MATLAB相机标定

时间: 2023-09-25 17:07:07 浏览: 235
MATLAB提供了相机标定的工具箱,可以用来对相机进行标定。相机标定的目的是为了确定相机内外参数,以及畸变系数,从而准确地将图像中的像素坐标转换为相应的世界坐标。 下面是一个简单的相机标定的步骤: 1. 准备标定板:使用标定板(如棋盘格)作为标定目标。确保标定板上的方格清晰可见,并且边缘平整。 2. 拍摄图像:使用相机拍摄多张包含标定板的图像。在每张图像中,尽量多角度和不同位置拍摄标定板,以覆盖整个视野范围。 3. 提取角点:使用MATLAB的图像处理工具箱中的函数,例如`detectCheckerboardPoints`,来检测每张图像中标定板的角点坐标。 4. 标定相机:使用`estimateCameraParameters`函数,传入角点坐标和标定板的实际尺寸信息,来计算相机的内外参数和畸变系数。 5. 评估标定结果:使用`showReprojectionErrors`函数来评估标定结果的精度。该函数将显示每个角点在图像上的实际位置和重投影位置之间的误差。 6. 保存标定结果:保存相机的内外参数和畸变系数,以便后续使用。 以上是一个简单的相机标定的步骤,你可以根据具体的需求和情况,在此基础上进行进一步的优化和调整。
相关问题

MATLAB 相机标定

相机标定是计算机视觉中的一个重要任务,可以用于相机姿态估计、三维重建等应用。MATLAB提供了相机标定工具箱(Camera Calibration Toolbox),可以方便地进行相机标定。以下是相机标定的大致步骤: 1. 拍摄标定板图像:使用标定板(一般为黑白棋盘格)拍摄多张图像,要求覆盖标定板各个姿态。 2. 提取标定板角点:对于每张图像,使用角点检测算法(如Harris角点检测、FAST角点检测等)提取标定板上的角点。 3. 标定参数计算:使用MATLAB的相机标定工具箱,输入角点坐标信息,计算相机内参和畸变参数。 4. 验证标定结果:使用标定结果对新的图像进行相机姿态估计、三维重建等操作,验证标定结果的准确性。 MATLAB提供了丰富的相机标定工具箱函数,包括`detectCheckerboardPoints`、`estimateCameraParameters`等,具体使用方法可以参考MATLAB的官方文档或者相机标定工具箱的示例程序。

【Matlab】相机标定(计算机视觉工具箱)_matlab相机标定

### 使用Matlab的计算机视觉工具箱进行相机标定 为了利用Matlab中的计算机视觉工具箱完成相机标定时,用户可以选择使用预定义的功能函数或是通过交互式的`Camera Calibrator`应用程序来简化这一过程[^2]。 #### 准备工作 在启动校准之前,准备一组带有已知几何模式的照片非常重要。通常推荐的是棋盘格图案,因为其角点易于被自动识别。确保拍摄不同角度和位置下的多张图片以覆盖整个成像区域。 #### 启动Camera Calibrator App 可以通过命令窗口输入`cameraCalibrator`指令打开此应用程程序。加载先前准备好的图像集合之后,在界面上按照提示逐步操作即可实现参数估计的过程。 #### 自动化脚本方式 对于偏好编写代码或希望集成到更大规模自动化流程里的开发者来说,也可以调用专门用于摄像机内部参量求解的一系列APIs来进行编程处理: ```matlab % 加载图像文件夹路径下所有的jpg格式照片作为样本集 images = imageDatastore('path/to/images', 'FileExtensions', '.jpg'); % 创建检测器对象并指定要寻找的目标类型为标准国际象棋方格板(8x6) detector = checkerboardDetector; % 执行内外部参数估算任务 [params, imagesUsed] = estimateCameraParameters(images.Files, detector); ``` 上述方法不仅限于单目摄像头;双目标定同样支持,并且能够获取两台设备间的相对姿态关系以及基本矩阵等额外信息[^4]。 #### 结果验证与保存 一旦获得了满意的模型系数,则应当对其进行充分检验——比如重投影误差分析——确认无误后再考虑将其应用于实际场景之中去。最后别忘了妥善保管好最终版配置文档以便后续重复利用或者分享给团队成员们[^1]。
阅读全文

相关推荐

zip
matlab 相机标定代码 摄像机标定(Camera calibration)简单来说是从世界坐标系换到图像坐标系的过程,也就是求最终的投影矩阵的过程。 [1]基本的坐标系: 世界坐标系; 相机坐标系; 成像平面坐标系; 像素坐标系 [2]一般来说,标定的过程分为两个部分: 第一步是从世界坐标系转为相机坐标系,这一步是三维点到三维点的转换,包括R,t(相机外参,确定了相机在某个三维空间中的位置和朝向)等参数; 第二部是从相机坐标系转为成像平面坐标系(像素坐标系),这一步是三维点到二维点的转换,包括K(相机内参,是对相机物理特性的近似)等参数; 投影矩阵 : P=K [ R | t ] 是一个3×4矩阵,混合了内参和外参而成。 P=K[Rt] 二.基本知识介绍及 1、摄像机模型 Pinhole Camera模型如下图所示: 摄像机模型与标定 - 小企鹅 - 企鹅的博客 是一个小孔成像的模型,其中: [1]O点表示camera centre,即相机的中心点,也是相机坐标系的中心点; [2]z轴表示principal axis,即相机的主轴; [3]q点所在的平面表示image plane,即相机的像平面,也就是图片坐标系所在的二维平面; [4]O1点表示principal point,即主点,主轴与像平面相交的点; [5]O点到O1点的距离,也就是右边图中的f,即相机的焦距; [6]像平面上的x和y坐标轴是与相机坐标系上的X和Y坐标轴互相平行的; [7]相机坐标系是以X,Y,Z(大写)三个轴组成的且原点在O点,度量值为米(m); [8]像平面坐标系是以x,y(小写)两个轴组成的且原点在O1点,度量值为米(m); [9]像素坐标系一般指图片相对坐标系,在这里可以认为和像平面坐标系在一个平面上,不过原点是在图片的角上,而且度量值为像素的个数(pixel); 2、相机坐标系→成像平面坐标系 [1]以O点为原点建立摄像机坐标系。点Q(X,Y,Z)为摄像机坐标系空间中的一点,该点被光线投影到图像平面上的q(x,y,f)点。 图像平面与光轴z轴垂直,和投影中心距离为f (f是相机的焦距)。按照三角比例关系可以得出: x/f = X/Z y/f = Y/Z ,即 x = fX/Z y = fY/Z 以图像平面的左上角或左下角为原点建立坐标系。假设像平面坐标系原点位于图像左下角,水平向右为u轴,垂直向上为v轴,均以像素为单位。 以图像平面与光轴的交点O1 为原点建立坐标系,水平向右为x轴,垂直向上为y轴。原点O1一般位于图像中心处,O1在以像素为单位的图像坐标系中的坐标为(u0, v0)。 像平面坐标系和像素坐标系虽然在同一个平面上,但是原点并不是同一个。 摄像机模型与标定 - 小企鹅 - 企鹅的博客 设每个像素的物理尺寸大小为 dx * dy (mm) ( 由于单个像素点投影在图像平面上是矩形而不是正方形,因此可能dx != dy), 图像平面上某点在成像平面坐标系中的坐标为(x, y),在像素坐标系中的坐标为(u, v),则二者满足如下关系:[即(x, y)→(u, v)] u = x / dx + u0 v = y / dy + v0 用齐次坐标与矩阵形式表示为: 摄像机模型与标定 - 小企鹅 - 企鹅的博客 将等式两边都乘以点Q(X,Y,Z)坐标中的Z可得: 摄像机模型与标定 - 小企鹅 - 企鹅的博客 将摄像机坐标系中的(1)式代入上式可得: 则右边第一个矩阵和第二个矩阵的乘积亦为摄像机的内参数矩阵(单位为像素),相乘后可得: (2) 和(1)式相比,此内参数矩阵中f/dx, f/dy, cx/dx+u0, cy/dy+v0 的单位均为像素。令内参数矩阵为K,则上式可写成: 摄像机模型与标定 - 小企鹅 - 企鹅的博客 (3) 三.相机内参K(与棋盘所在空间的3D几何相关) 在计算机视觉中,摄像机内参数矩阵 其中 f 为摄像机的焦距,单位一般是mm;dx,dy 为像元尺寸;u0,v0 为图像中心。 fx = f/dx, fy = f/dy,分别称为x轴和y轴上的归一化焦距. 为更好的理解,举个实例: 现以NiKon D700相机为例进行求解其内参数矩阵: 就算大家身边没有这款相机也无所谓,可以在网上百度一下,很方便的就知道其一些参数—— 焦距 f = 35mm 最高分辨率:4256×2832 传感器尺寸:36.0×23.9 mm 根据以上定义可以有: u0= 4256/2 = 2128 v0= 2832/2 = 1416 dx = 36.0/4256 dy = 23.9/2832 fx = f/dx = 4137.8 fy = f/dy = 4147.3 分辨率可以从显示分辨率与图像分辨率两个方向来分类。 [1]显示分辨率(屏幕分辨率)是屏幕图像的精密度,是指显示器所能显示的像素有多少。由于屏幕上的点、线和面都是由像素组成的, 显示器可显示的像素越多,画面就越精细,同样的屏幕区域内能显示的信息也越多,所以分辨率是个非常重要的性能指标之一。 可以把整个图像想象成是一个大型的棋盘,而分辨率的表示方式就是所有经线和纬线交叉点的数目。 显示分辨率一定的情况下,显示屏越小图像越清晰,反之,显示屏大小固定时,显示分辨率越高图像越清晰。 [2]图像分辨率则是单位英寸中所包含的像素点数,其定义更趋近于分辨率本身的定义。 四.畸变参数(与点集如何畸变的2D几何相关。) 采用理想针孔模型,由于通过针孔的光线少,摄像机曝光太慢,在实际使用中均采用透镜,可以使图像生成迅速,但代价是引入了畸变。 有两种畸变对投影图像影响较大: 径向畸变和切向畸变。 1、径向畸变 对某些透镜,光线在远离透镜中心的地方比靠近中心的地方更加弯曲,产生“筒形”或“鱼眼”现象,称为径向畸变。 一般来讲,成像仪中心的径向畸变为0,越向边缘移动,畸变越严重。不过径向畸变可以通过下面的泰勒级数展开式来校正: xcorrected = x(1+k1r2+k2r4+k3r6) ycorrected = y(1+k1r2+k2r4+k3r6) 这里(x, y)是畸变点在成像仪上的原始位置,r为该点距离成像仪中心的距离,(xcorrected ,ycorrected )是校正后的新位置。 对于一般的摄像机校正,通常使用泰勒级数中的前两项k1和k2就够了;对畸变很大的摄像机,比如鱼眼透镜,可以使用第三径向畸变项k3 2、切向畸变 当成像仪被粘贴在摄像机的时候,会存在一定的误差,使得图像平面和透镜不完全平行,从而产生切向畸变。也就是说,如果一个矩形被投影到成像仪上时, 可能会变成一个梯形。切向畸变可以通过如下公式来校正: xcorrected = x + [ 2p1y + p2 (r2 + 2x2) ] ycorrected = y + [ 2p2x + p1 (r2 + 2y2) ] 这里(x, y)是畸变点在成像仪上的原始位置,r为该点距离成像仪中心的距离,(xcorrected ,ycorrected )是校正后的新位置。 五.摄像机的外参数 旋转向量(大小为1×3的矢量或旋转矩阵3×3)和平移向量(tx,ty,tz)。 旋转向量:旋转向量是旋转矩阵紧凑的变现形式,旋转向量为1×3的行矢量。 r就是旋转向量,旋转向量的方向是旋转轴 ,旋转向量的模为围绕旋转轴旋转的角度。 通过上面的公式,我们就可以求解出旋转矩阵R。同样的已知旋转矩阵,我们也可以通过下面的公式求解得到旋转向量: 。

最新推荐

recommend-type

网络流量优化策略.pptx

网络流量优化策略.pptx
recommend-type

网络时代中职院校图书馆用户需求及服务研究.docx

网络时代中职院校图书馆用户需求及服务研究.docx
recommend-type

WEB精确打印技术:教你实现无差错打印输出

根据给定文件信息,本篇将深入探讨实现Web精确打印的技术细节和相关知识点。 Web精确打印是指在Web应用中实现用户可以按需打印网页内容,并且在纸张上能够保持与屏幕上显示相同的布局、格式和尺寸。要实现这一目标,需要从页面设计、CSS样式、打印脚本以及浏览器支持等方面进行周密的考虑和编程。 ### 页面设计 1. **布局适应性**:设计时需要考虑将网页布局设计成可适应不同尺寸的打印纸张,这意味着通常需要使用灵活的布局方案,如响应式设计框架。 2. **内容选择性**:在网页上某些内容可能是为了在屏幕上阅读而设计,这不一定适合打印。因此,需要有选择性地为打印版本设计内容,避免打印无关元素,如广告、导航栏等。 ### CSS样式 1. **CSS媒体查询**:通过媒体查询,可以为打印版和屏幕版定义不同的样式。例如,在CSS中使用`@media print`来设置打印时的背景颜色、边距等。 ```css @media print { body { background-color: white; color: black; } nav, footer, header, aside { display: none; } } ``` 2. **避免分页问题**:使用CSS的`page-break-after`, `page-break-before`和`page-break-inside`属性来控制内容的分页问题。 ### 打印脚本 1. **打印预览**:通过JavaScript实现打印预览功能,可以在用户点击打印前让他们预览将要打印的页面,以确保打印结果符合预期。 2. **触发打印**:使用JavaScript的`window.print()`方法来触发用户的打印对话框。 ```javascript document.getElementById('print-button').addEventListener('click', function() { window.print(); }); ``` ### 浏览器支持 1. **不同浏览器的兼容性**:需要考虑不同浏览器对打印功能的支持程度,确保在主流浏览器上都能获得一致的打印效果。 2. **浏览器设置**:用户的浏览器设置可能会影响打印效果,例如,浏览器的缩放设置可能会改变页面的打印尺寸。 ### 实践技巧 1. **使用辅助工具类**:如Bootstrap等流行的前端框架中包含了专门用于打印的样式类,可以在设计打印页面时利用这些工具快速实现布局的调整。 2. **测试打印**:在不同的打印机和纸张尺寸上测试打印结果,确保在所有目标打印环境下都有良好的兼容性和效果。 3. **优化图片和图形**:确保所有用于打印的图片和图形都有足够的分辨率,且在打印时不会因为尺寸缩小而失真。 4. **使用打印样式表**:创建一个专门的打印样式表(print.css),并将其链接到HTML文档的`<link>`标签中。这样可以在打印时引用独立的CSS文件,实现对打印内容的精细控制。 ### 总结 Web精确打印的实现涉及到前端设计和开发的多个方面,从设计、样式的编写到JavaScript脚本的运用,都需要紧密配合。开发者需要具备对打印技术深刻的理解,并且能够熟练使用现代前端技术来达到精确打印的要求。通过上述的知识点介绍,可以为开发者提供一个全面的指导,帮助他们在Web项目中实现高质量的打印输出。
recommend-type

【性能测试基准】:为RK3588选择合适的NVMe性能测试工具指南

# 1. NVMe性能测试基础 ## 1.1 NVMe协议简介 NVMe,全称为Non-Volatile Memory Express,是专为固态驱动器设计的逻辑设备接口规范。与传统的SATA接口相比,NVMe通过使用PCI Express(PCIe)总线,大大提高了存储设备的数据吞吐量和IOPS(每秒输入输出操作次数),特别适合于高速的固态存储设备。
recommend-type

服务器无感部署

<think>首先,用户的问题是:“我想在不引起服务中断的情况下进行服务器部署请问如何实现服务器无感部署无需停机的部署方法”。这涉及到零停机部署,确保服务在更新过程中不间断。我需要参考提供的引用:-引用[1]:讨论了Web服务的无缝更新,强调零停机部署的重要性。 -引用[2]:提供了自动化运维中零停机构建与部署的实践,包括命令示例。 -引用[3]:描述了无感知部署方案,如蓝绿部署。 -引用[4]:提到了负载均衡和服务器横向分布的重要性。系统级指令:-所有行内数学表达式使用$...$格式。-独立公式使用$$...$$格式并单独成段。 -LaTeX语法正确。-使用中文回答。-生成相关问题。 -在回
recommend-type

C++源代码实现:分段线性插值与高斯消去法

根据提供的文件信息,我们可以详细解析和讨论标题和描述中涉及的知识点。以下内容将围绕“计算方法C++源代码”这一主题展开,重点介绍分段线性插值、高斯消去法、改进的EULAR方法和拉格朗日法的原理、应用场景以及它们在C++中的实现。 ### 分段线性插值(Piecewise Linear Interpolation) 分段线性插值是一种基本的插值方法,用于在一组已知数据点之间估算未知值。它通过在相邻数据点间画直线段来构建一个连续函数。这种方法适用于任何连续性要求不高的场合,如图像处理、计算机图形学以及任何需要对离散数据点进行估算的场景。 在C++中,分段线性插值的实现通常涉及到两个数组,一个存储x坐标值,另一个存储y坐标值。通过遍历这些点,我们可以找到最接近待求点x的两个数据点,并在这两点间进行线性插值计算。 ### 高斯消去法(Gaussian Elimination) 高斯消去法是一种用于解线性方程组的算法。它通过行操作将系数矩阵化为上三角矩阵,然后通过回代求解每个未知数。高斯消去法是数值分析中最基本的算法之一,广泛应用于工程计算、物理模拟等领域。 在C++实现中,高斯消去法涉及到对矩阵的操作,包括行交换、行缩放和行加减。需要注意的是,算法在实施过程中可能遇到数值问题,如主元为零或非常接近零的情况,因此需要采用适当的措施,如部分或完全选主元技术,以确保数值稳定性。 ### 改进的EULAR方法 EULAR方法通常是指用于解决非线性动力学系统的数值积分方法,尤其是在动力系统的仿真中应用广泛。但在这里可能是指对Euler方法的某种改进。Euler方法是一种简单的单步求解初值问题的方法,适用于求解常微分方程的初值问题。 Euler方法的基本思想是利用当前点的导数信息来预测下一个点的位置,进而迭代求解整个系统。在C++实现中,通常需要定义一个函数来描述微分方程,然后根据这个函数和步长进行迭代计算。 ### 拉格朗日法(Lagrange Interpolation) 拉格朗日插值法是一种多项式插值方法,它构建一个最高次数不超过n-1的多项式,使得这个多项式在n个已知数据点的值与这些点的已知值相等。拉格朗日插值法适用于数据点数量较少,且对插值精度要求较高的情况。 在C++中,实现拉格朗日插值法需要计算每个基多项式的值并将其乘以对应的已知函数值,然后将这些多项式相加得到最终的插值多项式。这一过程可能会涉及到大量计算,尤其是当数据点数量增多时。 ### 源代码文件列表 - 计算方法代码 虽然文件列表仅提供了“计算方法代码”这一名称,我们可以推断,压缩包中包含了上述所有计算方法的C++源代码文件。每个文件可能对应一个算法的实现,例如,可能会有一个名为“GaussianElimination.cpp”的文件专门用于实现高斯消去法。 ### 结论 文件信息指出,压缩包内包含了一系列计算方法的C++源代码,包括分段线性插值、高斯消去法、改进的EULAR方法和拉格朗日法等。这些方法在数值分析和科学计算领域扮演着重要的角色,它们各自的C++实现展现了程序员在面对不同类型问题时所采取的算法策略和编程技巧。这些代码对于理解算法原理和将其应用到实际问题中是非常有价值的资源。
recommend-type

【固态硬盘寿命延长】:RK3588平台NVMe维护技巧大公开

# 1. 固态硬盘寿命延长的基础知识 ## 1.1 固态硬盘的基本概念 固态硬盘(SSD)是现代计算设备中不可或缺的存储设备之一。与传统的机械硬盘(HDD)相比,SSD拥有更快的读写速度、更小的体积和更低的功耗。但是,SSD也有其生命周期限制,主要受限于NAND闪存的写入次数。 ## 1.2 SSD的写入次数和寿命 每块SSD中的NAND闪存单元都有有限的写入次数。这意味着,随着时间的推移,SSD的
recommend-type

代码解释 ```cpp LinkList tail = L; // 尾指针指向头结点 ```

<think>我们分析代码行:`LinkList tail= L;//尾指针指向头结点`在完整的代码中,这段代码位于创建头结点之后,尾插法创建链表之前。功能和作用:1.定义了一个LinkList类型的指针变量tail,并将其初始化为指向头结点L。2.注释说明“尾指针指向头结点”,这意味着tail将作为链表尾部的指针,在尾插法构建链表时用于跟踪当前链表的最后一个节点。3.在后续的尾插法循环中,每次添加新节点时,都会将新节点链接到tail所指向的节点(即当前尾节点)的后面,然后更新tail指向这个新节点,以保持tail始终指向链表的最后一个节点。4.这样做的目的是为了提高链表构建的效率。因为如果不
recommend-type

VC摄像头远程控制与图像采集传输技术

从提供的文件信息中,我们可以提取出关于VC(Visual C++)环境下对摄像头的控制,图像采集,编解码过程以及远程传输的关键知识点。接下来,我将对这些知识点进行详细的解释和阐述。 ### VC摄像头控制 在VC环境中,对摄像头进行控制通常涉及Windows API函数调用或者第三方库的使用。开发者可以通过调用DirectShow API或者使用OpenCV等图像处理库来实现摄像头的控制和图像数据的捕获。这包括初始化摄像头设备,获取设备列表,设置和查询摄像头属性,以及实现捕获图像的功能。 ### 图像的采集 图像采集是指利用摄像头捕获实时图像或者视频的过程。在VC中,可以使用DirectShow SDK中的Capture Graph Builder和Sample Grabber Filter来实现从摄像头捕获视频流,并进行帧到帧的操作。另外,OpenCV库提供了非常丰富的函数用于图像采集,包括VideoCapture类来读取视频文件或者摄像头捕获的视频流。 ### 编解码过程 编解码过程是指将采集到的原始图像数据转换成适合存储或传输的格式(编码),以及将这种格式的数据还原成图像(解码)的过程。在VC中,可以使用如Media Foundation、FFmpeg、Xvid等库进行视频数据的编码与解码工作。这些库能够支持多种视频编解码标准,如H.264、MPEG-4、AVI、WMV等。编解码过程通常涉及对压缩效率与图像质量的权衡选择。 ### 远程传输 远程传输指的是将编码后的图像数据通过网络发送给远程接收方。这在VC中可以通过套接字编程(Socket Programming)实现。开发者需要配置服务器和客户端,使用TCP/IP或UDP协议进行数据传输。传输过程中可能涉及到数据包的封装、发送、接收确认、错误检测和重传机制。更高级的传输需求可能会用到流媒体传输协议如RTSP或HTTP Live Streaming(HLS)。 ### 关键技术实现 1. **DirectShow技术:** DirectShow是微软提供的一个用于处理多媒体流的API,它包含了一系列组件用于视频捕获、音频捕获、文件读写、流媒体处理等功能。在VC环境下,利用DirectShow可以方便地进行摄像头控制和图像数据的采集工作。 2. **OpenCV库:** OpenCV是一个开源的计算机视觉和机器学习软件库。它提供了许多常用的图像处理函数和视频处理接口,以及强大的图像采集功能。在VC中,通过包含OpenCV库,开发者可以快速实现图像的采集和处理。 3. **编解码库:** 除了操作系统自带的编解码技术外,第三方库如FFmpeg是视频处理领域极为重要的工具。它支持几乎所有格式的音视频编解码,是一个非常强大的多媒体框架。 4. **网络编程:** 在VC中进行网络编程,主要涉及到Windows Sockets API。利用这些API,可以创建数据包的发送和接收,进而实现远程通信。 5. **流媒体协议:** 实现远程视频传输时,开发者可能会使用到RTSP、RTMP等流媒体协议。这些协议专门用于流媒体数据的网络传输,能够提供稳定和实时的传输服务。 ### 结语 文件标题《VC摄像头控制.图像得采集以及远程传输等》所涉及的内容是多方面的,涵盖了图像处理与传输的多个关键步骤,包括摄像头控制、图像采集、视频编解码以及网络传输。对于希望在VC环境下进行视频处理开发的工程师而言,了解上述技术细节至关重要。只有掌握了这些知识点,才能设计出稳定、高效的视频处理及传输系统。希望本篇内容能够为从事相关工作或学习的朋友们提供有益的参考与帮助。
recommend-type

【故障恢复策略】:RK3588与NVMe固态硬盘的容灾方案指南

# 1. RK3588处理器与NVMe固态硬盘的概述 ## 1.1 RK3588处理器简介 RK3588是Rockchip推出的一款高端处理器,具备强大的性能和多样的功能,集成了八核CPU和六核GPU,以及专用的AI处理单元,主要用于高端移动设备、边缘计算和