活动介绍

使用pd.to_datetime自定义时间格式

时间: 2023-11-09 07:09:12 浏览: 127
可以使用strftime()函数来自定义时间格式,例如: ```python import pandas as pd # 创建一个日期列表 dates = ['2022-01-01', '2022-01-02', '2022-01-03'] # 将日期列表转换为日期时间类型 datetime_dates = pd.to_datetime(dates) # 使用strftime()函数自定义时间格式 formatted_dates = datetime_dates.strftime('%Y/%m/%d') print(formatted_dates) ``` 输出结果为: ``` Index(['2022/01/01', '2022/01/02', '2022/01/03'], dtype='object') ``` 在上面的例子中,我们使用了strftime()函数将日期时间类型转换为自定义的时间格式:%Y/%m/%d。其中,%Y表示年份,%m表示月份,%d表示日期。其他常用的格式化字符包括:%H表示小时,%M表示分钟,%S表示秒数等。
相关问题

``` import pandas as pd import numpy as np import matplotlib.pyplot as plt import warnings warnings.filterwarnings("ignore") from Dylan import factor_correlation as FactorIC from Dylan import factor_group as FactorGroup sw_ind = pd.read_pickle('IndexComponent_SWN_I.txt') stock_close = pd.read_pickle('StockQuote_ClosePrice_BackwardAdj.txt') stock_open = pd.read_pickle('StockQuote_OpenPrice_BackwardAdj.txt') monthly_trading_day = pd.read_pickle('monthly_trading_day.pkl') monthly_trading_day['start_date'] = pd.to_datetime(monthly_trading_day['start_date'], format='%Y%m%d') monthly_trading_day['end_date'] = pd.to_datetime(monthly_trading_day['end_date'], format='%Y%m%d') start_date = pd.to_datetime('20120101', format='%Y%m%d') end_date = pd.to_datetime('20231231', format='%Y%m%d') filtered_trading_days = monthly_trading_day.loc[(monthly_trading_day['end_date'] >= start_date) & (monthly_trading_day['end_date'] <= end_date)] stock_close.index = pd.to_datetime(stock_close.index) stock_open.index = pd.to_datetime(stock_open.index) stock_ret_monthly = stock_close.reindex(index = filtered_trading_days.end_date).pct_change() stock_ret_monthly_nextopen = stock_open.shift(-1).reindex(filtered_trading_days.end_date).pct_change() def simple_factor_test(factor,use_data = 'this_close'): if use_data=='this_close': this_ret_data = stock_ret_monthly.shift(-1) else: this_ret_data = stock_ret_monthly_nextopen.shift(-1) ic,rankic = FactorIC(factor,this_ret_data) factor_group = FactorGroup(factor) condata = pd.concat([factor_group.unstack(),this_ret_data.unstack()],axis=1).dropna().reset_index() condata.columns =['stockcode','date','group_id','ret'] group_ret = condata.groupby(['date','group_id'])['ret'].mean().unstack() return ic,rankic,group_ret pe = pd.read_pickle('StockQuote_PEttm.txt') pe```添加注释

<think>好的,我现在需要给用户提供的Python代码添加注释。首先,我得仔细阅读这段代码,理解每一部分的功能,然后逐步添加合适的注释。用户可能希望注释能解释代码的结构、关键步骤以及各个变量或函数的作用。 首先,代码开始导入了几个库:pandas、numpy、matplotlib,还有warnings模块。用户可能知道这些库的基本用途,但可能需要注释说明为什么在这里使用它们。例如,pandas用于数据处理,numpy用于数值计算,matplotlib用于绘图,而warnings模块用来忽略警告信息,避免输出干扰。 接下来,从Dylan模块导入了factor_correlation和factor_group,分别重命名为FactorIC和FactorGroup。这里需要注释说明这两个函数的作用,可能涉及因子分析和分组计算,比如计算因子与收益的相关性,或者将因子分组。 然后,读取了几个pickle文件,包括sw_ind、stock_close、stock_open和monthly_trading_day。这些文件可能存储了行业指数成分、股票的收盘价、开盘价以及每月的交易日信息。注释需要解释每个变量的内容和结构,比如sw_ind可能是申万行业指数成分股的数据,stock_close是后复权的收盘价等。 处理monthly_trading_day的部分,将日期列转换为datetime对象,并进行筛选,保留指定开始和结束日期之间的交易日。这里需要说明转换日期格式的原因,以及筛选的目的,可能是为了后续分析的时间范围限制。 调整stock_close和stock_open的索引为datetime格式,方便时间序列操作。注释应指出这一步的重要性,确保时间对齐。 接下来计算月度收益率stock_ret_monthly和stock_ret_monthly_nextopen。前者使用收盘价的重采样和下期收益,后者考虑了下个月的开盘价。这里需要解释pct_change()的作用,以及reindex如何与交易日对齐,可能涉及避免未来数据的问题。 定义simple_factor_test函数,这个函数似乎用于因子测试,计算IC、Rank IC和分组收益。参数use_data决定使用哪种收益率数据。注释需要详细说明函数的参数、返回值,以及内部如何调用FactorIC和FactorGroup函数。可能还要解释condata的构建过程,如何将因子分组与收益数据合并,计算各组的平均收益。 最后读取pe数据,即市盈率指标,作为因子之一。需要说明这是因子测试中的一个示例因子。 在添加注释时,要注意代码的结构,分块进行解释,确保每部分的功能清晰。同时,要使用中文,保持注释简洁但信息量足够,帮助用户理解代码的逻辑和实现细节。可能需要检查是否有遗漏的关键步骤,比如日期处理、数据对齐、函数参数的具体作用等,确保注释覆盖所有重要部分。</think>以下是添加注释后的代码及逐段解析: ```python # 导入基础数据分析库 import pandas as pd import numpy as np import matplotlib.pyplot as plt # 忽略警告提示 import warnings warnings.filterwarnings("ignore") # 导入自定义因子分析模块 from Dylan import factor_correlation as FactorIC # 因子IC分析 from Dylan import factor_group as FactorGroup # 因子分组分析 # 读取申万行业成分数据 sw_ind = pd.read_pickle('IndexComponent_SWN_I.txt') # 读取后复权收盘价数据(用于计算常规收益率) stock_close = pd.read_pickle('StockQuote_ClosePrice_BackwardAdj.txt') # 读取后复权开盘价数据(用于计算开盘收益率) stock_open = pd.read_pickle('StockQuote_OpenPrice_BackwardAdj.txt') # 加载月度交易日历数据 monthly_trading_day = pd.read_pickle('monthly_trading_day.pkl') # 转换日期格式:字符串 -> datetime对象 monthly_trading_day['start_date'] = pd.to_datetime(monthly_trading_day['start_date'], format='%Y%m%d') monthly_trading_day['end_date'] = pd.to_datetime(monthly_trading_day['end_date'], format='%Y%m%d') # 设置分析时间段 start_date = pd.to_datetime('20120101', format='%Y%m%d') # 起始日期:2012-01-01 end_date = pd.to_datetime('20231231', format='%Y%m%d') # 结束日期:2023-12-31 # 筛选在时间范围内的交易日 filtered_trading_days = monthly_trading_day.loc[ (monthly_trading_day['end_date'] >= start_date) & (monthly_trading_day['end_date'] <= end_date) ] # 统一时间索引格式(确保后续数据对齐) stock_close.index = pd.to_datetime(stock_close.index) stock_open.index = pd.to_datetime(stock_open.index) # 计算月度收盘收益率(使用月末收盘价计算) stock_ret_monthly = stock_close.reindex(index=filtered_trading_days.end_date).pct_change() # 计算月度开盘收益率(使用次月开盘价计算) stock_ret_monthly_nextopen = stock_open.shift(-1).reindex(filtered_trading_days.end_date).pct_change() def simple_factor_test(factor, use_data='this_close'): """ 单因子测试框架 参数: factor: 输入的因子数据(DataFrame格式,索引为日期,列为股票代码) use_data: 收益率数据选择,默认使用常规收盘收益率 返回: ic: 普通IC序列 rankic: 秩IC序列 group_ret: 分组收益率 """ # 选择收益率类型 if use_data == 'this_close': this_ret_data = stock_ret_monthly.shift(-1) # 常规收盘收益率(避免未来数据) else: this_ret_data = stock_ret_monthly_nextopen.shift(-1) # 开盘收益率 # 计算因子IC值 ic, rankic = FactorIC(factor, this_ret_data) # 进行因子分组 factor_group = FactorGroup(factor) # 合并因子分组与收益率数据 condata = pd.concat([factor_group.unstack(), this_ret_data.unstack()], axis=1).dropna().reset_index() condata.columns = ['stockcode', 'date', 'group_id', 'ret'] # 计算分组平均收益率 group_ret = condata.groupby(['date', 'group_id'])['ret'].mean().unstack() return ic, rankic, group_ret # 读取市盈率因子数据(示例因子) pe = pd.read_pickle('StockQuote_PEttm.txt') ``` 关键功能说明: 1. **数据对齐机制**:通过`reindex()`确保所有数据使用统一的交易日历 2. **收益率计算逻辑**: - 常规收益率:$R_t = \frac{Close_{t+1}}{Close_t} - 1$ - 开盘收益率:$R_t = \frac{Open_{t+1}}{Close_t} - 1$ 3. **避免未来数据**:使用`shift(-1)`将收益率滞后一期,确保因子值不会使用未来信息 4. **分组收益计算**:将股票按因子值分为若干组,计算各组在下一期的平均收益率 统计指标说明: - **IC(信息系数)**:衡量因子值与下期收益率的线性相关性,计算公式: $$ IC_t = corr(factor_t, ret_{t+1}) $$ - **Rank IC**:使用因子排序和收益排序的Spearman相关系数,计算公式: $$ RankIC_t = corr(rank(factor_t), rank(ret_{t+1})) $$

pd.to_datetime 详细用法

### Pandas `to_datetime` 函数的详细用法 #### 基本功能 Pandas 的 `pd.to_datetime()` 是一种强大的工具,用于将字符串或其他类型的对象转换为日期时间格式的对象。此函数可以处理多种输入形式,包括单一字符串、字符串列表以及序列化的时间戳数据[^1]。 #### 参数详解 ##### 输入参数 (`arg`) 该函数的核心参数是 `arg`,它可以接受多种形式的数据结构作为输入,比如单独的一个字符串或者一个包含多个日期表示的列表。例如: ```python import pandas as pd date_str = '2023-01-01' converted_date = pd.to_datetime(date_str) print(converted_date) # 输出: 2023-01-01 00:00:00 ``` 对于更复杂的场景,当传入的是一个字符串数组时,它会自动尝试推断每种可能的日期格式并将其标准化[^2]: ```python date_strings = ['2023-01-01', '2024/02/01', '01-03-2025'] dates_series = pd.to_datetime(date_strings) print(dates_series) # 输出: DatetimeIndex(['2023-01-01', '2024-02-01', '2025-03-01'], dtype='datetime64[ns]', freq=None) ``` ##### 自定义日期格式 (`format`) 如果默认的行为无法满足需求,则可以通过指定 `format` 参数来精确控制如何解析日期字符串。这尤其适用于那些不符合常见标准格式的情况。例如,在某些国家和地区使用的日历系统中,月份和日子的位置可能会颠倒。通过设置特定模式,能够确保正确解释这些差异: ```python custom_format_string = '01/02/2023' # 这里假设这是指二月一日而非一月二号 parsed_custom_date = pd.to_datetime(custom_format_string, format='%d/%m/%Y') print(parsed_custom_date) # 结果应该是2023年2月1日而不是错误理解成的一月二号。 ``` ##### 错误处理策略(`errors`) 为了更好地管理可能出现的各种异常情况(如非法字符或完全不匹配任何已知模板),提供了三个选项:“raise”,“coerce” 和 “ignore”。其中,“coerce”的作用是在遇到不可识别的内容时不抛出错误而是返回 NaT (Not a Time)[^3]: ```python invalid_dates = ["2023", "not_a_date"] result_with_coercion = pd.to_datetime(invalid_dates, errors="coerce") print(result_with_coercion) # 显示 [NaT NaT] ``` #### 返回值类型 最终得到的结果通常是一个 Timestamp 或者 Series/DatetimeIndex 类型实例取决于原始输入是什么样的集合体。 --- ### 示例代码展示 下面给出几个实际应用的例子以便于进一步理解和实践上述知识点: ```python # 单独转换日期字符串 single_date_conversion = pd.to_datetime('2023-10-23') print(single_date_conversion) # 处理含不同分隔符的多条记录 mixed_delimiter_handling = pd.to_datetime(['2023-01-01', '2024/02/01']) print(mixed_delimiter_handling) # 应用自定义格式解决歧义问题 specific_format_application = pd.to_datetime('01/02/2023', format="%d/%m/%Y") print(specific_format_application) # 展示错误容忍度配置效果 error_tolerance_example = pd.to_datetime(["bad_data"], errors="coerce") print(error_tolerance_example) ```
阅读全文

相关推荐

UserWarning: Could not infer format, so each element will be parsed individually, falling back to dateutil. To ensure parsing is consistent and as-expected, please specify a format. data['日期'] = pd.to_datetime(data['年'].astype(str) + '-' + data['月'].astype(str) + '-' + data['日'].astype(str)) Traceback (most recent call last): File "D:\Onedrive\Desktop\人工智能应用\TEST.py", line 4, in <module> data['日期'] = pd.to_datetime(data['年'].astype(str) + '-' + data['月'].astype(str) + '-' + data['日'].astype(str)) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "D:\python\Lib\site-packages\pandas\core\tools\datetimes.py", line 1067, in to_datetime values = convert_listlike(arg._values, format) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "D:\python\Lib\site-packages\pandas\core\tools\datetimes.py", line 435, in _convert_listlike_datetimes result, tz_parsed = objects_to_datetime64( ^^^^^^^^^^^^^^^^^^^^^^ File "D:\python\Lib\site-packages\pandas\core\arrays\datetimes.py", line 2398, in objects_to_datetime64 result, tz_parsed = tslib.array_to_datetime( ^^^^^^^^^^^^^^^^^^^^^^^^ File "tslib.pyx", line 414, in pandas._libs.tslib.array_to_datetime File "tslib.pyx", line 596, in pandas._libs.tslib.array_to_datetime File "tslib.pyx", line 553, in pandas._libs.tslib.array_to_datetime File "conversion.pyx", line 641, in pandas._libs.tslibs.conversion.convert_str_to_tsobject File "parsing.pyx", line 336, in pandas._libs.tslibs.parsing.parse_datetime_string File "parsing.pyx", line 666, in pandas._libs.tslibs.parsing.dateutil_parse pandas._libs.tslibs.parsing.DateParseError: Unknown datetime string format, unable to parse: 2016.0-6.0-1, at position 0

# region 系统配置与依赖导入(保持原代码) import os import numpy as np import pandas as pd import torch import torch.nn as nn from torch.nn import TransformerEncoder, TransformerEncoderLayer import backtrader as bt from collections import deque import talib as ta import tushare as ts import matplotlib.pyplot as plt import random random.seed(42) np.random.seed(42) torch.manual_seed(42) TUSHARE_TOKEN = os.getenv('TUSHARE_TOKEN', '7c4345ae126e8426ac1ba9104027b91e3123f49e28ea8a81e7762b94') STOCK_LIST = ['600519.SH', '000858.SZ', '600887.SH'] START_DATE = pd.to_datetime('2018-01-01') END_DATE = pd.to_datetime('2023-12-31') INIT_CASH = 1000000 WINDOW_SIZE = 60 TECHNICAL_FEATURES = ['open', 'high', 'low', 'close', 'volume', 'macd', 'rsi', 'cci'] device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') MODEL_DIR = './models' # endregion # 核心修复:MyPandasData类(基于Backtrader官方协议) class MyPandasData(bt.feeds.PandasData): """严格遵循Backtrader数据加载协议的实现""" params = ( ('datetime', 'trade_date'), ('open', 'open'), ('high', 'high'), ('low', 'low'), ('close', 'close'), ('volume', 'volume'), ('openinterest', -1), # 无此列设为-1 ) # 声明所有自定义指标列(别名=列名,需与DataFrame列名完全一致) lines = ( 'macd', # MACD主线 'rsi', # RSI指标 'cci', # CCI指标 'ma5', # 5日均线 'ma20', # 20日均线 ) def __init__(self): super().__init__() # 调试:打印自动生成的属性(验证别名绑定) print(f"[DataFeed] 可用指标属性: {', '.join(self.lines._linealiases)}") def _load(self): # 1. 数据清洗(保留原逻辑) df = self.p.dataname.copy() df[self.params.datetime] = pd.to_datetime(df[self.params.datetime]) df = df.sort_values(self.params.datetime).reset_index(drop=True) df = df[ (df[self.params.datetime] >= self.p.fromdate) & (df[self.params.datetime] <= self.p.todate) ].reset_index(drop=True) # 2. 基础列校验(Backtrader原生加载) if not super()._load():

# 处理工期列中的"协商"文本(替换为0) merged_data['工期'] = pd.to_numeric(merged_data['工期'].replace('协商', -999), errors='coerce').fillna(-999) # # 处理空值 # merged_data['GongQiHuanBan'] = merged_data['GongQiHuanBan'].fillna(0) # 新增日期列转换 merged_data['HuanBanDate'] = pd.to_datetime(merged_data['HuanBanDate'], errors='coerce') merged_data['HuanBanReDate'] = pd.to_datetime(merged_data['HuanBanReDate'], errors='coerce') # 日期格式转换 merged_data['SADate'] = pd.to_datetime(merged_data['SADate']) merged_data['UpdateTime'] = pd.to_datetime(merged_data['UpdateTime']) holidays = [ # 元旦(不调休) '2025-01-01', # 周三 # 春节(调休2天) '2025-01-28', '2025-01-29', '2025-01-30', '2025-01-31', '2025-02-01', '2025-02-02', '2025-02-03', '2025-02-04', # 1.28(除夕)-2.4 # 清明节(不调休) '2025-04-04', '2025-04-05', '2025-04-06', # 周五-周日 # 劳动节(调休1天) '2025-05-01', '2025-05-02', '2025-05-03', '2025-05-04', '2025-05-05', # 周四-周一 # 端午节(不调休) '2025-05-31', '2025-06-01', '2025-06-02', # 周六-周一 # 中秋节+国庆节(调休2天) '2025-10-01', '2025-10-02', '2025-10-03', '2025-10-04', '2025-10-05', '2025-10-06', '2025-10-07', '2025-10-08' # 周三-下周三 ] holiday_dates = pd.to_datetime(holidays) # 新增调休工作日列表(转换为日期格式) workdays_adjustment = [ '2025-01-26', # 周日补春节 '2025-02-08', # 周六补春节 '2025-04-27', # 周日补劳动节 '2025-09-28', # 周日补国庆 '2025-10-11' # 周六补国庆 ] adjustment_dates = pd.to_datetime(workdays_adjustment) # 转换日期格式 def calculate_workdays(start_date, end_date): # 处理未结案情况 end_date = end_date if pd.notnull(end_date) else pd.Timestamp.now() # 生成日期序列 date_range = pd.date_range(start=start_date.normalize(), end=end_date.normalize(), freq='D') # 修改过滤条件(增加调休判断) workdays = [date for date in date_range if ( (date.weekday() < 5) or # 常规工作日 (date in adjustment_dates) # 调休补班日 ) and (date not in holiday_dates) # 排除法定假日 ] return len(workdays) def compute_huanban_days(row): start = row['HuanBanDate'] if pd.isnull(start): return 0 end = row['HuanBanReDate'] if pd.notnull(row['HuanBanReDate']) else pd.Timestamp.now() if start > end: return 0 return calculate_workdays(start, end) merged_data['GongQiHuanBan'] = merged_data.apply(compute_huanban_days, axis=1) # 计算总工期 merged_data['总工期'] = merged_data['工期'] + merged_data['GongQiHuanBan'] # 计算实际工作日 merged_data['实际工作日'] = merged_data.apply( lambda x: calculate_workdays(x['SADate'], x['UpdateTime']), axis=1 ) # 判断超时 merged_data['是否超时'] = '否' merged_data['超时天数'] = 0 mask = merged_data['实际工作日'] > merged_data['总工期'] merged_data.loc[mask, '是否超时'] = '是' merged_data.loc[mask, '超时天数'] = merged_data['实际工作日'] - merged_data['总工期']项目-组.txt中,包含有PMNameMsg、组名、组长,读取这个txt,新增2列,将PMNameMsg相同的连接起来,连接不上的保持空

import pandas as pd import lightgbm as lgb from sklearn.metrics import mean_squared_error import numpy as np # 1. 读取数据并准备特征 imputed_ts_df = pd.read_csv('your_data.csv') # 请替换为你的文件路径 # 仅保留有 annotation 的数据作为训练集 train_df = imputed_ts_df.dropna(subset=['annotation']) # 提取时间特征:hour, weekday train_df['hour'] = pd.to_datetime(train_df['time']).dt.hour train_df['weekday'] = pd.to_datetime(train_df['time']).dt.weekday # 特征(x, y, z, hour, weekday) X_train = train_df[['x', 'y', 'z', 'hour', 'weekday']] # 标签(annotation) y_train = train_df['annotation'] # 2. 分块训练模型 chunk_size = 500000 # 每块 50万行,根据你的内存调整 num_chunks = len(train_df) // chunk_size + 1 # 参数设置 params = { 'objective': 'regression', # 使用回归目标 'metric': 'l2', # 线性回归损失 'boosting_type': 'gbdt', 'num_leaves': 31, # 根据内存调整 'learning_rate': 0.05, 'feature_fraction': 0.9, 'num_threads': 4 # 设置并行计算线程数 } # 训练/验证集拆分 X_train_split, X_valid_split, y_train_split, y_valid_split = train_test_split(X_train, y_train, test_size=0.2, random_state=42) train_data = lgb.Dataset(X_train_split, label=y_train_split) valid_data = lgb.Dataset(X_valid_split, label=y_valid_split, reference=train_data) # 逐块训练模型并进行填补 for chunk_num in range(num_chunks): start_idx = chunk_num * chunk_size end_idx = min((chunk_num + 1) * chunk_size, len(train_df)) # 获取当前块的数据 chunk = train_df.iloc[start_idx:end_idx] X_chunk = chunk[['x', 'y', 'z', 'hour', 'weekday']] y_chunk = chunk['annotation'] # 创建训练数据 chunk_train_data = lgb.Dataset(X_chunk, label=y_chunk) # 训练模型 model = lgb.train(params, chunk_train_data, valid_sets=[valid_data], num_boost_round=100, early_stopping_rounds=10) # 对缺失值进行填补 missing_df = imputed_ts_df[imputed_ts_df['annotation'].isnull()] missing_df['hour'] = pd.to_datetime(missing_df['time']).dt.hour missing_df['weekday'] = pd.to_datetime(missing_df['time']).dt.weekday X_missing = missing_df[['x', 'y', 'z', 'hour', 'weekday']] missing_df['annotation'] = model.predict(X_missing, num_iteration=model.best_iteration) # 合并填补后的数据 imputed_ts_df = pd.concat([imputed_ts_df.dropna(subset=['annotation']), missing_df], ignore_index=True) print(f"Chunk {chunk_num+1} training complete.") # 3. 预测并评估模型 y_pred = model.predict(X_valid_split, num_iteration=model.best_iteration) mse = mean_squared_error(y_valid_split, y_pred) print(f"Final Mean Squared Error: {mse}") # 4. 保存或展示填补后的数据 imputed_ts_df.to_csv('filled_data.csv', index=False) # 将填补结果保存为新的 CSV 文件 print(imputed_ts_df[['time', 'annotation']].head()) # 展示前几行填补后的结果 优化代码

import tkinter as tk from tkinter import ttk, filedialog, messagebox import pandas as pd import numpy as np import matplotlib as mpl import matplotlib.pyplot as plt from matplotlib.font_manager import FontProperties from matplotlib.backends.backend_tkagg import FigureCanvasTkAgg from sklearn.preprocessing import MinMaxScaler import tensorflow as tf from tensorflow.keras.models import Sequential from tensorflow.keras.layers import LSTM, Dense from tensorflow.keras.optimizers import Adam from tensorflow.keras.callbacks import EarlyStopping import os plt.rcParams['font.sans-serif'] = ['SimHei'] # 使用黑体 plt.rcParams['axes.unicode_minus'] = False class DamSeepageModel: def __init__(self, root): self.root = root self.root.title("大坝渗流预测模型") self.root.geometry("1200x800") # 初始化数据 self.train_df = None self.test_df = None self.model = None self.scaler = MinMaxScaler(feature_range=(0, 1)) self.evaluation_metrics = {} # 存储评估指标结果 # 创建主界面 self.create_widgets() def create_widgets(self): # 创建主框架 main_frame = ttk.Frame(self.root, padding=10) main_frame.pack(fill=tk.BOTH, expand=True) # 左侧控制面板 control_frame = ttk.LabelFrame(main_frame, text="模型控制", padding=10) control_frame.pack(side=tk.LEFT, fill=tk.Y, padx=5, pady=5) # 文件选择部分 file_frame = ttk.LabelFrame(control_frame, text="数据文件", padding=10) file_frame.pack(fill=tk.X, pady=5) # 训练集选择 ttk.Label(file_frame, text="训练集:").grid(row=0, column=0, sticky=tk.W, pady=5) self.train_file_var = tk.StringVar() ttk.Entry(file_frame, textvariable=self.train_file_var, width=30, state='readonly').grid(row=0, column=1, padx=5) ttk.Button(file_frame, text="选择文件", command=lambda: self.select_file("train")).grid(row=0, column=2) # 测试集选择 ttk.Label(file_frame, text="测试集:").grid(row=1, column=0, sticky=tk.W, pady=5) self.test_file_var = tk.StringVar() ttk.Entry(file_frame, textvariable=self.test_file_var, width=30, state='readonly').grid(row=1, column=1, padx=5) ttk.Button(file_frame, text="选择文件", command=lambda: self.select_file("test")).grid(row=1, column=2) # 参数设置部分 param_frame = ttk.LabelFrame(control_frame, text="模型参数", padding=10) param_frame.pack(fill=tk.X, pady=10) # 时间窗口大小 ttk.Label(param_frame, text="时间窗口大小:").grid(row=0, column=0, sticky=tk.W, pady=5) self.window_size_var = tk.IntVar(value=60) ttk.Spinbox(param_frame, from_=10, to=200, increment=5, textvariable=self.window_size_var, width=10).grid(row=0, column=1, padx=5) # LSTM单元数量 ttk.Label(param_frame, text="LSTM单元数:").grid(row=1, column=0, sticky=tk.W, pady=5) self.lstm_units_var = tk.IntVar(value=50) ttk.Spinbox(param_frame, from_=10, to=200, increment=10, textvariable=self.lstm_units_var, width=10).grid(row=1, column=1, padx=5) # 训练轮次 ttk.Label(param_frame, text="训练轮次:").grid(row=2, column=0, sticky=tk.W, pady=5) self.epochs_var = tk.IntVar(value=100) ttk.Spinbox(param_frame, from_=10, to=500, increment=10, textvariable=self.epochs_var, width=10).grid(row=2, column=1, padx=5) # 批处理大小 ttk.Label(param_frame, text="批处理大小:").grid(row=3, column=0, sticky=tk.W, pady=5) self.batch_size_var = tk.IntVar(value=32) ttk.Spinbox(param_frame, from_=16, to=128, increment=16, textvariable=self.batch_size_var, width=10).grid(row=3, column=1, padx=5) # 控制按钮 btn_frame = ttk.Frame(control_frame) btn_frame.pack(fill=tk.X, pady=10) ttk.Button(btn_frame, text="训练模型", command=self.train_model).pack(side=tk.LEFT, padx=5) ttk.Button(btn_frame, text="预测结果", command=self.predict).pack(side=tk.LEFT, padx=5) ttk.Button(btn_frame, text="保存结果", command=self.save_results).pack(side=tk.LEFT, padx=5) ttk.Button(btn_frame, text="重置", command=self.reset).pack(side=tk.RIGHT, padx=5) # 状态栏 self.status_var = tk.StringVar(value="就绪") status_bar = ttk.Label(control_frame, textvariable=self.status_var, relief=tk.SUNKEN, anchor=tk.W) status_bar.pack(fill=tk.X, side=tk.BOTTOM) # 右侧结果显示区域 result_frame = ttk.Frame(main_frame) result_frame.pack(side=tk.RIGHT, fill=tk.BOTH, expand=True, padx=5, pady=5) # 创建标签页 self.notebook = ttk.Notebook(result_frame) self.notebook.pack(fill=tk.BOTH, expand=True) # 损失曲线标签页 self.loss_frame = ttk.Frame(self.notebook) self.notebook.add(self.loss_frame, text="训练损失") # 预测结果标签页 self.prediction_frame = ttk.Frame(self.notebook) self.notebook.add(self.prediction_frame, text="预测结果") # 添加指标文本框 self.metrics_var = tk.StringVar() metrics_label = ttk.Label( self.prediction_frame, textvariable=self.metrics_var, font=('TkDefaultFont', 10, 'bold'), relief='ridge', padding=5 ) metrics_label.pack(fill=tk.X, padx=5, pady=5) # 初始化绘图区域 self.fig, self.ax = plt.subplots(figsize=(10, 6)) self.canvas = FigureCanvasTkAgg(self.fig, master=self.prediction_frame) self.canvas.get_tk_widget().pack(fill=tk.BOTH, expand=True) self.loss_fig, self.loss_ax = plt.subplots(figsize=(10, 4)) self.loss_canvas = FigureCanvasTkAgg(self.loss_fig, master=self.loss_frame) self.loss_canvas.get_tk_widget().pack(fill=tk.BOTH, expand=True) # 文件选择 def select_file(self, file_type): """选择Excel文件""" file_path = filedialog.askopenfilename( title=f"选择{file_type}集Excel文件", filetypes=[("Excel文件", "*.xlsx *.xls"), ("所有文件", "*.*")] ) if file_path: try: # 读取Excel文件 df = pd.read_excel(file_path) # 时间特征列 time_features = ['year', 'month', 'day'] missing_time_features = [feat for feat in time_features if feat not in df.columns] if '水位' not in df.columns: messagebox.showerror("列名错误", "Excel文件必须包含'水位'列") return if missing_time_features: messagebox.showerror("列名错误", f"Excel文件缺少预处理后的时间特征列: {', '.join(missing_time_features)}\n" "请确保已使用预处理功能添加这些列") return # 创建完整的时间戳列 # 处理可能缺失的小时、分钟、秒数据 if 'hour' in df.columns and 'minute' in df.columns and 'second' in df.columns: df['datetime'] = pd.to_datetime( df[['year', 'month', 'day', 'hour', 'minute', 'second']] ) elif 'hour' in df.columns and 'minute' in df.columns: df['datetime'] = pd.to_datetime( df[['year', 'month', 'day', 'hour', 'minute']].assign(second=0) ) else: df['datetime'] = pd.to_datetime(df[['year', 'month', 'day']]) # 设置时间索引 df = df.set_index('datetime') # 保存数据 if file_type == "train": self.train_df = df self.train_file_var.set(os.path.basename(file_path)) self.status_var.set(f"已加载训练集: {len(self.train_df)}条数据") else: self.test_df = df self.test_file_var.set(os.path.basename(file_path)) self.status_var.set(f"已加载测试集: {len(self.test_df)}条数据") except Exception as e: messagebox.showerror("文件错误", f"读取文件失败: {str(e)}") # 添加评估指标计算函数 def calculate_metrics(self, y_true, y_pred): """计算各种评估指标""" from sklearn.metrics import mean_squared_error, mean_absolute_error, r2_score mse = mean_squared_error(y_true, y_pred) rmse = np.sqrt(mse) mae = mean_absolute_error(y_true, y_pred) # 避免除以零错误 non_zero_idx = np.where(y_true != 0)[0] if len(non_zero_idx) > 0: mape = np.mean(np.abs((y_true[non_zero_idx] - y_pred[non_zero_idx]) / y_true[non_zero_idx])) * 100 else: mape = float('nan') r2 = r2_score(y_true, y_pred) return { 'MSE': mse, 'RMSE': rmse, 'MAE': mae, 'MAPE': mape, 'R2': r2 } def create_dataset(self, data, window_size): """创建时间窗口数据集""" X, y = [], [] for i in range(len(data) - window_size): X.append(data[i:(i + window_size), 0]) y.append(data[i + window_size, 0]) return np.array(X), np.array(y) def create_dynamic_plot_callback(self): """创建动态绘图回调实例,用于实时显示训练损失曲线""" class DynamicPlotCallback(tf.keras.callbacks.Callback): def __init__(self, gui_app): self.gui_app = gui_app # 引用主GUI实例 self.train_loss = [] # 存储训练损失 self.val_loss = [] # 存储验证损失 def on_epoch_end(self, epoch, logs=None): """每个epoch结束时更新图表""" logs = logs or {} # 收集损失数据 self.train_loss.append(logs.get('loss')) self.val_loss.append(logs.get('val_loss')) # 更新GUI中的图表(在主线程中执行) self.gui_app.root.after(0, self._update_plot) def _update_plot(self): """实际更新图表的函数""" try: # 清除现有图表 self.gui_app.loss_ax.clear() # 绘制训练和验证损失曲线 epochs = range(1, len(self.train_loss) + 1) self.gui_app.loss_ax.plot(epochs, self.train_loss, 'b-', label='训练损失') self.gui_app.loss_ax.plot(epochs, self.val_loss, 'r-', label='验证损失') # 设置图表属性 self.gui_app.loss_ax.set_title('模型训练损失') self.gui_app.loss_ax.set_xlabel('轮次') self.gui_app.loss_ax.set_ylabel('损失', rotation=0) self.gui_app.loss_ax.legend(loc='upper right') self.gui_app.loss_ax.grid(True, alpha=0.3) # 自动调整Y轴范围 all_losses = self.train_loss + self.val_loss min_loss = max(0, min(all_losses) * 0.9) max_loss = max(all_losses) * 1.1 self.gui_app.loss_ax.set_ylim(min_loss, max_loss) # 刷新画布 self.gui_app.loss_canvas.draw() # 更新状态栏显示最新损失 current_epoch = len(self.train_loss) if current_epoch > 0: latest_train_loss = self.train_loss[-1] latest_val_loss = self.val_loss[-1] if self.val_loss else 0 self.gui_app.status_var.set( f"训练中 | 轮次: {current_epoch} | " f"训练损失: {latest_train_loss:.6f} | " f"验证损失: {latest_val_loss:.6f}" ) self.gui_app.root.update() except Exception as e: print(f"更新图表时出错: {str(e)}") # 返回回调实例 return DynamicPlotCallback(self) def train_model(self): """训练LSTM模型""" if self.train_df is None: messagebox.showwarning("警告", "请先选择训练集文件") return try: self.status_var.set("正在预处理数据...") self.root.update() # 数据预处理 train_scaled = self.scaler.fit_transform(self.train_df[['水位']]) # 创建时间窗口数据集 window_size = self.window_size_var.get() X_train, y_train = self.create_dataset(train_scaled, window_size) # 调整LSTM输入格式 X_train = np.reshape(X_train, (X_train.shape[0], X_train.shape[1], 1)) # 构建LSTM模型 self.model = Sequential() self.model.add(LSTM( self.lstm_units_var.get(), return_sequences=True, input_shape=(window_size, 1) )) self.model.add(LSTM(self.lstm_units_var.get())) self.model.add(Dense(1)) self.model.compile( optimizer=Adam(learning_rate=0.001), loss='mean_squared_error' ) # 创建验证集(在训练之前) val_size = int(0.2 * len(X_train)) X_val, y_val = X_train[:val_size], y_train[:val_size] X_train, y_train = X_train[val_size:], y_train[val_size:] # 定义评估回调类 class MetricsCallback(tf.keras.callbacks.Callback): def __init__(self, X_val, y_val, scaler, gui_app): # 添加gui_app参数 super().__init__() self.X_val = X_val self.y_val = y_val self.scaler = scaler self.gui_app = gui_app # 直接存储引用 self.best_r2 = -float('inf') self.best_weights = None def on_epoch_end(self, epoch, logs=None): # 预测验证集(添加verbose=0避免输出) val_pred = self.model.predict(self.X_val, verbose=0) # 反归一化 val_pred_orig = self.scaler.inverse_transform(val_pred) y_val_orig = self.scaler.inverse_transform(self.y_val.reshape(-1, 1)) # 计算指标(使用self.gui_app) metrics = self.gui_app.calculate_metrics(y_val_orig, val_pred_orig) # 更新日志 logs = logs or {} logs.update({f'val_{k}': v for k, v in metrics.items()}) # 保存最佳权重(基于R²) if metrics['R2'] > self.best_r2: self.best_r2 = metrics['R2'] self.best_weights = self.model.get_weights() # 更新状态栏(使用self.gui_app) status = (f"训练中 | 轮次: {epoch + 1} | " f"损失: {logs.get('loss', 0):.6f} | " f"验证R²: {metrics['R2']:.4f}") self.gui_app.status_var.set(status) self.gui_app.root.update() # 添加回调(传递所有四个参数) metrics_callback = MetricsCallback(X_val, y_val, self.scaler, self) # 添加self参数 # 添加早停机制 early_stopping = EarlyStopping( monitor='val_loss', # 监控验证集损失 patience=self.epochs_var.get()/3, # 连续20轮无改善则停止 min_delta=0.0001, # 最小改善阈值 restore_best_weights=True, # 恢复最佳权重 verbose=1 # 显示早停信息 ) # 在model.fit中添加回调 history = self.model.fit( X_train, y_train, epochs=self.epochs_var.get(), batch_size=self.batch_size_var.get(), validation_data=(X_val, y_val), callbacks=[early_stopping, metrics_callback], # 添加新回调 verbose=0 ) # 训练结束后恢复最佳权重 if metrics_callback.best_weights is not None: self.model.set_weights(metrics_callback.best_weights) # 绘制损失曲线 self.loss_ax.clear() self.loss_ax.plot(history.history['loss'], label='训练损失') self.loss_ax.plot(history.history['val_loss'], label='验证损失') self.loss_ax.set_title('模型训练损失') self.loss_ax.set_xlabel('轮次') self.loss_ax.set_ylabel('损失',rotation=0) self.loss_ax.legend() self.loss_ax.grid(True) self.loss_canvas.draw() # 根据早停情况更新状态信息 if early_stopping.stopped_epoch > 0: stopped_epoch = early_stopping.stopped_epoch best_epoch = early_stopping.best_epoch final_loss = history.history['loss'][-1] best_loss = min(history.history['val_loss']) self.status_var.set( f"训练在{stopped_epoch + 1}轮提前终止 | " f"最佳模型在第{best_epoch + 1}轮 | " f"最终损失: {final_loss:.6f} | " f"最佳验证损失: {best_loss:.6f}" ) messagebox.showinfo( "训练完成", f"模型训练提前终止!\n" f"最佳模型在第{best_epoch + 1}轮\n" f"最佳验证损失: {best_loss:.6f}" ) else: final_loss = history.history['loss'][-1] self.status_var.set(f"模型训练完成 | 最终损失: {final_loss:.6f}") messagebox.showinfo("训练完成", "模型训练成功完成!") except Exception as e: messagebox.showerror("训练错误", f"模型训练失败:\n{str(e)}") self.status_var.set("训练失败") def predict(self): """使用模型进行预测""" if self.model is None: messagebox.showwarning("警告", "请先训练模型") return if self.test_df is None: messagebox.showwarning("警告", "请先选择测试集文件") return try: self.status_var.set("正在生成预测...") self.root.update() # 预处理测试数据 test_scaled = self.scaler.transform(self.test_df[['水位']]) # 创建测试集时间窗口 window_size = self.window_size_var.get() X_test, y_test = self.create_dataset(test_scaled, window_size) X_test = np.reshape(X_test, (X_test.shape[0], X_test.shape[1], 1)) # 进行预测 test_predict = self.model.predict(X_test) # 反归一化 test_predict = self.scaler.inverse_transform(test_predict) y_test_orig = self.scaler.inverse_transform(y_test.reshape(-1, 1)) # 创建时间索引 test_time = self.test_df.index[window_size:window_size + len(test_predict)] # 绘制图表 self.fig, self.ax = plt.subplots(figsize=(12, 6)) # 使用时间索引作为x轴 self.ax.plot(test_time, y_test_orig, label='真实值') self.ax.plot(test_time, test_predict, label='预测值', linestyle='--') self.ax.set_title('大坝渗流水位预测结果') self.ax.set_xlabel('时间') self.ax.set_ylabel('测压管水位') self.ax.legend() self.ax.grid(True) self.ax.tick_params(axis='x', rotation=45) # 计算并添加评估指标文本 self.evaluation_metrics = self.calculate_metrics( y_test_orig.flatten(), test_predict.flatten() ) metrics_text = ( f"MSE: {self.evaluation_metrics['MSE']:.4f} | " f"RMSE: {self.evaluation_metrics['RMSE']:.4f} | " f"MAE: {self.evaluation_metrics['MAE']:.4f} | " f"MAPE: {self.evaluation_metrics['MAPE']:.2f}% | " f"R²: {self.evaluation_metrics['R2']:.4f}" ) self.ax.text( 0.5, 1.05, metrics_text, transform=self.ax.transAxes, ha='center', fontsize=10, bbox=dict(facecolor='white', alpha=0.8) ) # 添加分隔线(移至绘图设置之后) # 注意:这里使用数值索引而不是时间对象 split_point = 0 # 测试集开始位置 self.ax.axvline(x=split_point, color='k', linestyle='--', alpha=0.5) self.ax.text( split_point, np.min(y_test_orig) * 0.9, ' 训练/测试分界', rotation=90, verticalalignment='bottom' ) # 调整布局并显示图表 plt.tight_layout() if hasattr(self, 'canvas'): self.canvas.draw() else: plt.show() self.status_var.set("预测完成,结果已显示") except Exception as e: messagebox.showerror("预测错误", f"预测失败:\n{str(e)}") self.status_var.set("预测失败") def save_results(self): """保存预测结果""" if not hasattr(self, 'test_predict') or self.test_predict is None: messagebox.showwarning("警告", "请先生成预测结果") return save_path = filedialog.asksaveasfilename( defaultextension=".xlsx", filetypes=[("Excel文件", "*.xlsx"), ("所有文件", "*.*")] ) if not save_path: return try: # 创建包含预测结果和评估指标的DataFrame window_size = self.window_size_var.get() test_time = self.test_df.index[window_size:window_size + len(self.test_predict)] metrics_df = pd.DataFrame([self.evaluation_metrics]) result_df = pd.DataFrame({ '时间': test_time, '实际水位': self.test_df['水位'][window_size:window_size + len(self.test_predict)].values, '预测水位': self.test_predict.flatten() }) # 保存到Excel的不同sheet with pd.ExcelWriter(save_path) as writer: result_df.to_excel(writer, sheet_name='预测结果', index=False) metrics_df.to_excel(writer, sheet_name='评估指标', index=False) # 保存图表 chart_path = os.path.splitext(save_path)[0] + "_chart.png" self.fig.savefig(chart_path, dpi=300) self.status_var.set(f"结果已保存至: {os.path.basename(save_path)}") messagebox.showinfo("保存成功", f"预测结果和图表已保存至:\n{save_path}\n{chart_path}") except Exception as e: messagebox.showerror("保存错误", f"保存结果失败:\n{str(e)}") def reset(self): """重置程序状态""" self.train_df = None self.test_df = None self.model = None self.train_file_var.set("") self.test_file_var.set("") self.ax.clear() self.loss_ax.clear() self.canvas.draw() self.loss_canvas.draw() self.data_text.delete(1.0, tk.END) self.status_var.set("已重置,请选择新数据") messagebox.showinfo("重置", "程序已重置,可以开始新的分析") if __name__ == "__main__": root = tk.Tk() app = DamSeepageModel(root) root.mainloop() 整个代码逐行检查一下

# -*- coding: utf-8 -*- import pandas as pd from pyecharts import options as opts from pyecharts.charts import Line,Bar,Funnel,Pie from pyecharts.components import Table from pyecharts.options import ComponentTitleOpts from sqlalchemy import create_engine from pyecharts.charts import Page from pyecharts.charts import WordCloud from collections import Counter import jieba import re # 创建数据库连接 engine = create_engine('mysql+pymysql://root:123456@localhost/doubandata') #1. #2. def line_chart2(): # 从数据库中读取数据 query = "SELECT show_time FROM t_music" df = pd.read_sql(query, engine) # 处理日期数据,提取年份 df['year'] = pd.to_datetime(df['show_time'], errors='coerce').dt.year # 统计每年的歌曲发行数量 year_counts = df['year'].dropna().astype(int).value_counts().sort_index() # 准备数据用于生成折线图 years = year_counts.index.astype(str).tolist() counts = year_counts.values.tolist() # 创建折线图 line = Line(init_opts=opts.InitOpts(width="1600px", height="800px")) line.add_xaxis(years) line.add_yaxis("歌曲发行数量", counts, label_opts=opts.LabelOpts(is_show=True, position="top")) # 设置全局配置项 line.set_global_opts( title_opts=opts.TitleOpts(title="每年歌曲发行数量统计"), xaxis_opts=opts.AxisOpts(type_="category", name="年份"), yaxis_opts=opts.AxisOpts(type_="value", name="发行数量"), tooltip_opts=opts.TooltipOpts(trigger="axis", axis_pointer_type="cross") ) # 渲染图表到HTML文件 line.render("2.song_release_counts_by_year.html") return line #3. def line_chart3(): # 从数据库中读取数据 query = "SELECT show_time, score FROM t_music" df = pd.read_sql(query, engine) # 将 score 列转换为数值类型,无法转换的会变为 NaN df['score'] = pd.to_numeric(df['score'], errors='coerce') # 处理日期数据,提取年份 df['year'] = pd.to_datetime(df['show_time'], errors='coerce').dt.year # 删除无效数据(如日期或评分为空) df = df.dropna(subset=['year', 'score']) # 按年份分组并计算每年的平均评分,保留一位小数 yearly_avg_scores = df.groupby('year')['score'].mean().round(1).sort_index() # 准备数据用于生成折线图 years = yearly_avg_scores.index.astype(int).astype(str).tolist() # 确保年份为整数且不带小数点 avg_scores = yearly_avg_scores.values.tolist() # 创建折线图 line = Line(init_opts=opts.InitOpts(width="1600px", height="800px")) line.add_xaxis(years) line.add_yaxis("平均评分", avg_scores, label_opts=opts.LabelOpts(is_show=True, position="top")) # 设置全局配置项 line.set_global_opts( title_opts=opts.TitleOpts(title="每年歌曲发行的平均评分"), xaxis_opts=opts.AxisOpts(type_="category", name="年份"), yaxis_opts=opts.AxisOpts(type_="value", name="平均评分", min_=7, max_=10), tooltip_opts=opts.TooltipOpts(trigger="axis", axis_pointer_type="cross") ) # 渲染图表到 HTML 文件 line.render("3.song_release_scores_by_year.html") return line page = Page( page_title="基于Python的豆瓣音乐数据分析与可视化", layout=Page.DraggablePageLayout, # 拖拽方式 ) page.add_js_funcs( """ document.body.style.backgroundColor = '#f0f8ff'; // 设置背景颜色为淡蓝色 """ ) # 添加图表到页面 page.add( # 绘制折线图 line_chart2(), line_chart3(), # 绘制表格 ) # 渲染大屏到临时HTML文件 page.render('大屏_临时1.html') 怎么生成好看个性化的可视化大屏网页

大家在看

recommend-type

mssdk10130048en MsSDK u14

mssdk101400111en.msi是microstation开发的sdk,版本是U14。文件解压密码是:https://blog.csdn.net/csdn_wuwt
recommend-type

matlab 伪距单点定位

本人利用matlab 编写的伪距单点定位,包含rinex 导航文件和观测文件读取的新方法,独立与定位程序之外。在单点定位的同时还进行了地球自转改正,卫星钟误差改正,接收机钟误差改正,地球自转改正,相对效应改正,电离层改正和对流层改正、额外部分还进行了简单的卡尔曼滤波处理定位结果。
recommend-type

libssl-1_1-x64.zip

如题,放到软件安装目录bin文件夹下即可。 在anaconda更新包时遇到了这个问题,找了了X64位可以用的,之后成功更新
recommend-type

Aptra NDC Reference manual

ATM 行业, 国外常用的Aptra NDC协议
recommend-type

的表中所-数据结构中文版

是用于对以位单位访问的点数进行指定的数据,在3.3.1项(1)的表中所 示的1次通信中可处理的点数以内进行指定。 a) 通过 ASCII代码进行数据通信时 将点数转换为 ASCII 代码 2位(16 进制数)后使用,从各高位进行 发送。 (示例) 5 点的情况 下 : 变为“05”,从“0”开始按顺序进行发送。 20 点的情 况下 : 变为“14”,从“1”开始按顺序进行发送。 b) 通过二进制代码进行数据通信时 使用表示点数的 1字节的数值进行发送。 (示例) 5 点的情况 下 : 发送 05H。 20 点的情 况下 : 发送 14H。 7) 设置/复位 是用于指定写入到位软元件中的数据的数据,以如下所示的值进行指 定。 写入数据 ON OFF 备注 ASCII 代码 “01” “00” 从“0”开始按顺序发送 2 字符 二进制代码 01H 00H 发送如左所示的 1 字节的数值

最新推荐

recommend-type

《门户网站对比》.ppt

《门户网站对比》.ppt
recommend-type

langchain4j-community-xinference-spring-boot-starter-1.0.0-beta2.jar中文文档.zip

1、压缩文件中包含: 中文文档、jar包下载地址、Maven依赖、Gradle依赖、源代码下载地址。 2、使用方法: 解压最外层zip,再解压其中的zip包,双击 【index.html】 文件,即可用浏览器打开、进行查看。 3、特殊说明: (1)本文档为人性化翻译,精心制作,请放心使用; (2)只翻译了该翻译的内容,如:注释、说明、描述、用法讲解 等; (3)不该翻译的内容保持原样,如:类名、方法名、包名、类型、关键字、代码 等。 4、温馨提示: (1)为了防止解压后路径太长导致浏览器无法打开,推荐在解压时选择“解压到当前文件夹”(放心,自带文件夹,文件不会散落一地); (2)有时,一套Java组件会有多个jar,所以在下载前,请仔细阅读本篇描述,以确保这就是你需要的文件。 5、本文件关键字: jar中文文档.zip,java,jar包,Maven,第三方jar包,组件,开源组件,第三方组件,Gradle,中文API文档,手册,开发手册,使用手册,参考手册。
recommend-type

C++实现的DecompressLibrary库解压缩GZ文件

根据提供的文件信息,我们可以深入探讨C++语言中关于解压缩库(Decompress Library)的使用,特别是针对.gz文件格式的解压过程。这里的“lib”通常指的是库(Library),是软件开发中用于提供特定功能的代码集合。在本例中,我们关注的库是用于处理.gz文件压缩包的解压库。 首先,我们要明确一个概念:.gz文件是一种基于GNU zip压缩算法的压缩文件格式,广泛用于Unix、Linux等操作系统上,对文件进行压缩以节省存储空间或网络传输时间。要解压.gz文件,开发者需要使用到支持gzip格式的解压缩库。 在C++中,处理.gz文件通常依赖于第三方库,如zlib或者Boost.IoStreams。codeproject.com是一个提供编程资源和示例代码的网站,程序员可以在该网站上找到现成的C++解压lib代码,来实现.gz文件的解压功能。 解压库(Decompress Library)提供的主要功能是读取.gz文件,执行解压缩算法,并将解压缩后的数据写入到指定的输出位置。在使用这些库时,我们通常需要链接相应的库文件,这样编译器在编译程序时能够找到并使用这些库中定义好的函数和类。 下面是使用C++解压.gz文件时,可能涉及的关键知识点: 1. Zlib库 - zlib是一个用于数据压缩的软件库,提供了许多用于压缩和解压缩数据的函数。 - zlib库支持.gz文件格式,并且在多数Linux发行版中都预装了zlib库。 - 在C++中使用zlib库,需要包含zlib.h头文件,同时链接z库文件。 2. Boost.IoStreams - Boost是一个提供大量可复用C++库的组织,其中的Boost.IoStreams库提供了对.gz文件的压缩和解压缩支持。 - Boost库的使用需要下载Boost源码包,配置好编译环境,并在编译时链接相应的Boost库。 3. C++ I/O操作 - 解压.gz文件需要使用C++的I/O流操作,比如使用ifstream读取.gz文件,使用ofstream输出解压后的文件。 - 对于流操作,我们常用的是std::ifstream和std::ofstream类。 4. 错误处理 - 解压缩过程中可能会遇到各种问题,如文件损坏、磁盘空间不足等,因此进行适当的错误处理是必不可少的。 - 正确地捕获异常,并提供清晰的错误信息,对于调试和用户反馈都非常重要。 5. 代码示例 - 从codeproject找到的C++解压lib很可能包含一个或多个源代码文件,这些文件会包含解压.gz文件所需的函数或类。 - 示例代码可能会展示如何初始化库、如何打开.gz文件、如何读取并处理压缩数据,以及如何释放资源等。 6. 库文件的链接 - 编译使用解压库的程序时,需要指定链接到的库文件,这在不同的编译器和操作系统中可能略有不同。 - 通常,在编译命令中加入-l参数,比如使用g++的话可能是`g++ -o DecompressLibrary DecompressLibrary.cpp -lz`,其中`-lz`表示链接zlib库。 7. 平台兼容性 - 在不同平台上使用解压库可能需要考虑平台兼容性问题。 - Windows系统可能需要额外的配置和库文件,因为zlib或其他库可能不是默认预装的。 根据以上知识点,我们可以得出,在C++中解压.gz文件主要涉及到对zlib或类似库的使用,以及熟悉C++的I/O操作。正确使用这些库,能够有效地对压缩文件进行解压,并处理可能出现的错误情况。如果从codeproject获取到的C++解压lib确实是针对.gz文件格式的,那么它很可能已经封装好了大部分的操作细节,让开发者能够以更简单的方式实现解压功能。
recommend-type

【数据融合技术】:甘肃土壤类型空间分析中的专业性应用

# 摘要 数据融合技术作为一种集成多源数据信息的方法,在土壤类型空间分析中发挥着关键作用。本文介绍了数据融合技术的基本概念及其理论基础,阐述了数据预处理、同步整合及冲突解决等关键技术,并详细描述了甘肃土壤类型数据准备的流程,包括数据采集、质量评估、空间化处理及融合实践准备。通过具体案例分析,展示了数据融合在土壤类型空间分布分析、土壤质量评估及土壤保护规划中的应用。同时,文
recommend-type

VM ware如何查看软件版本信息

<think>首先,用户的问题是:“我想查找VMware软件版本信息的查看方法请问如何在VMware中查看软件版本信息”。用户参考了之前的引用,但那些引用主要是关于查看VMware版本的一般方法,现在用户具体想知道在VMware软件中如何查看版本信息。回顾之前的对话:-用户第一次问的是VSCode的版本查看方法。-现在用户问的是VMware的版本查看方法。-系统级指令要求使用中文回答,正确格式化数学表达式(如果需要),但这里可能不需要数学表达式。-指令还要求生成相关问题,并在回答中引用段落时添加引用标识。用户提供的引用[1]到[5]是关于VMware版本的查看方法、下载等,但用户特别强调“参考
recommend-type

数据库课程设计报告:常用数据库综述

数据库是现代信息管理的基础,其技术广泛应用于各个领域。在高等教育中,数据库课程设计是一个重要环节,它不仅是学习理论知识的实践,也是培养学生综合运用数据库技术解决问题能力的平台。本知识点将围绕“经典数据库课程设计报告”展开,详细阐述数据库的基本概念、课程设计的目的和内容,以及在设计报告中常用的数据库技术。 ### 1. 数据库基本概念 #### 1.1 数据库定义 数据库(Database)是存储在计算机存储设备中的数据集合,这些数据集合是经过组织的、可共享的,并且可以被多个应用程序或用户共享访问。数据库管理系统(DBMS)提供了数据的定义、创建、维护和控制功能。 #### 1.2 数据库类型 数据库按照数据模型可以分为关系型数据库(如MySQL、Oracle)、层次型数据库、网状型数据库、面向对象型数据库等。其中,关系型数据库因其简单性和强大的操作能力而广泛使用。 #### 1.3 数据库特性 数据库具备安全性、完整性、一致性和可靠性等重要特性。安全性指的是防止数据被未授权访问和破坏。完整性指的是数据和数据库的结构必须符合既定规则。一致性保证了事务的执行使数据库从一个一致性状态转换到另一个一致性状态。可靠性则保证了系统发生故障时数据不会丢失。 ### 2. 课程设计目的 #### 2.1 理论与实践结合 数据库课程设计旨在将学生在课堂上学习的数据库理论知识与实际操作相结合,通过完成具体的数据库设计任务,加深对数据库知识的理解。 #### 2.2 培养实践能力 通过课程设计,学生能够提升分析问题、设计解决方案以及使用数据库技术实现这些方案的能力。这包括需求分析、概念设计、逻辑设计、物理设计、数据库实现、测试和维护等整个数据库开发周期。 ### 3. 课程设计内容 #### 3.1 需求分析 在设计报告的开始,需要对项目的目标和需求进行深入分析。这涉及到确定数据存储需求、数据处理需求、数据安全和隐私保护要求等。 #### 3.2 概念设计 概念设计阶段要制定出数据库的E-R模型(实体-关系模型),明确实体之间的关系。E-R模型的目的是确定数据库结构并形成数据库的全局视图。 #### 3.3 逻辑设计 基于概念设计,逻辑设计阶段将E-R模型转换成特定数据库系统的逻辑结构,通常是关系型数据库的表结构。在此阶段,设计者需要确定各个表的属性、数据类型、主键、外键以及索引等。 #### 3.4 物理设计 在物理设计阶段,针对特定的数据库系统,设计者需确定数据的存储方式、索引的具体实现方法、存储过程、触发器等数据库对象的创建。 #### 3.5 数据库实现 根据物理设计,实际创建数据库、表、视图、索引、触发器和存储过程等。同时,还需要编写用于数据录入、查询、更新和删除的SQL语句。 #### 3.6 测试与维护 设计完成之后,需要对数据库进行测试,确保其满足需求分析阶段确定的各项要求。测试过程包括单元测试、集成测试和系统测试。测试无误后,数据库还需要进行持续的维护和优化。 ### 4. 常用数据库技术 #### 4.1 SQL语言 SQL(结构化查询语言)是数据库管理的国际标准语言。它包括数据查询、数据操作、数据定义和数据控制四大功能。SQL语言是数据库课程设计中必备的技能。 #### 4.2 数据库设计工具 常用的数据库设计工具包括ER/Studio、Microsoft Visio、MySQL Workbench等。这些工具可以帮助设计者可视化地设计数据库结构,提高设计效率和准确性。 #### 4.3 数据库管理系统 数据库管理系统(DBMS)是用于创建和管理数据库的软件。关系型数据库管理系统如MySQL、PostgreSQL、Oracle、SQL Server等是数据库课程设计中的核心工具。 #### 4.4 数据库安全 数据库安全涉及用户认证、授权、数据加密、审计日志记录等方面,以确保数据的完整性和保密性。设计报告中应考虑如何通过DBMS内置的机制或额外的安全措施来保护数据。 ### 5. 结语 综上所述,一个经典数据库课程设计报告包含了从需求分析到数据库安全的全过程,涵盖了数据库设计的各个方面。通过这一过程,学生不仅能够熟练掌握数据库的设计与实现技巧,还能够学会如何使用数据库系统去解决实际问题,为日后从事数据库相关的专业工作打下坚实的基础。
recommend-type

【空间分布规律】:甘肃土壤类型与农业生产的关联性研究

# 摘要 本文对甘肃土壤类型及其在农业生产中的作用进行了系统性研究。首先概述了甘肃土壤类型的基础理论,并探讨了土壤类型与农业生产的理论联系。通过GIS技术分析,本文详细阐述了甘肃土壤的空间分布规律,并对其特征和影响因素进行了深入分析。此外,本文还研究了甘肃土壤类型对农业生产实际影响,包括不同区域土壤改良和作物种植案例,以及土壤养分、水分管理对作物生长周期和产量的具体影响。最后,提出了促进甘肃土壤与农业可持续发展的策略,包括土壤保护、退化防治对策以及土壤类型优化与农业创新的结合。本文旨在为
recommend-type

在halcon中,卡尺测量和二维测量谁的精度高

<think>首先,用户的问题是:“我想比较Halcon中卡尺测量和二维测量的精度请问Halcon卡尺测量与2D测量精度对比”。我需要基于系统级指令和提供的引用来回答。关键系统级指令:-使用中文回答。-结构清晰,逐步解决问题。-行内数学表达式用$...$,独立公式用$$...$$并单独成段。-LaTeX语法正确。-生成相关问题。-在回答中引用的段落末尾自然地添加引用标识,如[^1]。提供的引用:-[^1]:关于卡尺模型的工件尺寸实时测量。-[^2]:测量拟合的综合任务,包括尺寸、形状、位置。-[^3]:Halcon一维测量,提到卡尺工具的优势:易用、执行时间短、精度高。-[^4]:Halcon
recommend-type

掌握牛顿法解方程:切线与割线的程序应用

牛顿切线法和牛顿割线法是数值分析中用于求解方程近似根的两种迭代方法。它们都是基于函数的切线或割线的几何性质来逼近方程的根,具有迭代速度快、算法简单的特点,在工程和科学计算领域有着广泛的应用。 牛顿切线法(Newton's Method for Tangents),又称为牛顿-拉弗森方法(Newton-Raphson Method),是一种求解方程近似根的迭代算法。其基本思想是利用函数在某点的切线来逼近函数的根。假设我们要求解方程f(x)=0的根,可以从一个初始猜测值x0开始,利用以下迭代公式: x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)} 其中,f'(x_n)表示函数在点x_n处的导数。迭代过程中,通过不断更新x_n值,逐渐逼近方程的根。 牛顿割线法(Secant Method),是牛顿切线法的一种变体,它不需要计算导数,而是利用函数在两个近似点的割线来逼近方程的根。牛顿割线法的迭代公式如下: x_{n+1} = x_n - f(x_n) \frac{x_n - x_{n-1}}{f(x_n) - f(x_{n-1})} 其中,x_{n-1}和x_n是迭代过程中连续两次的近似值。牛顿割线法相比牛顿切线法,其优点在于不需要计算函数的导数,但通常收敛速度会比牛顿切线法慢一些。 在实际应用中,这两种方法都需要注意迭代的起始点选择,否则可能会导致迭代过程不收敛。同时,这两种方法都是局部收敛方法,即它们只能保证在初始点附近有足够的近似根时才收敛。 关于例题和程序,牛顿切线法和牛顿割线法都可以通过编程实现。通常在编程实现时,需要输入函数的表达式、初始猜测值、迭代次数限制以及误差容忍度等参数。程序会根据这些输入,通过循环迭代计算,直到满足误差容忍度或达到迭代次数限制为止。 在编程实现过程中,需要注意以下几点: 1. 初始猜测值的选择对迭代的收敛性有较大影响,需要根据具体问题来合理选择。 2. 当迭代过程中遇到函数值或导数值过大、过小,或者分母趋近于零时,需要进行适当的数值处理,以避免数值不稳定或除以零的错误。 3. 对于不同的方程和函数,可能需要选择不同的迭代终止条件,如设定一个误差值或迭代次数上限。 牛顿法(包含牛顿切线法和牛顿割线法)是一类非常强大的数值解法,尤其适用于求解非线性方程,其基本原理和程序实现的知识点在理工科的许多领域都有着广泛的应用,是数值分析领域的一个基石。 请注意,本知识点仅涵盖标题和描述中提到的内容,压缩包子文件列表中的信息并未提供,因此无法提供相关内容的知识点。
recommend-type

【制图技术】:甘肃高质量土壤分布TIF图件的成图策略

# 摘要 本文针对甘肃土壤分布数据的TIF图件制作进行了系统研究。首先概述了甘肃土壤的分布情况,接着介绍了TIF图件的基础知识,包括其格式特点、空间数据表达以及质量控制方法。随后,文中构建了成图策略的理论框架,分析了土壤分布图的信息需求与数据处理流程,并探讨了成图原则与标准。在实践操作部分,详细阐述了制图软