, 255), 2, ) return shape_type, size_mm, shape_contour return None, None, None def analyze_shape(self, contour): """分析轮廓的几何形状""" # 计算轮廓特征 area = cv2.contourArea(contour) perimeter = cv2.arcLength(contour, True) if perimeter == 0: return None, None, None # 多边形逼近 epsilon = 0.02 * perimeter approx = cv2.approxPolyDP(contour, epsilon, True) vertices = len(approx) # 圆形检测 circularity = 4 * np.pi * area / (perimeter**2) if circularity > 0.85: # 圆形 # 计算最小外接圆 (x, y), radius = cv2.minEnclosingCircle(contour) diameter_pixels = radius * 2 return "circle", diameter_pixels, contour elif vertices == 3: # 三角形 # 检查是否为等边三角形 if self.is_equilateral_triangle(approx): # 计算边长(取三边的平均值) side_lengths = [] for i in range(3): p1 = approx[i][0] p2 = approx[(i + 1) % 3][0] side_length = np.linalg.norm(p1 - p2) side_lengths.append(side_length) avg_side_length = np.mean(side_lengths) return "equilateral_triangle", avg_side_length, contour elif vertices == 4: # 四边形 # 检查是否为正方形 if self.is_square(approx): # 计算边长 side_lengths = [] for i in range(4): p1 = approx[i][0] p2 = approx[(i + 1) % 4][0] side_length = np.linalg.norm(p1 - p2) side_lengths.append(side_length) avg_side_length = np.mean(side_lengths) return "square", avg_side_length, contour return None, None, None def is_equilateral_triangle(self, triangle_points): """检查是否为等边三角形""" if len(triangle_points) != 3: return False # 计算三条边的长度 sides = [] for i in range(3): p1 = triangle_points[i][0] p2 = triangle_points[(i + 1) % 3][0] side_length = np.linalg.norm(p1 - p2) sides.append(side_length) # 检查三边长度是否接近相等(允许10%的误差) max_side = max(sides) min_side = min(sides) if max_side == 0: return False ratio = min_side / max_side return ratio > 0.9 # 90%相似度认为是等边三角形 def is_square(self, quad_points): """检查是否为正方形""" if len(quad_points) != 4: return False # 计算四条边的长度 sides = [] for i in range(4): p1 = quad_points[i][0] p2 = quad_points[(i + 1) % 4][0] side_length = np.linalg.norm(p1 - p2) sides.append(side_length) # 检查四边长度是否接近相等 max_side = max(sides) min_side = min(sides) if max_side == 0: return False side_ratio = min_side / max_side # 检查对角线长度是否相等 diag1 = np.linalg.norm(quad_points[0][0] - quad_points[2][0]) diag2 = np.linalg.norm(quad_points[1][0] - quad_points[3][0]) if max(diag1, diag2) == 0: return False diag_ratio = min(diag1, diag2) / max(diag1, diag2) # 检查角度是否接近90度 angles_ok = self.check_right_angles(quad_points) return side_ratio > 0.9 and diag_ratio > 0.9 and angles_ok def check_right_angles(self, quad_points): """检查四边形的角度是否接近90度""" points = quad_points.reshape(4, 2) for i in range(4): p1 = points[i] p2 = points[(i + 1) % 4] p3 = points[(i + 2) % 4] # 计算向量 v1 = p1 - p2 v2 = p3 - p2 # 计算角度 dot_product = np.dot(v1, v2) norms = np.linalg.norm(v1) * np.linalg.norm(v2) if norms == 0: continue cos_angle = dot_product / norms cos_angle = np.clip(cos_angle, -1, 1) angle = np.arccos(cos_angle) angle_degrees = np.degrees(angle) # 检查是否接近90度(允许15度误差) if not (75 <= angle_degrees <= 105): return False return True def format_shape_info(self, shape_type, size_mm): """格式化几何图形信息""" if shape_type == "circle": return f"Circle: D={size_mm:.1f}mm" elif shape_type == "equilateral_triangle": return f"Eq.Triangle: Side={size_mm:.1f}mm" elif shape_type == "square": return f"Square: Side={size_mm:.1f}mm" return f"Shape: {size_mm:.1f}mm" def main(): geoDetector = A4GeometryDetector() overlayDetector = OverlayModelDetector(geoDetector) normalDetector = NormalModelDetector(geoDetector) while True: cv2.waitKey(1) geoDetector.run() results = overlayDetector.detect() # (id_counter, edge_length, square_center) # shape_type, size_mm, shape_contour = normalDetector.detect() cv2.imshow("Raw", geoDetector.frame) if geoDetector.edges is not None: cv2.imshow("Edges", geoDetector.edges) if geoDetector.finalWarped is not None: cv2.imshow("Warped", geoDetector.finalWarped) if __name__ == "__main__": main()

我的这个代码里面已经正确定义了如何读取STL文件并合并,以及如何读取一个个文件夹的图像数据(这部分你直接用我这个代码的。)我需要你改进的是calibration算法,也就是如何正确匹配3D和2D点,并计算intrinsic matrix。然后需要将每一张图像匹配的结果像这个代码一样可视化,左图是stl文件渲染图,右图是读取图像,然后特征点连线一下 #!/usr/bin/env python3 """ Intrinsic calibration & paired-image visualisation for the da Vinci LND tool Author: Wenzheng Cheng | last update 2025-06-12 左图完全复用 lnd.py 渲染逻辑(1000×800, elev 0, azim 0, roll 120)。 右图 = mask 等比 resize → 1000×800。 输出: *_pair.jpg (左渲右 mask + 彩线匹配) """ import os, argparse, math, xml.etree.ElementTree as ET import cv2, trimesh, numpy as np import matplotlib matplotlib.use("Agg") import matplotlib.pyplot as plt from matplotlib.backends.backend_agg import FigureCanvasAgg from mpl_toolkits.mplot3d.art3d import Poly3DCollection from natsort import natsorted from tqdm import tqdm # ------------------------------------------------- # # ------------ 常量与 LND 白名单 ------------------- # # ------------------------------------------------- # LND_XML_PATH = "/home/iulian/chole_ws/src/drrobot/mujoco_menagerie/lnd/lnd.xml" LND_ASSET_DIR = "/home/iulian/chole_ws/src/drrobot/mujoco_menagerie/lnd/assets" WL = {"jaw_1","jaw_2","jaw_pad_1","jaw_pad_2", "pitch_mech","pitch_screw", "pitch_wheel_1","pitch_wheel_2","pitch_wheel_3","pitch_wheel_4", "wheel_1","wheel_2","wheel_3","wheel_4","yaw_screw"} # 左图渲染固定参数 —— 与 lnd.py 完全一致 RENDER_W, RENDER_H = 1000, 800 CAM_ELEV, CAM_AZIM, CAM_ROLL = 0.0, 0.0, 120.0 # ------------------------------------------------- # # ---------------- LND 载入 + 渲染 ------------------ # # ------------------------------------------------- # def parse(xml, asset_dir=LND_ASSET_DIR): root = ET.parse(xml).getroot() return [os.path.join(asset_dir, m.get("file")) for m in root.findall(".//asset/mesh") if m.get("name") in WL] def load_merge(paths): meshes = [] for p in paths: m = trimesh.load_mesh(p, process=False) if isinstance(m, trimesh.Scene): m = trimesh.util.concatenate(tuple(m.geometry.values())) m.apply_scale(1000.0) # m → mm meshes.append(m) return trimesh.util.concatenate(meshes) # === lnd.py 原汁渲染 === def _plot_trimesh(ax, mesh): try: tgt = max(10_000, int(len(mesh.faces)*0.3)) mesh_sub = mesh.simplify_quadratic_decimation(tgt) except Exception: mesh_sub = mesh v, f = mesh_sub.vertices, mesh_sub.faces ax.add_collection3d(Poly3DCollection( v[f], facecolor=[.8,.8,.8], edgecolor=[.4,.4,.4], linewidth=0.15)) span = v.max(0) - v.min(0); cen = v.mean(0); R = span.max()*0.6 for setter,c in zip([ax.set_xlim,ax.set_ylim,ax.set_zlim], cen): setter(c-R, c+R) def render_lnd(mesh): fig = plt.figure(figsize=(RENDER_W/100, RENDER_H/100), dpi=100, facecolor="black") ax = fig.add_subplot(111, projection='3d', facecolor="black") ax.view_init(elev=CAM_ELEV, azim=CAM_AZIM, roll=CAM_ROLL) ax.axis('off') _plot_trimesh(ax, mesh) plt.tight_layout(pad=0) canvas = FigureCanvasAgg(fig); canvas.draw() # Matplotlib ≥3.8:改用 buffer_rgba(),再丢掉 alpha 通道 buf = np.asarray(canvas.buffer_rgba()) # shape (H,W,4) img = buf[...,:3].copy() # → uint8 RGB plt.close(fig) return img # ------------------------------------------------- # # ----------- 数学 / 采样 / PnP 工具函数 ----------- # # ------------------------------------------------- # def view_to_rvec(elev, azim, roll): def Rz(t): return np.array([[ math.cos(t),-math.sin(t),0], [ math.sin(t), math.cos(t),0], [0,0,1]]) def Rx(t): return np.array([[1,0,0], [0, math.cos(t),-math.sin(t)], [0, math.sin(t), math.cos(t)]]) R = Rz(np.radians(azim)) @ Rx(np.radians(elev)) @ Rz(np.radians(roll)) return cv2.Rodrigues(R)[0].astype(np.float32) def sample_surface(mesh, n): pts,_ = trimesh.sample.sample_surface(mesh, n) return pts.astype(np.float32) def uniform_mask_points(mask, max_n): ys,xs = np.where(mask>0) if len(xs)==0: return np.empty((0,2),np.float32) if len(xs)>max_n: sel = np.random.choice(len(xs), max_n, False) xs,ys = xs[sel], ys[sel] pts = np.stack([xs,ys],1).astype(np.float32) pts += np.random.rand(*pts.shape)-0.5 return pts def pnp(obj,img,K): ok,r,t,_ = cv2.solvePnPRansac(obj,img,K,None, flags=cv2.SOLVEPNP_EPNP,iterationsCount=800,reprojectionError=3) if not ok: raise RuntimeError("PnP fail") return r,t def mask_consistent(mask,r,t,K,pts3,max_out=1200): proj,_ = cv2.projectPoints(pts3,r,t,K,None) proj = proj.reshape(-1,2).astype(int) h,w = mask.shape good = (proj[:,0]>=0)&(proj[:,0]<w)&(proj[:,1]>=0)&(proj[:,1]<h) proj,obj = proj[good], pts3[good] keep = mask[proj[:,1],proj[:,0]]>0 obj,proj = obj[keep], proj[keep].astype(np.float32) if len(obj)>max_out: sel = np.random.choice(len(obj), max_out, False) obj,proj = obj[sel], proj[sel] return obj,proj # ------------------------------------------------- # # ---------------- 可视化 (单图) ------------------ # # ------------------------------------------------- # def scale_pts(pts, sx, sy): return (pts * np.array([[sx,sy]])).astype(int) def draw_pair(mask, proj, img_pts, dense_proj, save_path, lnd_img): # 1) 把 mask resize → 左图同分辨率 mask_resized = cv2.resize(mask, (RENDER_W, RENDER_H), interpolation=cv2.INTER_NEAREST) right_img = cv2.cvtColor(mask_resized, cv2.COLOR_GRAY2BGR) canvas = np.concatenate([lnd_img, right_img], axis=1) # 2) 坐标缩放系数 h0,w0 = mask.shape sx, sy = RENDER_W / w0, RENDER_H / h0 img_pts_s = scale_pts(img_pts, sx, sy) + np.array([RENDER_W,0]) proj_s = scale_pts(proj, sx, sy) dense_scaled= scale_pts(dense_proj, sx, sy) for p in dense_scaled: cv2.circle(canvas, tuple(p), 1, (80,80,80), -1) rng = np.random.RandomState(0) for (x1,y1),(x2,y2),c in zip(proj_s, img_pts_s, rng.randint(0,255,(len(img_pts_s),3)).tolist()): cv2.circle(canvas,(x1,y1),3,c,-1) cv2.circle(canvas,(x2,y2),3,c,-1) cv2.line(canvas,(x1,y1),(x2,y2),c,1) cv2.imwrite(save_path, canvas) # ------------------------------------------------- # # ----------------- 数据集遍历工具 ----------------- # # ------------------------------------------------- # # ---------- 路径同时兼容 seg_masks 与 left_img_dir ---------- def collect_imgs(video): seg = os.path.join(video, "seg_masks") if os.path.isdir(os.path.join(video, "seg_masks")) else os.path.join(video, "left_img_dir") return [os.path.join(seg, f) for f in natsorted(os.listdir(seg)) if f.lower().endswith((".png", ".jpg", ".jpeg", ".bmp"))] def iterate(root): return [os.path.join(root,d) for d in natsorted(os.listdir(root)) if os.path.isdir(os.path.join(root,d))] # ---------- 灰度角点替代 uniform 像素 ---------- def detect_corners(gray, n): c = cv2.goodFeaturesToTrack(gray, maxCorners=n, qualityLevel=0.01, minDistance=3) return np.empty((0, 2), np.float32) if c is None else c.reshape(-1, 2).astype(np.float32) def scale_to_canvas(pts, w, h): if len(pts) == 0: return pts lo, hi = pts.min(0), pts.max(0) c = (lo + hi) / 2; span = np.clip(hi - lo, 1e-3, None) s = min(0.85 * w / span[0], 0.85 * h / span[1]) return (pts - c) * s + np.array([w / 2, h / 2]) # ------------------------------------------------- # # --------------------------- main ---------------- # # ------------------------------------------------- # def main(): ag = argparse.ArgumentParser() ag.add_argument("--path", required=True) ag.add_argument("--vis_dir", default="") ag.add_argument("--samples", type=int, default=10_000) ag.add_argument("--max_pts", type=int, default=800) args = ag.parse_args() if args.vis_dir: os.makedirs(args.vis_dir, exist_ok=True) mesh = load_merge(parse(LND_XML_PATH)) lnd_img = render_lnd(mesh) dense_pts = sample_surface(mesh, args.samples) rvec_fixed = view_to_rvec(CAM_ELEV,CAM_AZIM,CAM_ROLL) tvec_zero = np.zeros((3,1),np.float32) for vid in iterate(args.path): paths = collect_imgs(vid) if not paths: continue first_rgb = cv2.imread(paths[0]); h0, w0 = first_rgb.shape[:2] K0 = np.array([[0.8 * w0, 0, w0 / 2], [0, 0.8 * w0, h0 / 2], [0, 0, 1]], float) dense_proj0, _ = cv2.projectPoints(dense_pts, rvec_fixed, tvec_zero, K0, None) dense_proj0 = dense_proj0.reshape(-1, 2) obj_list, img_list = [], [] for p in tqdm(paths, desc=os.path.basename(vid)): rgb = cv2.imread(p); gray = cv2.cvtColor(rgb, cv2.COLOR_BGR2GRAY) img_pts = detect_corners(gray, args.max_pts) if len(img_pts) < 6: continue obj_guess = dense_pts[np.random.choice(len(dense_pts), len(img_pts), False)] try: r, t = pnp(obj_guess, img_pts, K0) except RuntimeError: continue full_mask = np.ones_like(gray, np.uint8) * 255 # 让 mask_consistent 不过滤 obj, img_pts_f = mask_consistent(full_mask, r, t, K0, dense_pts, 1200) if len(obj) < 6: continue obj_list.append(obj); img_list.append(img_pts_f) if args.vis_dir: proj, _ = cv2.projectPoints(obj, r, t, K0, None) proj = proj.reshape(-1, 2) fname = os.path.splitext(os.path.basename(p))[0] right_vis = cv2.resize(rgb, (RENDER_W, RENDER_H)) canvas = np.concatenate([lnd_img, right_vis], 1) proj_s = scale_to_canvas(proj, RENDER_W, RENDER_H).astype(int) img_s = scale_to_canvas(img_pts_f, RENDER_W, RENDER_H).astype(int) + np.array([RENDER_W, 0]) for (x1, y1), (x2, y2) in zip(proj_s, img_s): cv2.circle(canvas, (x1, y1), 3, (0, 255, 0), -1) cv2.circle(canvas, (x2, y2), 3, (0, 255, 0), -1) cv2.line(canvas, (x1, y1), (x2, y2), (0, 255, 0), 1) cv2.imwrite(os.path.join(args.vis_dir, f"{fname}_pair.jpg"), canvas) if len(obj_list)<3: continue flag = getattr(cv2,"CALIB_FIX_SKEW",0) flags = cv2.CALIB_USE_INTRINSIC_GUESS|flag|cv2.CALIB_ZERO_TANGENT_DIST|\ cv2.CALIB_FIX_K3|cv2.CALIB_FIX_K4|cv2.CALIB_FIX_K5|cv2.CALIB_FIX_K6 rms,K,dist,*_ = cv2.calibrateCamera( obj_list,img_list,(w0,h0),K0,None,flags=flags, criteria=(cv2.TERM_CRITERIA_EPS+cv2.TERM_CRITERIA_COUNT,100,1e-6)) print(f"\n[VIDEO] {os.path.basename(vid)} RMS={rms:.3f}px") print("K=\n",K,"\n(k1,k2)=",dist.ravel()[:2]) if __name__ == "__main__": #python intrinsic_matrix.py --path /home/iulian/chole_ws/data/tissue_lift/tissue_1/tissue_lift/ #python intrinsic_matrix.py --path /home/iulian/chole_ws/data/lift/tissue_1/lift/ --vis_dir /home/iulian/chole_ws/src/drrobot/K_vis --max_pts 800 #python intrinsic_matrix.py --path /home/iulian/chole_ws/data/needle_pickup/tissue_1/needle_pickup/ #python intrinsic_matrix.py --path /home/iulian/chole_ws/data/check --vis_dir /home/iulian/chole_ws/src/drrobot/K_vis --max_pts 800 main()

import xarray as xr import numpy as np from scipy.stats import gamma from scipy.special import erfinv import warnings warnings.filterwarnings('ignore') #%% 基础配置 input_path = r'D:\heatwave\data\precip\precip_merged.nc' output_dir = r'D:\heatwave\data\precip' lat_range = [15, 55] lon_range = [105, 140] #%% 步骤1:增强型数据预处理 def preprocess_data(): ds = xr.open_dataset(input_path) # 统一维度命名 rename_dict = {} if 'latitude' in ds.dims: rename_dict['latitude'] = 'lat' if 'longitude' in ds.dims: rename_dict['longitude'] = 'lon' ds = ds.rename(rename_dict) # 空间裁剪 ds_china = ds.sel(lat=slice(*lat_range), lon=slice(*lon_range)) # 移除闰日 ds_china = ds_china.sel(time=~((ds_china['time.month'] == 2) & (ds_china['time.day'] == 29))) return ds_china #%% 步骤2:修正后的SPI-30计算(关键修改) def calculate_spi30(precip): # 30天累积降水 precip_roll = precip.rolling(time=30, min_periods=30, center=False).sum() # 改进Gamma拟合函数 def gamma_fit(data): valid_data = data[~np.isnan(data)] if len(valid_data) < 5 or np.all(valid_data == 0): return np.array([np.nan, 0, 0]) try: a, loc, scale = gamma.fit(valid_data + 1e-6, floc=0) return np.array([a, loc, scale]) except: return np.array([np.nan, 0, 0]) # 关键修改:移除keep_attrs参数 grouped = precip_roll.groupby('time.dayofyear') params = grouped.map( lambda x: xr.DataArray(gamma_fit(x.values), dims=['param'], coords={'param': ['a', 'loc', 'scale']}) ) # 创建参数数据集 params_ds = xr.Dataset({ 'a': params.sel(param='a'), 'scale': params.sel(param='scale') }, coords={'dayofyear': params.dayofyear}) # 核心计算逻辑优化 def calculate_gamma_cdf(data, doy): a = params_ds['a'].sel(dayofyear=doy).values scale = params_ds['scale'].sel(dayofyear=doy).values return gamma.cdf(data, a=a, loc=0, scale=scale) # 应用计算 spi30 = xr.apply_ufunc( calculate_gamma_cdf, precip_roll, precip_roll['time.dayofyear'], input_core_dims=[[], []], output_core_dims=[[]], vectorize=True, dask='parallelized', output_dtypes=[float] ) # 转换为标准正态分布 spi30 = xr.apply_ufunc( lambda x: np.sqrt(2)*erfinv(2*x-1) if not np.isnan(x) else np.nan, spi30, dask='parallelized', output_dtypes=[float] ) return spi30.rename('SPI30').transpose('time', 'lat', 'lon') #%% 步骤3:主处理流程 def main_process(): ds = preprocess_data() spi30 = calculate_spi30(ds['precip']) # 编码设置 encoding = { 'SPI30': {'zlib': True, 'complevel': 1, 'dtype': 'float32'}, 'lat': {'dtype': 'float32'}, 'lon': {'dtype': 'float32'}, 'time': {'dtype': 'int32', 'units': 'days since 1900-01-01'} } # 输出文件 spi30.to_netcdf( f'{output_dir}/SPI30_daily.nc', encoding=encoding, unlimited_dims=['time'] ) print(f"处理完成!维度验证:{spi30.dims}") #%% 执行 if __name__ == '__main__': main_process()又报错conflicting values for variable 'param' on objects to be combined. You can skip this check by specifying compat='override'.帮我解决,并生成完整的代码,

最新推荐

recommend-type

boh5_hmdp_for_learn_redis_by_fastapi_36224_1754229591966.zip

boh5_hmdp_for_learn_redis_by_fastapi_36224_1754229591966.zip
recommend-type

19年国赛服务器答案深度解析:网络搭建与应用

网络搭建与应用是一门涉及计算机网络规划、配置、管理和维护的技术学科。在19年的国家竞赛中,参与者需要展示他们对网络架构、网络设备、协议、安全等方面的知识,以及他们在真实世界问题解决中的实际应用能力。在网络搭建与应用19国赛服务器答案中,涉及的知识点可能包括但不限于以下几个方面: 1. 网络基础知识 - 了解网络的基本概念,包括网络的定义、分类(如LAN、WAN等)、网络的功能和网络协议栈(如TCP/IP模型)。 - 理解网络设备的功能和作用,例如交换机、路由器、防火墙等。 - 掌握网络通信的基本原理,包括数据链路层、网络层、传输层和应用层的协议和功能。 2. 网络设计与规划 - 学习如何根据不同的需求设计网络拓扑结构,例如星形、环形、总线型等。 - 掌握IP地址规划和子网划分的方法,如CIDR、VLSM等技术。 - 了解如何进行网络流量分析和带宽规划,以确保网络性能和稳定性。 3. 网络设备配置与管理 - 掌握交换机和路由器的配置命令,例如VLAN划分、路由协议配置、端口安全等。 - 理解网络设备的管理和维护策略,包括日志管理、性能监控和故障诊断。 4. 网络安全 - 学习网络安全的基本原则,包括数据加密、访问控制、入侵检测系统(IDS)和入侵防御系统(IPS)。 - 掌握常见的网络攻击手段及其防御措施,例如DDoS攻击、ARP欺骗、病毒和恶意软件的防御。 5. 服务器搭建与应用 - 了解不同类型的服务器和它们的应用场景,如Web服务器、数据库服务器、邮件服务器等。 - 学习服务器的安装、配置和管理方法,包括操作系统的安装、服务软件的部署、用户管理等。 6. 实践操作 - 通过搭建真实或虚拟的网络环境来实践理论知识,包括使用网络模拟软件(如GNS3、Packet Tracer等)进行网络设备配置和故障排除。 - 学习如何准备和参加网络相关的竞赛,包括时间管理和应对突发问题的策略。 在给定的压缩包子文件的文件名称列表中,“19年国赛服务器的答案”表明该文件包含具体的竞赛解答步骤和方法。文件可能涉及的是如何根据具体的网络搭建与应用的题目,一步一步地提供解题策略、配置命令和执行步骤等。具体内容可能包括: - 对竞赛题目需求的分析和理解。 - 对应的网络设计解决方案和实现步骤。 - 关键的配置命令和参数设置。 - 对于各种网络功能和安全性的测试方法。 - 可能遇到的问题及其解决方案。 综上所述,对于网络搭建与应用19国赛服务器答案的深入学习和掌握,能够帮助专业人士和学生扩展网络知识,提高解决复杂网络问题的能力,并为将来的IT行业工作奠定扎实的基础。通过针对竞赛题目的实际操作演练,还能增强个人的实践技能和创新思维能力。
recommend-type

【VS2010模块化秘籍】:提升项目管理效率的10个技巧

# 1. VS2010模块化编程概述 在现代软件开发中,模块化编程已经成为提高代码质量和促进团队协作的关键技术之一。本章将介绍在Visual Studio 2010(VS2010)环境中如何理解和实施模块化编程。 ## 1.1 什么是模块化编程? 模块化编程是一种组织程序结构的方法,将程序分解为独立且可管理的模块,每个模块实现一个特定的功能。在V
recommend-type

数据分析师发展前景

<think>嗯,用户现在想了解数据分析师的职业发展和未来前景。根据之前的对话,用户是土木本科想转行,之前我建议过数据分析作为可能的方向之一,现在他可能想更深入了解这个领域的潜力。 首先,我需要参考之前提供的引用内容。引用1提到了数据分析师的职业路径,从专员到专家,还有技能提升的重要性。引用2和3强调了行业需求增长和技能的必要性,引用4则讨论了成为行业专家的长期发展优势。这些都需要整合到回答中。 用户的问题集中在职业前景和趋势,所以我要覆盖市场需求、职业阶段、技能要求、行业趋势和转行建议。考虑到用户是转行者,需要突出土木背景如何与数据分析结合,比如提到的BIM、GIS或者工程数据分析,这样
recommend-type

Elasticsearch及IK分词器安装包资源汇总

标题中提到的知识点包括Elasticsearch安装包和IK分词器,这是进行搜索引擎搭建和数据文本分析的重要组件。Elasticsearch是一个基于Lucene构建的开源搜索引擎,具有水平可伸缩性、高可用性和易用性的特点。它提供了全文搜索功能,同时支持结构化搜索和分析,常被用于大数据分析场景中。 描述中涉及的版本信息表明了所附的安装包和分词器支持不同版本的Elasticsearch。Elasticsearch版本6.x和7.x分别对应了两个主要的版本线,而IK分词器是专门为Elasticsearch设计的中文分词插件。 IK分词器是一款支持中文分词的扩展插件,可以根据中文语境进行智能分词,包括正向匹配、正向最大匹配和逆向最大匹配等算法,对中文文本进行处理。分词器的版本通常会与Elasticsearch的版本相匹配,以保证兼容性和最佳性能。 提到的logstash是与Elasticsearch配合使用的数据处理管道工具,负责收集、处理和转发数据。logstash可以作为事件的中介来处理各种来源的数据,然后将其发送到Elasticsearch进行存储。本压缩包中的logstash-6.4.3.tar.gz对应的版本表明了它的兼容性,适用于Elasticsearch 6.x版本。 压缩包文件名称列表中的文件包含了不同软件的多个版本。其中,“elasticsearch-head-master.zip”是一个可以对Elasticsearch进行可视化管理的Chrome插件,它提供了包括集群管理、索引管理、数据操作和查询在内的功能。 另外,“mysql-connector-java-5.1.41.jar”是一个MySQL数据库的Java驱动程序,用于连接Java应用程序和MySQL数据库,但这似乎与Elasticsearch及IK分词器直接关联不大,可能是一个辅助组件,用于在某些集成场景下将数据从MySQL迁移到Elasticsearch。 从标签内容来看,Elasticsearch被归类于源码软件、大数据和搜索引擎类别。它是一个重要的大数据处理组件,特别是在全文搜索和文本分析领域。在大数据背景下,Elasticsearch凭借其卓越的搜索和分析能力,已经成为企业构建和维护搜索引擎的首选技术之一。 总结来说,本次提供的压缩包包含了多个关键组件,它们共同支持构建一个功能强大的搜索引擎和数据分析平台。Elasticsearch自身及其配套的IK分词器、logstash和可视化插件elasticsearch-head,均对大数据和搜索领域有着重要意义。尽管这些工具具有复杂性,但它们的组合使用使得数据的索引、搜索、可视化和分析变得简单、快速和强大。
recommend-type

从零开始:Axure插件开发入门指南,构建自定义Chrome工具

# 摘要 随着原型设计工具Axure RP的广泛应用,定制化插件开发变得日益重要。本文旨在为开发者提供一个完整的Axure插件开发指南,从基础概念到环境搭建,再到核心编程和界面定制,最终实现交互逻辑与发布维护。通过详细解析插件的API、JavaScript编程、数据管理、界面设计及发布流程,本文帮助开发者深入理解并掌握Axure插件开发的关键技术,确保开发过程的高效性和插件的稳定运行。 # 关键字 Axur
recommend-type

代码错误,修改代码

<think>好的,用户说代码有错误,需要修改。首先我得仔细看看之前的代码哪里有问题。题目是关于彩灯的操作和查询,每个彩灯有一个周期k_i,每次操作区间加1,查询时判断当前按动次数是否为k_i的倍数。 首先,用户提供的代码使用了树状数组(Fenwick Tree)来维护差分数组,实现区间加和单点查询。但可能存在一些问题。比如,树状数组的差分处理是否正确? 在区间更新时,原代码是add(l, 1)和add(r+1, -1),这应该是正确的差分方法。当查询单点x时,sum(x)得到的是从1到x的累计值,也就是该点的实际操作次数。这部分逻辑看起来没问题。 但可能的问题在于,当k_i的值很大时,
recommend-type

筹资风险分析模板:Excel高效风险评估工具

Excel模板筹资风险分析.zip是一个用于财务风险分析的工具包,它可能包含了一个名为“筹资风险分析.xlsx”的Excel文件,这个文件被压缩在ZIP格式的压缩包中。下面将详细说明这个Excel模板中可能包含的知识点: 1. 筹资风险概念: 筹资风险指的是企业在筹资过程中由于各种不确定因素的影响,使得企业实际获得的筹资成本高于预期成本,或者筹资方式、筹资渠道未能达到预期目的,从而对企业财务状况和经营成果产生不利影响的可能性。筹资风险可以来源于金融市场波动、债务利率上升、企业信用评级下降等因素。 2. Excel在财务分析中的应用: Excel作为一个强大的电子表格软件,广泛应用于各种财务数据分析和管理中。它具备数据处理、图表制作、公式计算等功能,非常适合用来制作财务模型、进行预算编制、风险分析等任务。筹资风险分析中,Excel可以帮助用户进行敏感性分析、情景模拟和概率分析等。 3. 筹资风险分析的关键要素: - 资本结构:分析企业的债务与权益比例,评估不同筹资方式对资本结构的影响。 - 债务成本:估算企业债务的利率和偿还期限,考虑利率风险和偿债压力。 - 股权成本:计算股权筹资的期望回报率,评估股权稀释的影响。 - 流动性风险:考虑筹资后的资金流动性,确保企业运营资金的充足性。 - 筹资成本:计算不同筹资方式的综合成本,比较各种筹资渠道的经济性。 4. Excel模板筹资风险分析.xlsx可能包含的功能: - 数据录入区:用于输入企业的财务数据和筹资相关的具体参数。 - 计算引擎:使用Excel公式和函数来计算筹资成本、预期回报率等关键指标。 - 情景分析表:通过调整不同的变量,模拟出不同的筹资情景,分析其对企业财务状况的影响。 - 敏感性分析:评估筹资参数变动对企业风险和回报的影响程度。 - 图表展示:将分析结果以图表的形式展现出来,比如使用条形图、折线图和饼图等,直观展示风险和回报的对比。 - 结论和建议:根据分析结果提供筹资策略的优化建议。 5. 筹资风险分析的实施步骤: - 明确分析目标:确定分析筹资风险的目的和需要关注的关键点。 - 收集数据:搜集相关的市场数据、企业财务报表、筹资计划等。 - 构建模型:在Excel中根据筹资风险分析的理论框架构建分析模型。 - 输入参数:将收集到的数据输入到Excel模型中。 - 运行分析:利用Excel的数据处理能力,执行必要的计算和分析。 - 解读结果:分析输出结果,并据此解读筹资风险水平。 - 制定策略:基于分析结果,提出筹资策略和风险控制措施。 6. 筹资风险分析的应用场景: 筹资风险分析不仅可以用于企业自身的筹资决策过程中,还可以在投资评估、财务咨询、风险管理和战略规划等领域发挥作用。在企业层面,它可以辅助管理层和财务部门制定更为稳健和有效的资金筹集计划;在咨询领域,可以为投资者提供分析企业的筹资活动和风险状况的专业意见;在学术研究中,筹资风险分析是研究企业资本结构和企业价值的重要工具。 7. 筹资风险分析的局限性: 尽管Excel模板筹资风险分析提供了有力的工具,但也存在局限性。模型依赖于准确的数据输入,如果假设或数据有误,将影响分析结果的可靠性。此外,市场环境的变化、政策的调整以及其他不可预测的因素都可能对筹资风险造成影响,这些在模型中可能难以全面考虑。 通过使用Excel模板筹资风险分析.zip内的筹资风险分析.xlsx文件,企业可以更有效地进行筹资风险管理,制定出更合理的筹资策略,从而降低财务风险,提高企业的整体价值。
recommend-type

【Z460_Z560 BIOS升级终极指南】:29CN41WW版本升级,性能提升,故障排除

# 摘要 本文探讨了BIOS升级的必要性、益处以及相关风险和解决策略。首先,概述了BIOS的基础概念和版本更新的重要性,接着详细解读了特定笔记本型号Z460/Z560的BIOS架构和升级步骤。文章进一步分析了BIOS升级对于笔记本性能提升的影响,并提供了详细的故障诊断和排除方法。最后,通过分享实际升级案例,总结了BIOS升级的最佳实践和专业建议。本文旨在帮助技术用户深入理解BIOS升级的过程及
recommend-type

lenet论文

<think>首先,用户查询是:“我想查找LeNet论文相关资料 请问LeNet论文原文及技术解析”。这看起来像是一个新查询,因为系统指令提到“请尽可能多的参考用户上一次的问题和你的回答”,但在这个上下文中,没有提供用户上一次的问题或我的回答。所以,我应该基于当前查询和提供的引用内容来回答。 系统指令包括: - 所有行内数学表达式必须使用$...$格式。 - 独立公式使用$$...$$格式并单独成段。 - LaTeX语法正确。 - 使用中文回答。 - 生成相关问题。 - 在回答中引用的段落末尾自然地添加引用标识,如[^1]。 - 回答结构清晰,帮助用户解决问题。 - 参考站内引用:有四个引用