ddpg算法实现车辆避障
时间: 2025-07-04 19:57:36 浏览: 4
### DDPG算法实现车辆避障
#### 1. 环境设置与依赖安装
为了运行DDPG算法来实现实时车辆避障,首先需要准备环境并安装必要的库。
```bash
pip install gym torch numpy matplotlib
```
#### 2. 定义环境
定义一个模拟环境用于测试和训练。此环境中包含障碍物以及一辆可以移动的小车。该部分可以通过自定义`gym.Env`类完成。
```python
import gym
from gym import spaces
import numpy as np
import random
import math
class VehicleEnv(gym.Env):
metadata = {'render.modes': ['human']}
def __init__(self, goal_velocity=0):
super(VehicleEnv).__init__()
self.max_speed = 1.0
self.min_position = -1.2
self.max_position = 0.6
# 动作空间 [-1, 1], 表示加速度范围
self.action_space = spaces.Box(low=-1.0, high=1.0, shape=(1,), dtype=np.float32)
# 观测空间 [position, velocity]
low = np.array([self.min_position, -self.max_speed])
high = np.array([self.max_position, self.max_speed])
self.observation_space = spaces.Box(low, high, dtype=np.float32)
def reset(self):
"""重置环境"""
pass
def step(self, action):
"""执行一步操作"""
position, velocity = self.state
force = min(max(action[0], -1), 1) * 0.0015
velocity += force
if (velocity > self.max_speed): velocity = self.max_speed
if (velocity < -self.max_speed): velocity = -self.max_speed
position += velocity
if (position > self.max_position): position = self.max_position
if (position < self.min_position): position = self.min_position
done = bool(position >= self.goal_position and velocity >= self.goal_velocity)
reward = -1.0 if not done else 0.0
self.state = (np.array([position, velocity]))
return np.array(self.state), reward, done, {}
def render(self, mode='human'):
"""渲染当前状态"""
pass
```
上述代码片段仅提供了一个简化版的环境框架[^2]。
#### 3. 构建DDPG模型
接下来构建DDPG所需的Actor(策略网络)和Critic(价值函数评估网络)。这里使用PyTorch作为深度学习框架。
```python
import torch
import torch.nn.functional as F
from torch import nn
class Actor(nn.Module):
def __init__(self, state_dim, action_dim, max_action):
super(Actor, self).__init__()
self.l1 = nn.Linear(state_dim, 400)
self.l2 = nn.Linear(400, 300)
self.l3 = nn.Linear(300, action_dim)
self.max_action = max_action
def forward(self, x):
x = F.relu(self.l1(x))
x = F.relu(self.l2(x))
x = self.max_action * torch.tanh(self.l3(x))
return x
class Critic(nn.Module):
def __init__(self, state_dim, action_dim):
super(Critic, self).__init__()
self.l1 = nn.Linear(state_dim + action_dim, 400)
self.l2 = nn.Linear(400, 300)
self.l3 = nn.Linear(300, 1)
def forward(self, x, u):
xu = torch.cat([x, u], dim=1)
x1 = F.relu(self.l1(xu))
x1 = F.relu(self.l2(x1))
x1 = self.l3(x1)
return x1
```
这部分展示了如何创建两个神经网络以分别代表actor和critic角色[^3]。
#### 4. 训练过程概览
实际应用中还需要考虑经验回放缓冲区、噪声生成器等因素,并按照一定周期更新target network权重。完整的训练流程涉及多个组件之间的协调工作,在此不再赘述具体细节[^1]。
阅读全文
相关推荐


















