The web application [ROOT] appears to have started a thread named [Thread-28] but has failed to stop it. This is very likely to create a memory leak. Stack trace of thread:

时间: 2025-06-10 14:52:56 浏览: 4
### 解决 Web 应用中线程未正确停止导致内存泄漏的问题 在处理 Web 应用中的线程管理问题时,如果发现某些线程未能正常终止并引发内存泄漏,则可以通过分析堆栈跟踪来定位具体原因。以下是针对 `Thread-28` 的可能解决方案。 #### 堆栈跟踪分析 当遇到线程未正确停止的情况时,可以利用调试工具获取该线程的堆栈信息。通过观察堆栈跟踪,能够找到线程正在执行的具体方法或函数调用链路。例如,在上述引用中提到的操作系统会为每个系统级线程分配栈空间[^2],因此需要确认是否存在长时间运行的任务或者阻塞操作阻止了线程退出。 对于 Java 编写的 Web 应用程序而言,通常建议设置守护线程(Daemon Threads),这样即使存在未完成的工作也不会阻碍 JVM 关闭进程。然而需要注意的是,任何非守护状态下的后台任务都可能导致应用程序无法释放资源而造成泄露现象发生。 #### 使用 Memory Manager 进行诊断 为了进一步排查潜在的内存泄漏源码位置,可引入自定义内存管理器类库如引用所描述那样实现基本功能[^1]。在此基础上增加日志记录机制以便于后续审查哪些对象实例尚未被销毁以及它们占用了多少字节大小的数据块等内容。 此外还可以借助第三方性能监控平台比如 VisualVM 或者 YourKit 来可视化展示整个生命周期内的内存变化趋势图谱;同时这些工具有助于捕捉快照文件进而深入挖掘根本原因所在之处。 ```java // Example Code Snippet for Daemon Thread Setup in Java Servlet ContextListener @Override public void contextDestroyed(ServletContextEvent sce) { try{ myCustomTask.shutdownNow(); // Attempt immediate shutdown of all threads. } catch(Exception e){ System.err.println("Error during cleanup:" +e.getMessage()); } } ``` 以上代码片段展示了如何在一个典型的Java EE环境中配置监听器以确保容器关闭前清理掉所有活动中的异步作业队列成员们。 #### 预防措施与最佳实践 为了避免未来再次出现类似的状况,请遵循以下几点建议: - **合理设计架构**: 尽量减少长期存活的对象数量及其关联关系网复杂度; - **及时回收资源**: 明确指定超时期限参数控制连接池、缓存等组件的行为模式; - **定期维护环境**: 定期重启服务端节点有助于缓解因碎片化积累带来的负面影响效果显著。 ---
阅读全文

相关推荐

升级到springboot3.3.7后,启动报错2025-05-28T14:29:27.304+08:00 WARN 14584 --- [todo-integration-server] [ main] ConfigServletWebServerApplicationContext : Exception encountered during context initialization - cancelling refresh attempt: org.springframework.beans.factory.BeanCreationException: Error creating bean with name 'matterEntityManagerFactory' defined in file [E:\workSpace\cnooc_platform\eadcloud-todo-integration-server\server\hd-todo-integration-server\build\resources\main\META-INF\spring\todo-integration-service.xml]: Cannot create inner bean 'org.springframework.data.jpa.support.MergingPersistenceUnitManager#5a205ee5' of type [org.springframework.data.jpa.support.MergingPersistenceUnitManager] while setting bean property 'persistenceUnitManager' 2025-05-28T14:29:27.349+08:00 WARN 14584 --- [todo-integration-server] [ main] c.t.c.loader.WebappClassLoaderBase : The web application [ROOT] appears to have started a thread named [Thread-7] but has failed to stop it. This is very likely to create a memory leak. Stack trace of thread: [email protected]/sun.net.dns.ResolverConfigurationImpl.notifyAddrChange0(Native Method) [email protected]/sun.net.dns.ResolverConfigurationImpl$AddressChangeListener.run(ResolverConfigurationImpl.java:176) 2025-05-28T14:29:27.446+08:00 ERROR 14584 --- [todo-integration-server] [ main] o.s.b.d.LoggingFailureAnalysisReporter : *************************** APPLICATION FAILED TO START *************************** Description: A component required a bean named 'dataSource' that could not be found. Action: Consider defining a bean named 'dataSource' in your configuration.

12-Jul-2023 18:36:28.896 SEVERE [localhost-startStop-1] org.apache.catalina.core.StandardContext.startInternal One or more listeners failed to start. Full details will be found in the appropriate container log file 12-Jul-2023 18:36:28.898 SEVERE [localhost-startStop-1] org.apache.catalina.core.StandardContext.startInternal Context [/setting] startup failed due to previous errors 2023-07-12 18:36:28,899 [// - - ] INFO org.springframework.web.context.support.XmlWebApplicationContext - Closing Root WebApplicationContext: startup date [Wed Jul 12 18:36:27 CST 2023]; root of context hierarchy 2023-07-12 18:36:28,900 [// - - ] INFO org.springframework.cache.ehcache.EhCacheManagerFactoryBean - Shutting down EhCache CacheManager 12-Jul-2023 18:36:28.908 WARNING [localhost-startStop-1] org.apache.catalina.loader.WebappClassLoaderBase.clearReferencesJdbc The web application [setting] registered the JDBC driver [com.mysql.jdbc.Driver] but failed to unregister it when the web application was stopped. To prevent a memory leak, the JDBC Driver has been forcibly unregistered. 12-Jul-2023 18:36:28.908 WARNING [localhost-startStop-1] org.apache.catalina.loader.WebappClassLoaderBase.clearReferencesThreads The web application [setting] appears to have started a thread named [Abandoned connection cleanup thread] but has failed to stop it. This is very likely to create a memory leak. Stack trace of thread: java.lang.Object.wait(Native Method) java.lang.ref.ReferenceQueue.remove(ReferenceQueue.java:143) com.mysql.jdbc.AbandonedConnectionCleanupThread.run(AbandonedConnectionCleanupThread.java:40)

zip
压缩包“与我的博士相关的Basilisk模拟_C_Shell_下载.zip”包含与使用Basilisk软件进行模拟研究相关的资料,重点涉及C语言编程和Shell脚本。Basilisk是一个开源软件,主要用于流体力学、地球物理和其他科学领域的数值模拟。该压缩包中包含以下内容: 1. **Basilisk框架**:由Jérôme Guégan开发,提供高效的C语言库,用于解决偏微分方程,代码设计简洁,适合科研。 2. **C语言编程**:需掌握基本语法、数据结构、内存管理等,以理解Basilisk的高效内存使用。 3. **数值方法**:如有限体积法、谱方法,用于将偏微分方程离散化并求解。 4. **科学计算**:涉及流体力学、地球物理等领域的模拟,需了解相关理论。 5. **Shell脚本**:用于自动化模拟执行,如参数扫描和结果分析,需掌握基本命令和脚本编写。 6. **版本控制**:文件名暗示可能涉及Git,需掌握代码版本管理。 7. **数据可视化**:使用工具如gnuplot、Paraview进行结果分析和图表制作。 8. **编译与调试**:需熟悉编译器(如GCC)和调试C代码的方法。 9. **并行计算**:支持OpenMP或MPI,需理解进程、线程和通信同步。 10. **文档阅读**:需学习项目提供的用户手册、教程和示例代码。 该资料涵盖从C语言到科学模拟的多个方面,对使用Basilisk进行博士研究具有重要价值。内容来源于网络分享,如有侵权请联系我删除。

大家在看

recommend-type

dhtmlxGantt_v4.0.0

甘特图(dhtmlxgantt)的资源文件,具体代码请访问https://blog.csdn.net/qq_27339781/article/details/79869584
recommend-type

AUTOSAR_MCAL_WDG.zip

This User Manual describes NXP Semiconductors AUTOSAR Watchdog ( Wdg ) for S32K14X . AUTOSAR Wdg driver configuration parameters and deviations from the specification are described in Wdg Driver chapter of this document. AUTOSAR Wdg driver requirements and APIs are described in the AUTOSAR Wdg driver software specification document.
recommend-type

虚幻引擎3D角色动画工作流

当3D建模师或动画师在Maya/3ds MAX/Blender等软件(下述将这些软件简称为DCC,Digital Content Creation)中制作3D模型或动画时应该遵循怎样的制作规范? 在模型或动画制作完成后应该怎样将其导入到虚幻引擎中?通常我们会在DCC工具中将制作好的资源导出成FBX文件,然后在虚幻引擎中导入FBX文件,FBX文件是如此重要以至于我们需要深刻的认识它。当然现在也有一些工作流插件可以直接将DCC工具中制作的模型或动画直接传递给虚幻引擎,在这个过程中我们将不会再看到FBX文件。 模型或动画被导入到虚幻引擎后,在虚幻引擎中应该怎样使用这些资源? 如果多个角色的骨骼相同或非常相似,应该怎样复用动画资源而不是让动画师重复的制作这些动画? 在虚幻引擎中驱动动画(在什么时候该播什么动画)的玩意叫动画蓝图,动画蓝图是与骨骼严格绑定的,当游戏中不同骨骼的角色拥有相同的动画播放逻辑,此时应该怎样避免对每种骨骼都创建相同逻辑的动画蓝图,换句话说应该怎样复用动画蓝图? 在本课程中我们将解决上述问题。 注意:本课程并不涉及如何制作漂亮的角色和帅气的动画,本课程重点讲的是
recommend-type

verilog实现SDI音频内嵌bt1120

verilog实现SDI音频内嵌bt1120;符合标准SDI 辅助数据协议。数据包括:Y/C两路,分别为控制链路和数据链路。通过SDI分析仪可以分析协议正确性。
recommend-type

《操作系统教程》(第六版)习题答案

教材:《操作系统教程》(第六版)骆斌,葛季栋,费翔林编著 内容为该教材的习题答案(仅供参考,不确保是否有遗漏)

最新推荐

recommend-type

redis常用命令入门教程.md

redis常用命令入门教程.md
recommend-type

课程设计-jsp2159(CS)交通信号灯oracle-qlkrp.zip

课程设计 源代码数据库配套报告教程
recommend-type

Node+electron-vue聊天软件

分别给前后端安装依赖:npm i 后端运行:node app 前端运行:npm run dev 前端打包:npm run pack
recommend-type

Basilisk模拟与我的博士相关_C_Shell_下载

压缩包“与我的博士相关的Basilisk模拟_C_Shell_下载.zip”包含与使用Basilisk软件进行模拟研究相关的资料,重点涉及C语言编程和Shell脚本。Basilisk是一个开源软件,主要用于流体力学、地球物理和其他科学领域的数值模拟。该压缩包中包含以下内容: 1. **Basilisk框架**:由Jérôme Guégan开发,提供高效的C语言库,用于解决偏微分方程,代码设计简洁,适合科研。 2. **C语言编程**:需掌握基本语法、数据结构、内存管理等,以理解Basilisk的高效内存使用。 3. **数值方法**:如有限体积法、谱方法,用于将偏微分方程离散化并求解。 4. **科学计算**:涉及流体力学、地球物理等领域的模拟,需了解相关理论。 5. **Shell脚本**:用于自动化模拟执行,如参数扫描和结果分析,需掌握基本命令和脚本编写。 6. **版本控制**:文件名暗示可能涉及Git,需掌握代码版本管理。 7. **数据可视化**:使用工具如gnuplot、Paraview进行结果分析和图表制作。 8. **编译与调试**:需熟悉编译器(如GCC)和调试C代码的方法。 9. **并行计算**:支持OpenMP或MPI,需理解进程、线程和通信同步。 10. **文档阅读**:需学习项目提供的用户手册、教程和示例代码。 该资料涵盖从C语言到科学模拟的多个方面,对使用Basilisk进行博士研究具有重要价值。内容来源于网络分享,如有侵权请联系我删除。
recommend-type

AD电子线路绘制MP3工程项目

MP3元器件的绘制 MP3库的封装
recommend-type

Java算法:二叉树的前中后序遍历实现

在深入探讨如何用Java实现二叉树及其三种基本遍历(前序遍历、中序遍历和后序遍历)之前,我们需要了解一些基础知识。 首先,二叉树是一种被广泛使用的数据结构,它具有以下特性: 1. 每个节点最多有两个子节点,分别是左子节点和右子节点。 2. 左子树和右子树都是二叉树。 3. 每个节点都包含三个部分:值、左子节点的引用和右子节点的引用。 4. 二叉树的遍历通常用于访问树中的每个节点,且访问的顺序可以是前序、中序和后序。 接下来,我们将详细介绍如何用Java来构建这样一个树结构,并实现这些遍历方式。 ### Java实现二叉树结构 要实现二叉树结构,我们首先需要一个节点类(Node.java),该类将包含节点值以及指向左右子节点的引用。其次,我们需要一个树类(Tree.java),它将包含根节点,并提供方法来构建树以及执行不同的遍历。 #### Node.java ```java public class Node { int value; Node left; Node right; public Node(int value) { this.value = value; left = null; right = null; } } ``` #### Tree.java ```java import java.util.Stack; public class Tree { private Node root; public Tree() { root = null; } // 这里可以添加插入、删除等方法 // ... // 前序遍历 public void preOrderTraversal(Node node) { if (node != null) { System.out.print(node.value + " "); preOrderTraversal(node.left); preOrderTraversal(node.right); } } // 中序遍历 public void inOrderTraversal(Node node) { if (node != null) { inOrderTraversal(node.left); System.out.print(node.value + " "); inOrderTraversal(node.right); } } // 后序遍历 public void postOrderTraversal(Node node) { if (node != null) { postOrderTraversal(node.left); postOrderTraversal(node.right); System.out.print(node.value + " "); } } // 迭代形式的前序遍历 public void preOrderTraversalIterative() { Stack<Node> stack = new Stack<>(); stack.push(root); while (!stack.isEmpty()) { Node node = stack.pop(); System.out.print(node.value + " "); if (node.right != null) { stack.push(node.right); } if (node.left != null) { stack.push(node.left); } } System.out.println(); } // 迭代形式的中序遍历 public void inOrderTraversalIterative() { Stack<Node> stack = new Stack<>(); Node current = root; while (current != null || !stack.isEmpty()) { while (current != null) { stack.push(current); current = current.left; } current = stack.pop(); System.out.print(current.value + " "); current = current.right; } System.out.println(); } // 迭代形式的后序遍历 public void postOrderTraversalIterative() { Stack<Node> stack = new Stack<>(); Stack<Node> output = new Stack<>(); stack.push(root); while (!stack.isEmpty()) { Node node = stack.pop(); output.push(node); if (node.left != null) { stack.push(node.left); } if (node.right != null) { stack.push(node.right); } } while (!output.isEmpty()) { System.out.print(output.pop().value + " "); } System.out.println(); } } ``` ### Java实现的二叉树遍历详细解析 #### 前序遍历(Pre-order Traversal) 前序遍历是先访问根节点,然后递归地前序遍历左子树,接着递归地前序遍历右子树。遍历的顺序是:根 -> 左 -> 右。 #### 中序遍历(In-order Traversal) 中序遍历是先递归地中序遍历左子树,然后访问根节点,最后递归地中序遍历右子树。对于二叉搜索树来说,中序遍历可以按从小到大的顺序访问所有节点。遍历的顺序是:左 -> 根 -> 右。 #### 后序遍历(Post-order Traversal) 后序遍历是先递归地后序遍历左子树,然后递归地后序遍历右子树,最后访问根节点。遍历的顺序是:左 -> 右 -> 根。 ### 迭代形式的遍历 在上述`Tree.java`类中,我们还实现了迭代形式的遍历,通过使用栈来模拟递归过程。这种方法在处理大型树结构时,可以避免递归导致的栈溢出问题,并且可以提高效率。 ### 总结 通过上述代码和解释,我们可以看到,使用Java实现二叉树及其遍历方法相对直接。核心在于理解二叉树节点的结构和递归逻辑,以及如何使用栈来模拟递归过程。在实践中,了解并掌握这些基本算法对于解决复杂问题是非常有用的。此外,理解这些基本概念后,可以进一步探索更高级的二叉树算法,如平衡二叉树(AVL树)、红黑树等。
recommend-type

【性能测试基准】:为RK3588选择合适的NVMe性能测试工具指南

# 1. NVMe性能测试基础 ## 1.1 NVMe协议简介 NVMe,全称为Non-Volatile Memory Express,是专为固态驱动器设计的逻辑设备接口规范。与传统的SATA接口相比,NVMe通过使用PCI Express(PCIe)总线,大大提高了存储设备的数据吞吐量和IOPS(每秒输入输出操作次数),特别适合于高速的固态存储设备。
recommend-type

grant usage on ** to bcc@*%

<think>我们正在处理一个关于MySQL权限授予的问题。用户的具体需求是:为数据库用户'bcc'@'%'授予对所有数据库的使用权限(USAGE)。根据引用[1]和引用[4],我们知道在MySQL中,使用GRANT语句来授予权限。注意:USAGE权限实际上是一个“无权限”的权限,它仅仅表示用户存在,但没有任何实际权限(除了连接数据库)。如果用户只想允许用户连接数据库而不做任何操作,那么授予USAGE是合适的。但是,用户要求的是“使用权限”,我们需要确认用户是否真的只需要USAGE权限,还是需要其他权限?根据问题描述,用户明确说“使用权限”,并且指定了USAGE(在问题中提到了grantusa
recommend-type

Nokia手机通用密码计算器:解锁神器

根据给定的文件信息,我们可以了解到一个关于诺基亚(Nokia)手机解锁密码生成工具的知识点。在这个场景中,文件标题“Nokia手机密码计算器”表明了这是一个专门用于生成Nokia手机解锁密码的应用程序。描述中提到的“输入手机串号,就可得到10位通用密码,用于解锁手机”说明了该工具的使用方法和功能。 知识点详解如下: 1. Nokia手机串号的含义: 串号(Serial Number),也称为序列号,是每部手机独一无二的标识,通常印在手机的电池槽内或者在手机的设置信息中可以查看。它对于手机的售后维修、技术支持以及身份识别等方面具有重要意义。串号通常由15位数字组成,能够提供制造商、型号、生产日期和制造地点等相关信息。 2. Nokia手机密码计算器的工作原理: Nokia手机密码计算器通过特定的算法将手机的串号转换成一个10位的数字密码。这个密码是为了帮助用户在忘记手机的PIN码(个人识别码)、PUK码(PIN解锁码)或者某些情况下手机被锁定时,能够解锁手机。 3. 通用密码与安全性: 这种“通用密码”是基于一定算法生成的,不是随机的。它通常适用于老型号的Nokia手机,因为这些手机在设计时通常会采用固定的算法来生成密码。然而,随着科技的发展和安全需求的提高,现代手机通常不会提供此类算法生成的通用密码,以防止未经授权的解锁尝试。 4. Nokia手机的安全机制: 老型号的Nokia手机在设计时,通常会考虑到用户可能忘记密码的情况。为了保证用户在这种情况下的手机依然能够被解锁使用,制造商设置了一套安全机制,即通用密码系统。但这同时也带来了潜在的安全风险,因为如果算法被破解,那么任何知道串号的人都可能解锁这部手机。 5. MasterCode.exe文件的作用: 文件列表中的“MasterCode.exe”很可能就是上述“Nokia手机密码计算器”的可执行文件。用户需要运行这个程序,并按照程序的指示输入手机的串号,程序便会根据内部的算法计算出用于解锁的密码。 6. 注意事项和法律风险: 尽管此类工具在技术上帮助了用户,但必须强调的是,使用此类解锁工具或破解手机可能会违反相关的法律法规,特别是如果手机并非属于解锁者本人。在大多数国家,未经授权解锁手机都是违法的,尤其是在手机是通过运营商签订合约购买的情况下。因此,用户在尝试使用通用密码解锁手机前,应确保了解当地的法律法规,并且只在合法和合理的范围内使用此类工具。 7. 替代解锁方法: 对于现代智能手机,如果用户忘记了解锁密码,通常需要通过官方的客户服务来解决,例如联系手机制造商的客服或到指定的维修点进行解锁。一些手机还提供了账号解锁的功能,比如Apple的“查找我的iPhone”功能,以及Google的账号解锁选项。 总结来说,Nokia手机密码计算器是一个基于特定算法的实用工具,可帮助用户在忘记密码时解锁其Nokia手机。然而,用户在使用此类工具时应谨慎,并且必须遵守当地的法律法规。
recommend-type

【固态硬盘寿命延长】:RK3588平台NVMe维护技巧大公开

# 1. 固态硬盘寿命延长的基础知识 ## 1.1 固态硬盘的基本概念 固态硬盘(SSD)是现代计算设备中不可或缺的存储设备之一。与传统的机械硬盘(HDD)相比,SSD拥有更快的读写速度、更小的体积和更低的功耗。但是,SSD也有其生命周期限制,主要受限于NAND闪存的写入次数。 ## 1.2 SSD的写入次数和寿命 每块SSD中的NAND闪存单元都有有限的写入次数。这意味着,随着时间的推移,SSD的