活动介绍

AttributeError: module 'torch' has no attribute 'get_default_device'

时间: 2025-06-01 19:00:35 浏览: 130
### 关于PyTorch中的AttributeError错误 在遇到`AttributeError: module 'torch' has no attribute 'get_default_device'`时,这通常表明调用了不存在的方法或属性。此问题可能由以下几个方面引起: #### 1. 方法或属性不存在 `get_default_device()`并不是PyTorch官方API的一部分[^6]。如果需要获取当前设备(CPU/GPU),可以使用如下方法替代: ```python device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') ``` 这段代码通过检测CUDA是否可用决定运行环境是GPU还是CPU。 --- #### 2. 版本兼容性问题 某些自定义库或第三方扩展可能会引入类似的函数名,但如果使用的PyTorch版本较旧,则可能导致找不到这些功能的情况。建议确认所依赖的功能是否存在并适用于当前安装的PyTorch版本。可以通过以下命令查看已安装的PyTorch版本: ```bash pip show torch ``` 或者直接在Python脚本中打印版本号: ```python import torch print(torch.__version__) ``` 对于特定功能的支持情况,请查阅对应版本的[PyTorch文档](https://pytorch.org/docs/stable/index.html)[^7]。 --- #### 3. 自定义模块冲突 如果有导入其他自定义模块覆盖了标准PyTorch行为,也可能引发此类错误。例如,在项目中有同名变量或其他命名空间污染的情况下,应仔细检查代码逻辑以排除潜在干扰源。 --- 以下是修正后的通用解决方案示例代码片段: ```python if not torch.cuda.is_available(): raise SystemExit("No GPU found!") # 定义设备对象 device = torch.device('cuda') if torch.cuda.is_available() else torch.device('cpu') model = YourModel().to(device) # 将数据移动至指定设备 input_tensor = input_tensor.to(device) output_tensor = model(input_tensor) ``` 以上实现方式更加稳健且广泛适用不同场景需求[^8]。 --- ###
阅读全文

相关推荐

/home/cw/anaconda3/bin/conda run -n GPU_pytorch --no-capture-output python /tmp/fEokboZTuK/main.py A module that was compiled using NumPy 1.x cannot be run in NumPy 2.0.2 as it may crash. To support both 1.x and 2.x versions of NumPy, modules must be compiled with NumPy 2.0. Some module may need to rebuild instead e.g. with 'pybind11>=2.12'. If you are a user of the module, the easiest solution will be to downgrade to 'numpy<2' or try to upgrade the affected module. We expect that some modules will need time to support NumPy 2. Traceback (most recent call last): File "/tmp/fEokboZTuK/main.py", line 1, in <module> import torch File "/home/cw/.conda/envs/GPU_pytorch/lib/python3.9/site-packages/torch/__init__.py", line 1477, in <module> from .functional import * # noqa: F403 File "/home/cw/.conda/envs/GPU_pytorch/lib/python3.9/site-packages/torch/functional.py", line 9, in <module> import torch.nn.functional as F File "/home/cw/.conda/envs/GPU_pytorch/lib/python3.9/site-packages/torch/nn/__init__.py", line 1, in <module> from .modules import * # noqa: F403 File "/home/cw/.conda/envs/GPU_pytorch/lib/python3.9/site-packages/torch/nn/modules/__init__.py", line 35, in <module> from .transformer import TransformerEncoder, TransformerDecoder, \ File "/home/cw/.conda/envs/GPU_pytorch/lib/python3.9/site-packages/torch/nn/modules/transformer.py", line 20, in <module> device: torch.device = torch.device(torch._C._get_default_device()), # torch.device('cpu'), /home/cw/.conda/envs/GPU_pytorch/lib/python3.9/site-packages/torch/nn/modules/transformer.py:20: UserWarning: Failed to initialize NumPy: _ARRAY_API not found (Triggered internally at ../torch/csrc/utils/tensor_numpy.cpp:84.) device: torch.device = torch.device(torch._C._get_default_device()), # torch.device('cpu'), /tmp/fEokboZTuK/main.py:89: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requi

06/06/2023-16:31:47] [TRT] [I] [MemUsageChange] TensorRT-managed allocation in IExecutionContext creation: CPU +0, GPU +0, now: CPU 0, GPU 0 (MiB) /home/sniper/anaconda3/envs/labelme/lib/python3.8/site-packages/tensorrt/__init__.py:166: FutureWarning: In the future np.bool will be defined as the corresponding NumPy scalar. bool: np.bool, Traceback (most recent call last): File "/home/sniper/anaconda3/envs/labelme/bin/yolo", line 8, in <module> sys.exit(entrypoint()) File "/home/sniper/anaconda3/envs/labelme/lib/python3.8/site-packages/ultralytics/yolo/cfg/__init__.py", line 398, in entrypoint getattr(model, mode)(**overrides) # default args from model File "/home/sniper/anaconda3/envs/labelme/lib/python3.8/site-packages/torch/utils/_contextlib.py", line 115, in decorate_context return func(*args, **kwargs) File "/home/sniper/anaconda3/envs/labelme/lib/python3.8/site-packages/ultralytics/yolo/engine/model.py", line 302, in val validator(model=self.model) File "/home/sniper/anaconda3/envs/labelme/lib/python3.8/site-packages/torch/utils/_contextlib.py", line 115, in decorate_context return func(*args, **kwargs) File "/home/sniper/anaconda3/envs/labelme/lib/python3.8/site-packages/ultralytics/yolo/engine/validator.py", line 114, in __call__ model = AutoBackend(model, device=self.device, dnn=self.args.dnn, data=self.args.data, fp16=self.args.half) File "/home/sniper/anaconda3/envs/labelme/lib/python3.8/site-packages/ultralytics/nn/autobackend.py", line 174, in __init__ dtype = trt.nptype(model.get_binding_dtype(i)) File "/home/sniper/anaconda3/envs/labelme/lib/python3.8/site-packages/tensorrt/__init__.py", line 166, in nptype bool: np.bool, File "/home/sniper/anaconda3/envs/labelme/lib/python3.8/site-packages/numpy/__init__.py", line 305, in __getattr__ raise AttributeError(__former_attrs__[attr]) AttributeError: module 'numpy' has no attribute 'bool'. np.bool was a deprecated alias for the builtin bool. To avoid this error in existing code, use bool by itself. Doing this will not modify any behavior and is safe. If you specifically wanted the numpy scalar type, use np.bool_ here. The aliases was originally deprecated in NumPy 1.20; for more details and guidance see the original release note at: https://numpy.org/devdocs/release/1.20.0-notes.html#deprecations 如何修复

/home/ustc/anaconda3/lib/python3.12/site-packages/transformers/utils/hub.py:105: FutureWarning: Using TRANSFORMERS_CACHE is deprecated and will be removed in v5 of Transformers. Use HF_HOME instead. warnings.warn( The following values were not passed to accelerate launch and had defaults used instead: More than one GPU was found, enabling multi-GPU training. If this was unintended please pass in --num_processes=1. --num_machines was set to a value of 1 --mixed_precision was set to a value of 'no' --dynamo_backend was set to a value of 'no' To avoid this warning pass in values for each of the problematic parameters or run accelerate config. /home/ustc/anaconda3/lib/python3.12/site-packages/torch/nn/utils/weight_norm.py:134: FutureWarning: torch.nn.utils.weight_norm is deprecated in favor of torch.nn.utils.parametrizations.weight_norm. WeightNorm.apply(module, name, dim) /home/ustc/anaconda3/lib/python3.12/site-packages/transformers/utils/hub.py:105: FutureWarning: Using TRANSFORMERS_CACHE is deprecated and will be removed in v5 of Transformers. Use HF_HOME instead. warnings.warn( [rank0]: Traceback (most recent call last): [rank0]: File "/home/ustc/anaconda3/lib/python3.12/site-packages/hydra/_internal/instantiate/_instantiate2.py", line 92, in _call_target [rank0]: return _target_(*args, **kwargs) [rank0]: ^^^^^^^^^^^^^^^^^^^^^^^^^ [rank0]: File "/home/ustc/桌面/seed-vc-main-v2/modules/astral_quantization/default_model.py", line 22, in __init__ [rank0]: self.tokenizer = WhisperProcessor.from_pretrained( [rank0]: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ [rank0]: File "/home/ustc/anaconda3/lib/python3.12/site-packages/transformers/processing_utils.py", line 1079, in from_pretrained [rank0]: args = cls._get_arguments_from_pretrained(pretrained_model_name_or_path, **kwargs) [rank0]: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ [rank0]: File "/home/ustc/anaconda3/lib/python3.12/site-packages/transformers/processing_utils.py", line 1143, in _get_arguments_from_pretrained [rank0]: args.append(attribute_class.from_pretrained(pretrained_model_name_or_path, **kwargs)) [rank0]: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ [rank0]: File "/home/ustc/anaconda3/lib/python3.12/site-packages/transformers/feature_extraction_utils.py", line 384, in from_pretrained [rank0]: feature_extractor_dict, kwargs = cls.get_feature_extractor_dict(pretrained_model_name_or_path, **kwargs) [rank0]: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ [rank0]: File "/home/ustc/anaconda3/lib/python3.12/site-packages/transformers/feature_extraction_utils.py", line 510, in get_feature_extractor_dict [rank0]: resolved_feature_extractor_file = cached_file( [rank0]: ^^^^^^^^^^^^ [rank0]: File "/home/ustc/anaconda3/lib/python3.12/site-packages/transformers/utils/hub.py", line 266, in cached_file [rank0]: file = cached_files(path_or_repo_id=path_or_repo_id, filenames=[filename], **kwargs) [rank0]: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ [rank0]: File "/home/ustc/anaconda3/lib/python3.12/site-packages/transformers/utils/hub.py", line 381, in cached_files [rank0]: raise OSError( [rank0]: OSError: ./checkpoints/hf_cache does not appear to have a file named preprocessor_config.json. Checkout 'https://huggingface.co/./checkpoints/hf_cache/tree/main' for available files. [rank0]: The above exception was the direct cause of the following exception: [rank0]: Traceback (most recent call last): [rank0]: File "/home/ustc/桌面/seed-vc-main-v2/train_v2.py", line 346, in <module> [rank0]: main(args) [rank0]: File "/home/ustc/桌面/seed-vc-main-v2/train_v2.py", line 315, in main [rank0]: trainer = Trainer( [rank0]: ^^^^^^^^ [rank0]: File "/home/ustc/桌面/seed-vc-main-v2/train_v2.py", line 76, in __init__ [rank0]: self._init_models(train_cfm=train_cfm, train_ar=train_ar) [rank0]: File "/home/ustc/桌面/seed-vc-main-v2/train_v2.py", line 107, in _init_models [rank0]: self._init_main_model(train_cfm=train_cfm, train_ar=train_ar) [rank0]: File "/home/ustc/桌面/seed-vc-main-v2/train_v2.py", line 117, in _init_main_model [rank0]: self.model = hydra.utils.instantiate(cfg).to(self.device) [rank0]: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^ [rank0]: File "/home/ustc/anaconda3/lib/python3.12/site-packages/hydra/_internal/instantiate/_instantiate2.py", line 226, in instantiate [rank0]: return instantiate_node( [rank0]: ^^^^^^^^^^^^^^^^^ [rank0]: File "/home/ustc/anaconda3/lib/python3.12/site-packages/hydra/_internal/instantiate/_instantiate2.py", line 342, in instantiate_node [rank0]: value = instantiate_node( [rank0]: ^^^^^^^^^^^^^^^^^ [rank0]: File "/home/ustc/anaconda3/lib/python3.12/site-packages/hydra/_internal/instantiate/_instantiate2.py", line 347, in instantiate_node [rank0]: return _call_target(_target_, partial, args, kwargs, full_key) [rank0]: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ [rank0]: File "/home/ustc/anaconda3/lib/python3.12/site-packages/hydra/_internal/instantiate/_instantiate2.py", line 97, in _call_target [rank0]: raise InstantiationException(msg) from e [rank0]: hydra.errors.InstantiationException: Error in call to target 'modules.astral_quantization.default_model.AstralQuantizer': [rank0]: OSError("./checkpoints/hf_cache does not appear to have a file named preprocessor_config.json. Checkout 'https://huggingface.co/./checkpoints/hf_cache/tree/main' for available files.") [rank0]: full_key: content_extractor_narrow [rank0]:[W514 21:30:32.208971596 ProcessGroupNCCL.cpp:1168] Warning: WARNING: process group has NOT been destroyed before we destruct ProcessGroupNCCL. On normal program exit, the application should call destroy_process_group to ensure that any pending NCCL operations have finished in this process. In rare cases this process can exit before this point and block the progress of another member of the process group. This constraint has always been present, but this warning has only been added since PyTorch 2.4 (function operator()) W0514 21:30:32.529000 130300934612480 torch/distributed/elastic/multiprocessing/api.py:858] Sending process 3146516 closing signal SIGTERM W0514 21:30:32.529000 130300934612480 torch/distributed/elastic/multiprocessing/api.py:858] Sending process 3146517 closing signal SIGTERM W0514 21:30:32.530000 130300934612480 torch/distributed/elastic/multiprocessing/api.py:858] Sending process 3146518 closing signal SIGTERM E0514 21:30:32.758000 130300934612480 torch/distributed/elastic/multiprocessing/api.py:833] failed (exitcode: 1) local_rank: 0 (pid: 3146515) of binary: /home/ustc/anaconda3/bin/python Traceback (most recent call last): File "/home/ustc/anaconda3/bin/accelerate", line 8, in <module> sys.exit(main()) ^^^^^^ File "/home/ustc/anaconda3/lib/python3.12/site-packages/accelerate/commands/accelerate_cli.py", line 50, in main args.func(args) File "/home/ustc/anaconda3/lib/python3.12/site-packages/accelerate/commands/launch.py", line 1204, in launch_command multi_gpu_launcher(args) File "/home/ustc/anaconda3/lib/python3.12/site-packages/accelerate/commands/launch.py", line 825, in multi_gpu_launcher distrib_run.run(args) File "/home/ustc/anaconda3/lib/python3.12/site-packages/torch/distributed/run.py", line 892, in run elastic_launch( File "/home/ustc/anaconda3/lib/python3.12/site-packages/torch/distributed/launcher/api.py", line 133, in __call__ return launch_agent(self._config, self._entrypoint, list(args)) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/home/ustc/anaconda3/lib/python3.12/site-packages/torch/distributed/launcher/api.py", line 264, in launch_agent raise ChildFailedError( torch.distributed.elastic.multiprocessing.errors.ChildFailedError: ============================================================ train_v2.py FAILED ------------------------------------------------------------ Failures: <NO_OTHER_FAILURES> ------------------------------------------------------------ Root Cause (first observed failure): [0]: time : 2025-05-14_21:30:32 host : ustc-SYS-740GP-TNRT rank : 0 (local_rank: 0) exitcode : 1 (pid: 3146515) error_file: <N/A> traceback : To enable traceback see: https://pytorch.org/docs/stable/elastic/errors.html ============================================================ 分析问题

/home/shuo/VLA/openpi/.venv/lib/python3.11/site-packages/tyro/_parsers.py:332: UserWarning: The field model.action-expert-variant is annotated with type typing.Literal['dummy', 'gemma_300m', 'gemma_2b', 'gemma_2b_lora'], but the default value gemma_300m_lora has type <class 'str'>. We'll try to handle this gracefully, but it may cause unexpected behavior. warnings.warn(message) 19:07:30.004 [I] Running on: shuo-hp (10287:train.py:195) INFO:2025-05-12 19:07:30,228:jax._src.xla_bridge:945: Unable to initialize backend 'rocm': module 'jaxlib.xla_extension' has no attribute 'GpuAllocatorConfig' 19:07:30.228 [I] Unable to initialize backend 'rocm': module 'jaxlib.xla_extension' has no attribute 'GpuAllocatorConfig' (10287:xla_bridge.py:945) INFO:2025-05-12 19:07:30,228:jax._src.xla_bridge:945: Unable to initialize backend 'tpu': INTERNAL: Failed to open libtpu.so: libtpu.so: cannot open shared object file: No such file or directory 19:07:30.228 [I] Unable to initialize backend 'tpu': INTERNAL: Failed to open libtpu.so: libtpu.so: cannot open shared object file: No such file or directory (10287:xla_bridge.py:945) 19:07:30.500 [I] Wiped checkpoint directory /home/shuo/VLA/openpi/checkpoints/pi0_ours_aloha/your_experiment_name (10287:checkpoints.py:25) 19:07:30.500 [I] Created BasePyTreeCheckpointHandler: pytree_metadata_options=PyTreeMetadataOptions(support_rich_types=False), array_metadata_store=None (10287:base_pytree_checkpoint_handler.py:332) 19:07:30.500 [I] Created BasePyTreeCheckpointHandler: pytree_metadata_options=PyTreeMetadataOptions(support_rich_types=False), array_metadata_store=None (10287:base_pytree_checkpoint_handler.py:332) 19:07:30.500 [I] [thread=MainThread] Failed to get flag value for EXPERIMENTAL_ORBAX_USE_DISTRIBUTED_PROCESS_ID. (10287:multihost.py:375) 19:07:30.500 [I] [process=0][thread=MainThread] CheckpointManager init: checkpointers=None, item_names=None, item_handlers={'assets': <openpi.training.checkpoints.CallbackHandler object at 0x72e5cae0ff50>, 'train_state': <orbax.checkpoint._src.handlers.pytree_checkpoint_handler.PyTreeCheckpointHandler object at 0x72e5cafa0e90>, 'params': <orbax.checkpoint._src.handlers.pytree_checkpoint_handler.PyTreeCheckpointHandler object at 0x72e5cafa05d0>}, handler_registry=None (10287:checkpoint_manager.py:622) 19:07:30.501 [I] Deferred registration for item: "assets". Adding handler <openpi.training.checkpoints.CallbackHandler object at 0x72e5cae0ff50> for item "assets" and save args <class 'openpi.training.checkpoints.CallbackSave'> and restore args <class 'openpi.training.checkpoints.CallbackRestore'> to _handler_registry. (10287:composite_checkpoint_handler.py:239) 19:07:30.501 [I] Deferred registration for item: "train_state". Adding handler <orbax.checkpoint._src.handlers.pytree_checkpoint_handler.PyTreeCheckpointHandler object at 0x72e5cafa0e90> for item "train_state" and save args <class 'orbax.checkpoint._src.handlers.pytree_checkpoint_handler.PyTreeSaveArgs'> and restore args <class 'orbax.checkpoint._src.handlers.pytree_checkpoint_handler.PyTreeRestoreArgs'> to _handler_registry. (10287:composite_checkpoint_handler.py:239) 19:07:30.501 [I] Deferred registration for item: "params". Adding handler <orbax.checkpoint._src.handlers.pytree_checkpoint_handler.PyTreeCheckpointHandler object at 0x72e5cafa05d0> for item "params" and save args <class 'orbax.checkpoint._src.handlers.pytree_checkpoint_handler.PyTreeSaveArgs'> and restore args <class 'orbax.checkpoint._src.handlers.pytree_checkpoint_handler.PyTreeRestoreArgs'> to _handler_registry. (10287:composite_checkpoint_handler.py:239) 19:07:30.501 [I] Deferred registration for item: "metrics". Adding handler <orbax.checkpoint._src.handlers.json_checkpoint_handler.JsonCheckpointHandler object at 0x72e5cad7fd10> for item "metrics" and save args <class 'orbax.checkpoint._src.handlers.json_checkpoint_handler.JsonSaveArgs'> and restore args <class 'orbax.checkpoint._src.handlers.json_checkpoint_handler.JsonRestoreArgs'> to _handler_registry. (10287:composite_checkpoint_handler.py:239) 19:07:30.501 [I] Initialized registry DefaultCheckpointHandlerRegistry({('assets', <class 'openpi.training.checkpoints.CallbackSave'>): <openpi.training.checkpoints.CallbackHandler object at 0x72e5cae0ff50>, ('assets', <class 'openpi.training.checkpoints.CallbackRestore'>): <openpi.training.checkpoints.CallbackHandler object at 0x72e5cae0ff50>, ('train_state', <class 'orbax.checkpoint._src.handlers.pytree_checkpoint_handler.PyTreeSaveArgs'>): <orbax.checkpoint._src.handlers.pytree_checkpoint_handler.PyTreeCheckpointHandler object at 0x72e5cafa0e90>, ('train_state', <class 'orbax.checkpoint._src.handlers.pytree_checkpoint_handler.PyTreeRestoreArgs'>): <orbax.checkpoint._src.handlers.pytree_checkpoint_handler.PyTreeCheckpointHandler object at 0x72e5cafa0e90>, ('params', <class 'orbax.checkpoint._src.handlers.pytree_checkpoint_handler.PyTreeSaveArgs'>): <orbax.checkpoint._src.handlers.pytree_checkpoint_handler.PyTreeCheckpointHandler object at 0x72e5cafa05d0>, ('params', <class 'orbax.checkpoint._src.handlers.pytree_checkpoint_handler.PyTreeRestoreArgs'>): <orbax.checkpoint._src.handlers.pytree_checkpoint_handler.PyTreeCheckpointHandler object at 0x72e5cafa05d0>, ('metrics', <class 'orbax.checkpoint._src.handlers.json_checkpoint_handler.JsonSaveArgs'>): <orbax.checkpoint._src.handlers.json_checkpoint_handler.JsonCheckpointHandler object at 0x72e5cad7fd10>, ('metrics', <class 'orbax.checkpoint._src.handlers.json_checkpoint_handler.JsonRestoreArgs'>): <orbax.checkpoint._src.handlers.json_checkpoint_handler.JsonCheckpointHandler object at 0x72e5cad7fd10>}). (10287:composite_checkpoint_handler.py:508) 19:07:30.501 [I] orbax-checkpoint version: 0.11.1 (10287:abstract_checkpointer.py:35) 19:07:30.501 [I] [process=0][thread=MainThread] Using barrier_sync_fn: <function get_barrier_sync_fn.<locals>.<lambda> at 0x72e5cacb85e0> timeout: 7200 secs and primary_host=0 for async checkpoint writes (10287:async_checkpointer.py:80) 19:07:30.501 [I] Found 0 checkpoint steps in /home/shuo/VLA/openpi/checkpoints/pi0_ours_aloha/your_experiment_name (10287:checkpoint_manager.py:1528) 19:07:30.501 [I] Saving root metadata (10287:checkpoint_manager.py:1569) 19:07:30.501 [I] [process=0][thread=MainThread] Skipping global process sync, barrier name: CheckpointManager:save_metadata (10287:multihost.py:293) 19:07:30.501 [I] [process=0][thread=MainThread] CheckpointManager created, primary_host=0, CheckpointManagerOptions=CheckpointManagerOptions(save_interval_steps=1, max_to_keep=1, keep_time_interval=None, keep_period=5000, should_keep_fn=None, best_fn=None, best_mode='max', keep_checkpoints_without_metrics=True, step_prefix=None, step_format_fixed_length=None, step_name_format=None, create=False, cleanup_tmp_directories=False, save_on_steps=frozenset(), single_host_load_and_broadcast=False, todelete_subdir=None, enable_background_delete=False, read_only=False, enable_async_checkpointing=True, async_options=AsyncOptions(timeout_secs=7200, barrier_sync_fn=None, post_finalization_callback=None, create_directories_asynchronously=False), multiprocessing_options=MultiprocessingOptions(primary_host=0, active_processes=None, barrier_sync_key_prefix=None), should_save_fn=None, file_options=FileOptions(path_permission_mode=None), save_root_metadata=True, temporary_path_class=None, save_decision_policy=None), root_directory=/home/shuo/VLA/openpi/checkpoints/pi0_ours_aloha/your_experiment_name: <orbax.checkpoint.checkpoint_manager.CheckpointManager object at 0x72e5cadffd10> (10287:checkpoint_manager.py:797) 19:07:30.553 [I] Loaded norm stats from s3://openpi-assets/checkpoints/pi0_base/assets/trossen (10287:config.py:166) Returning existing local_dir /home/shuo/VLA/lerobot/aloha-real-data as remote repo cannot be accessed in snapshot_download (None). 19:07:30.553 [W] Returning existing local_dir /home/shuo/VLA/lerobot/aloha-real-data as remote repo cannot be accessed in snapshot_download (None). (10287:_snapshot_download.py:213) Returning existing local_dir /home/shuo/VLA/lerobot/aloha-real-data as remote repo cannot be accessed in snapshot_download (None). 19:07:30.554 [W] Returning existing local_dir /home/shuo/VLA/lerobot/aloha-real-data as remote repo cannot be accessed in snapshot_download (None). (10287:_snapshot_download.py:213) Returning existing local_dir /home/shuo/VLA/lerobot/aloha-real-data as remote repo cannot be accessed in snapshot_download (None). 19:07:30.555 [W] Returning existing local_dir /home/shuo/VLA/lerobot/aloha-real-data as remote repo cannot be accessed in snapshot_download (None). (10287:_snapshot_download.py:213) Traceback (most recent call last): File "/home/shuo/VLA/openpi/scripts/train.py", line 273, in <module> main(_config.cli()) File "/home/shuo/VLA/openpi/scripts/train.py", line 226, in main batch = next(data_iter) ^^^^^^^^^^^^^^^ File "/home/shuo/VLA/openpi/src/openpi/training/data_loader.py", line 177, in __iter__ for batch in self._data_loader: File "/home/shuo/VLA/openpi/src/openpi/training/data_loader.py", line 257, in __iter__ batch = next(data_iter) ^^^^^^^^^^^^^^^ File "/home/shuo/VLA/openpi/.venv/lib/python3.11/site-packages/torch/utils/data/dataloader.py", line 708, in __next__ data = self._next_data() ^^^^^^^^^^^^^^^^^ File "/home/shuo/VLA/openpi/.venv/lib/python3.11/site-packages/torch/utils/data/dataloader.py", line 1480, in _next_data return self._process_data(data) ^^^^^^^^^^^^^^^^^^^^^^^^ File "/home/shuo/VLA/openpi/.venv/lib/python3.11/site-packages/torch/utils/data/dataloader.py", line 1505, in _process_data data.reraise() File "/home/shuo/VLA/openpi/.venv/lib/python3.11/site-packages/torch/_utils.py", line 733, in reraise raise exception KeyError: Caught KeyError in DataLoader worker process 0. Original Traceback (most recent call last): File "/home/shuo/VLA/openpi/.venv/lib/python3.11/site-packages/torch/utils/data/_utils/worker.py", line 349, in _worker_loop data = fetcher.fetch(index) # type: ignore[possibly-undefined] ^^^^^^^^^^^^^^^^^^^^ File "/home/shuo/VLA/openpi/.venv/lib/python3.11/site-packages/torch/utils/data/_utils/fetch.py", line 52, in fetch data = [self.dataset[idx] for idx in possibly_batched_index] ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/home/shuo/VLA/openpi/.venv/lib/python3.11/site-packages/torch/utils/data/_utils/fetch.py", line 52, in data = [self.dataset[idx] for idx in possibly_batched_index] ~~~~~~~~~~~~^^^^^ File "/home/shuo/VLA/openpi/src/openpi/training/data_loader.py", line 47, in __getitem__ return self._transform(self._dataset[index]) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/home/shuo/VLA/openpi/src/openpi/transforms.py", line 70, in __call__ data = transform(data) ^^^^^^^^^^^^^^^ File "/home/shuo/VLA/openpi/src/openpi/transforms.py", line 101, in __call__ return jax.tree.map(lambda k: flat_item[k], self.structure) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/home/shuo/VLA/openpi/.venv/lib/python3.11/site-packages/jax/_src/tree.py", line 155, in map return tree_util.tree_map(f, tree, *rest, is_leaf=is_leaf) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/home/shuo/VLA/openpi/.venv/lib/python3.11/site-packages/jax/_src/tree_util.py", line 358, in tree_map return treedef.unflatten(f(*xs) for xs in zip(*all_leaves)) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/home/shuo/VLA/openpi/.venv/lib/python3.11/site-packages/jax/_src/tree_util.py", line 358, in <genexpr> return treedef.unflatten(f(*xs) for xs in zip(*all_leaves)) ^^^^^^ File "/home/shuo/VLA/openpi/src/openpi/transforms.py", line 101, in <lambda> return jax.tree.map(lambda k: flat_item[k], self.structure) ~~~~~~~~~^^^ KeyError: 'observation.images.cam_low'

import os os.environ["HF_ENDPOINT"] = "https://hf-mirror.com" import json import re import hashlib import time import torch import numpy as np import pdfplumber from collections import defaultdict from sklearn.feature_extraction.text import TfidfVectorizer from sklearn.metrics.pairwise import cosine_similarity import spacy from sentence_transformers import SentenceTransformer from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline # 初始化模型和工具 nlp = spacy.load("zh_core_web_sm") embedding_model = SentenceTransformer('all-MiniLM-L6-v2') class PDFProcessor: def __init__(self, pdf_path, output_dir="output"): self.pdf_path = pdf_path self.output_dir = output_dir self.document_id = os.path.splitext(os.path.basename(pdf_path))[0] os.makedirs(output_dir, exist_ok=True) # 初始化生成模型 model_name = "uer/gpt2-distil-chinese-cluecorpussmall" self.tokenizer = AutoTokenizer.from_pretrained(model_name) if self.tokenizer.pad_token is None: self.tokenizer.pad_token = self.tokenizer.eos_token self.model = AutoModelForCausalLM.from_pretrained(model_name) self.summarizer = pipeline( "text-generation", model=self.model, tokenizer=self.tokenizer, device=0 if torch.cuda.is_available() else -1 ) # 文档结构存储 self.full_text = "" self.structure = [] self.heading_tree = self.HeadingTree() self.font_stats = defaultdict(int) class HeadingTree: """管理标题层级关系的树结构""" def __init__(self): self.root = {"level": 0, "children": [], "text": "ROOT"} self.current = self.root self.level_path = "0" def add_heading(self, level, text, page): while self.current["level"] >= level: self.current = self.current["parent"] new_node = { "level": level, "text": text, "page": page, "parent": self.current, "children": [], "local_index": len(self.current["children"]) + 1 } self.current["children"].append(new_node) self.current = new_node if self.current["parent"] == self.root: self.level_path = str(new_node["local_index"]) else: self.level_path = f"{self.current['parent']['path']}.{new_node['local_index']}" new_node["path"] = self.level_path return self.level_path def parse_pdf(self): """解析PDF文档""" with pdfplumber.open(self.pdf_path) as pdf: for page_num, page in enumerate(pdf.pages, 1): # 提取文本元素 words = page.extract_words(extra_attrs=["fontname", "size"]) self._analyze_font_features(words) # 提取结构化文本 text_blocks = page.extract_text_lines() for block in text_blocks: self._process_text_block(block, page_num) # 处理表格 tables = page.extract_tables() for table in tables: self._process_table(table, page_num) # 保存原始文本 self.full_text += page.extract_text() + "\n" # 保存原始文本 with open(os.path.join(self.output_dir, f"{self.document_id}_full.txt"), "w", encoding="utf-8") as f: f.write(self.full_text) def _analyze_font_features(self, words): """分析字体特征建立标题识别模型""" for word in words: font_key = (word["fontname"], round(word["size"], 1)) self.font_stats[font_key] += 1 def _process_text_block(self, block, page_num): """处理文本块并识别标题""" font_key = (block["fontname"], round(block["size"], 1)) font_freq = self.font_stats[font_key] # 标题识别逻辑 is_heading = ( block["size"] > 12 and font_freq < 100 and len(block["text"].strip()) < 50 ) if is_heading: # 自动推断标题层级 heading_level = min(int(block["size"] // 2), 6) self.structure.append({ "type": "heading", "level": heading_level, "text": block["text"].strip(), "page": page_num, "start_pos": len(self.full_text) }) self.heading_tree.add_heading(heading_level, block["text"].strip(), page_num) self.full_text += block["text"].strip() + "\n" else: self.structure.append({ "type": "paragraph", "text": block["text"].strip(), "page": page_num, "start_pos": len(self.full_text) }) self.full_text += block["text"].strip() + "\n" def _process_table(self, table, page_num): """处理表格并转换为Markdown格式""" markdown_table = [] for row in table: markdown_row = "| " + " | ".join(str(cell).strip() for cell in row) + " |" markdown_table.append(markdown_row) if len(markdown_table) == 1: # 添加表头分隔线 markdown_table.append("| " + " | ".join(["---"] * len(row)) + " |") table_text = "\n".join(markdown_table) self.structure.append({ "type": "table", "text": table_text, "page": page_num, "start_pos": len(self.full_text) }) self.full_text += table_text + "\n" def dynamic_chunking(self, max_chunk_length=1500, min_chunk_length=200): """动态语义分块算法""" chunks = [] current_chunk = "" current_start = 0 chunk_id = 0 # 基于结构初步分块 for i, item in enumerate(self.structure): # 标题作为新块的开始 if item["type"] == "heading" and current_chunk: chunks.append({ "start": current_start, "end": len(self.full_text[:current_start]) + len(current_chunk), "text": current_chunk, "page": item["page"], "id": f"{self.document_id}_chunk{chunk_id:03d}" }) chunk_id += 1 current_chunk = "" current_start = item["start_pos"] current_chunk += item["text"] + "\n" # 长度保护:防止块过长 if len(current_chunk) > max_chunk_length: chunks.append({ "start": current_start, "end": current_start + len(current_chunk), "text": current_chunk, "page": item["page"], "id": f"{self.document_id}_chunk{chunk_id:03d}" }) chunk_id += 1 current_chunk = "" current_start = self.structure[i+1]["start_pos"] if i+1 < len(self.structure) else current_start + len(current_chunk) # 添加最后一个块 if current_chunk: chunks.append({ "start": current_start, "end": current_start + len(current_chunk), "text": current_chunk, "page": self.structure[-1]["page"], "id": f"{self.document_id}_chunk{chunk_id:03d}" }) # 语义边界优化 refined_chunks = [] for chunk in chunks: sentences = [sent.text for sent in nlp(chunk["text"]).sents] if len(sentences) < 2: # 无需分割 refined_chunks.append(chunk) continue # 计算句子嵌入 sentence_embeddings = embedding_model.encode(sentences) # 寻找最佳分割点 split_points = [] for i in range(1, len(sentences)): sim = cosine_similarity( [sentence_embeddings[i-1]], [sentence_embeddings[i]] )[0][0] if sim < 0.65: # 语义相似度阈值 split_points.append(i) # 如果没有分割点或只有一个句子,保留原块 if not split_points: refined_chunks.append(chunk) continue # 创建新块 start_idx = 0 for split_idx in split_points: new_chunk_text = " ".join(sentences[start_idx:split_idx]) if len(new_chunk_text) > min_chunk_length: # 最小长度保护 refined_chunks.append({ "start": chunk["start"] + sum(len(s) for s in sentences[:start_idx]), "end": chunk["start"] + sum(len(s) for s in sentences[:split_idx]), "text": new_chunk_text, "page": chunk["page"], "id": f"{self.document_id}_chunk{chunk_id:03d}" }) chunk_id += 1 start_idx = split_idx # 添加最后一段 if start_idx < len(sentences): new_chunk_text = " ".join(sentences[start_idx:]) if len(new_chunk_text) > min_chunk_length: refined_chunks.append({ "start": chunk["start"] + sum(len(s) for s in sentences[:start_idx]), "end": chunk["start"] + len(chunk["text"]), "text": new_chunk_text, "page": chunk["page"], "id": f"{self.document_id}_chunk{chunk_id:03d}" }) chunk_id += 1 return refined_chunks def extract_metadata(self, chunk): """提取块的元数据""" metadata = { "hierarchy": "0.0", "keywords": [], "entities": [], "has_table": False, "has_formula": False } # 1. 提取层级信息 for item in reversed(self.structure): if item["start_pos"] <= chunk["start"] and item["type"] == "heading": metadata["hierarchy"] = self._find_heading_path(item) break # 2. 提取关键词 (TF-IDF) vectorizer = TfidfVectorizer(stop_words="english", max_features=10) try: tfidf_matrix = vectorizer.fit_transform([chunk["text"]]) feature_names = vectorizer.get_feature_names_out() tfidf_scores = tfidf_matrix.toarray()[0] top_indices = np.argsort(tfidf_scores)[-5:] # 取前5个关键词 metadata["keywords"] = [feature_names[i] for i in top_indices if tfidf_scores[i] > 0.1] except: metadata["keywords"] = [] # 3. 实体识别 doc = nlp(chunk["text"]) for ent in doc.ents: if ent.label_ in ["PERSON", "ORG", "GPE", "PRODUCT", "DATE"]: # 过滤实体类型 metadata["entities"].append({ "text": ent.text, "type": ent.label_, "start_pos": ent.start_char, "end_pos": ent.end_char }) # 4. 检测表格和公式 metadata["has_table"] = bool(re.search(r'\+[-]+\+', chunk["text"])) # 简单表格检测 metadata["has_formula"] = bool(re.search(r'\$(.*?)\$|\\[a-zA-Z]+{', chunk["text"])) # LaTeX或数学公式 return metadata def _find_heading_path(self, heading_item): """根据标题项查找完整层级路径""" for node in self.heading_tree.root["children"]: path = self._find_node_path(node, heading_item["text"]) if path: return path return "0.0" def _find_node_path(self, node, text): """递归查找标题节点路径""" if node["text"] == text: return node["path"] for child in node["children"]: path = self._find_node_path(child, text) if path: return path return None def generate_summary(self, text): """生成轻量级摘要""" prompt = f"请为以下文本生成一句简洁的摘要(20-30字),严格基于内容不要添加新信息:\n{text[:2000]}" try: summary = self.summarizer( prompt, max_new_tokens=50, temperature=0.3, do_sample=True, pad_token_id=self.tokenizer.pad_token_id, # 使用已设置的pad_token_id eos_token_id=self.tokenizer.eos_token_id # 显式设置eos_token )[0]['generated_text'] # 提取生成的摘要部分 return summary.replace(prompt, "").strip() except Exception as e: print(f"摘要生成失败: {str(e)}") # 失败时使用简单的前三句作为摘要 sents = [sent.text for sent in nlp(text).sents][:3] return " ".join(sents) def process_to_json(self, chunks): """处理为最终的JSON格式""" results = [] summary_cache = {} for chunk in chunks: # 生成摘要(缓存相同文本) text_hash = hashlib.md5(chunk["text"].encode()).hexdigest() if text_hash in summary_cache: summary = summary_cache[text_hash] else: summary = self.generate_summary(chunk["text"]) summary_cache[text_hash] = summary # 提取元数据 metadata = self.extract_metadata(chunk) # 构建最终JSON对象 result = { "chunk_id": chunk["id"], "text": chunk["text"], "summary": summary, "metadata": metadata } results.append(result) return results def process_document(self): """处理文档的完整流程""" print(f"开始处理文档: {self.docx_path}") total_start = time.time() try: # 记录各阶段耗时 parse_start = time.time() self.parse_docx() parse_time = time.time() - parse_start chunk_start = time.time() chunks = self.dynamic_chunking() chunk_time = time.time() - chunk_start json_start = time.time() json_data = self.process_to_json(chunks) json_time = time.time() - json_start # 保存结果 output_path = os.path.join(self.output_dir, f"{self.document_id}_chunks.json") with open(output_path, "w", encoding="utf-8") as f: json.dump(json_data, f, ensure_ascii=False, indent=2) total_time = time.time() - total_start print(f"\n处理完成! 结果已保存至: {output_path}") print("="*40) print(f"总耗时: {total_time:.2f}秒") print(f"文档解析: {parse_time:.2f}秒") print(f"语义分块: {chunk_time:.2f}秒") print(f"元数据处理: {json_time:.2f}秒") print("="*40) return json_data except Exception as e: print(f"处理过程中发生错误: {str(e)}") return None if __name__ == "__main__": processor = PDFProcessor( pdf_path="test1.pdf", output_dir="processed_pdfs" ) processor.process_document()以上代码报错如下,应该怎么解决? (venv) C:\Users\Semi-YuLJ\Desktop\learning>python C:\Users\Semi-YuLJ\Desktop\learning\chunk_pdf.py Traceback (most recent call last): File "C:\Users\Semi-YuLJ\Desktop\learning\chunk_pdf.py", line 419, in <module> processor.process_document() File "C:\Users\Semi-YuLJ\Desktop\learning\chunk_pdf.py", line 376, in process_document print(f"开始处理文档: {self.docx_path}") AttributeError: 'PDFProcessor' object has no attribute 'docx_path'

我已经下载了tiktoken和protobuf库,D:\PythonProject\deepseekai.venv\Scripts\python.exe D:\PythonProject\deepseekai\train_weather_model.py PyTorch 版本: 2.3.1+cu118 CUDA 可用: True GPU 名称: NVIDIA GeForce GTX 1650 Ti You are using the default legacy behaviour of the <class ‘transformers.models.llama.tokenization_llama_fast.LlamaTokenizerFast’>. This is expected, and simply means that the legacy (previous) behavior will be used so nothing changes for you. If you want to use the new behaviour, set legacy=False. This should only be set if you understand what it means, and thoroughly read the reason why this was added as explained in https://github.com/huggingface/transformers/pull/24565 - if you loaded a llama tokenizer from a GGUF file you can ignore this message. Traceback (most recent call last): File “D:\PythonProject\deepseekai.venv\Lib\site-packages\transformers\convert_slow_tokenizer.py”, line 1737, in convert_slow_tokenizer ).converted() ^^^^^^^^^^^ File “D:\PythonProject\deepseekai.venv\Lib\site-packages\transformers\convert_slow_tokenizer.py”, line 1631, in converted tokenizer = self.tokenizer() ^^^^^^^^^^^^^^^^ File “D:\PythonProject\deepseekai.venv\Lib\site-packages\transformers\convert_slow_tokenizer.py”, line 1624, in tokenizer vocab_scores, merges = self.extract_vocab_merges_from_model(self.vocab_file) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File “D:\PythonProject\deepseekai.venv\Lib\site-packages\transformers\convert_slow_tokenizer.py”, line 1600, in extract_vocab_merges_from_model bpe_ranks = load_tiktoken_bpe(tiktoken_url) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File “D:\PythonProject\deepseekai.venv\Lib\site-packages\tiktoken\load.py”, line 148, in load_tiktoken_bpe contents = read_file_cached(tiktoken_bpe_file, expected_hash) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File “D:\PythonProject\deepseekai.venv\Lib\site-packages\tiktoken\load.py”, line 48, in read_file_cached cache_key = hashlib.sha1(blobpath.encode()).hexdigest() ^^^^^^^^^^^^^^^ AttributeError: ‘NoneType’ object has no attribute ‘encode’ During handling of the above exception, another exception occurred: Traceback (most recent call last): File “D:\PythonProject\deepseekai\train_weather_model.py”, line 31, in <module> tokenizer = AutoTokenizer.from_pretrained( ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File “D:\PythonProject\deepseekai.venv\Lib\site-packages\transformers\models\auto\tokenization_auto.py”, line 1032, in from_pretrained return tokenizer_class_fast.from_pretrained(pretrained_model_name_or_path, *inputs, **kwargs) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File “D:\PythonProject\deepseekai.venv\Lib\site-packages\transformers\tokenization_utils_base.py”, line 2025, in from_pretrained return cls._from_pretrained( ^^^^^^^^^^^^^^^^^^^^^ File “D:\PythonProject\deepseekai.venv\Lib\site-packages\transformers\tokenization_utils_base.py”, line 2278, in _from_pretrained tokenizer = cls(*init_inputs, **init_kwargs) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File “D:\PythonProject\deepseekai.venv\Lib\site-packages\transformers\models\llama\tokenization_llama_fast.py”, line 154, in init super().init( File “D:\PythonProject\deepseekai.venv\Lib\site-packages\transformers\tokenization_utils_fast.py”, line 139, in init fast_tokenizer = convert_slow_tokenizer(self, from_tiktoken=True) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File “D:\PythonProject\deepseekai.venv\Lib\site-packages\transformers\convert_slow_tokenizer.py”, line 1739, in convert_slow_tokenizer raise ValueError( ValueError: Converting from SentencePiece and Tiktoken failed, if a converter for SentencePiece is available, provide a model path with a SentencePiece tokenizer.model file.Currently available slow->fast converters: [‘AlbertTokenizer’, ‘BartTokenizer’, ‘BarthezTokenizer’, ‘BertTokenizer’, ‘BigBirdTokenizer’, ‘BlenderbotTokenizer’, ‘CamembertTokenizer’, ‘CLIPTokenizer’, ‘CodeGenTokenizer’, ‘ConvBertTokenizer’, ‘DebertaTokenizer’, ‘DebertaV2Tokenizer’, ‘DistilBertTokenizer’, ‘DPRReaderTokenizer’, ‘DPRQuestionEncoderTokenizer’, ‘DPRContextEncoderTokenizer’, ‘ElectraTokenizer’, ‘FNetTokenizer’, ‘FunnelTokenizer’, ‘GPT2Tokenizer’, ‘HerbertTokenizer’, ‘LayoutLMTokenizer’, ‘LayoutLMv2Tokenizer’, ‘LayoutLMv3Tokenizer’, ‘LayoutXLMTokenizer’, ‘LongformerTokenizer’, ‘LEDTokenizer’, ‘LxmertTokenizer’, ‘MarkupLMTokenizer’, ‘MBartTokenizer’, ‘MBart50Tokenizer’, ‘MPNetTokenizer’, ‘MobileBertTokenizer’, ‘MvpTokenizer’, ‘NllbTokenizer’, ‘OpenAIGPTTokenizer’, ‘PegasusTokenizer’, ‘Qwen2Tokenizer’, ‘RealmTokenizer’, ‘ReformerTokenizer’, ‘RemBertTokenizer’, ‘RetriBertTokenizer’, ‘RobertaTokenizer’, ‘RoFormerTokenizer’, ‘SeamlessM4TTokenizer’, ‘SqueezeBertTokenizer’, ‘T5Tokenizer’, ‘UdopTokenizer’, ‘WhisperTokenizer’, ‘XLMRobertaTokenizer’, ‘XLNetTokenizer’, ‘SplinterTokenizer’, ‘XGLMTokenizer’, ‘LlamaTokenizer’, ‘CodeLlamaTokenizer’, ‘GemmaTokenizer’, ‘Phi3Tokenizer’] Process finished with exit code 1

txt
内容概要:本文档定义了一个名为 xxx_SCustSuplier_info 的视图,用于整合和展示客户(Customer)和供应商(Supplier)的相关信息。视图通过连接多个表来获取组织单位、客户账户、站点使用、位置、财务代码组合等数据。对于客户部分,视图选择了与账单相关的记录,并提取了账单客户ID、账单站点ID、客户名称、账户名称、站点代码、状态、付款条款等信息;对于供应商部分,视图选择了有效的供应商及其站点信息,包括供应商ID、供应商名称、供应商编号、状态、付款条款、财务代码组合等。视图还通过外连接确保即使某些字段为空也能显示相关信息。 适合人群:熟悉Oracle ERP系统,尤其是应付账款(AP)和应收账款(AR)模块的数据库管理员或开发人员;需要查询和管理客户及供应商信息的业务分析师。 使用场景及目标:① 数据库管理员可以通过此视图快速查询客户和供应商的基本信息,包括账单信息、财务代码组合等;② 开发人员可以利用此视图进行报表开发或数据迁移;③ 业务分析师可以使用此视图进行数据分析,如信用评估、付款周期分析等。 阅读建议:由于该视图涉及多个表的复杂连接,建议读者先熟悉各个表的结构和关系,特别是 hz_parties、hz_cust_accounts、ap_suppliers 等核心表。此外,注意视图中使用的外连接(如 gl_code_combinations_kfv 表的连接),这可能会影响查询结果的完整性。

最新推荐

recommend-type

Comsol声子晶体能带计算:六角与三角晶格原胞选取及布里渊区高对称点选择 - 声子晶体 v1.0

内容概要:本文详细探讨了利用Comsol进行声子晶体能带计算过程中,六角晶格和三角晶格原胞选取的不同方法及其对简约布里渊区高对称点选择的影响。文中不仅介绍了两种晶格类型的基矢量定义方式,还强调了正确设置周期性边界条件(特别是相位补偿)的重要性,以避免计算误差如鬼带现象。同时,提供了具体的MATLAB代码片段用于演示关键步骤,并分享了一些实践经验,例如如何通过观察能带图中的狄拉克锥特征来验证路径设置的准确性。 适合人群:从事材料科学、物理学研究的专业人士,尤其是那些正在使用或计划使用Comsol软件进行声子晶体模拟的研究人员。 使用场景及目标:帮助研究人员更好地理解和掌握在Comsol环境中针对不同类型晶格进行精确的声子晶体能带计算的方法和技术要点,从而提高仿真精度并减少常见错误的发生。 其他说明:文章中提到的实际案例展示了因晶格类型混淆而导致的问题,提醒使用者注意细节差异,确保模型构建无误。此外,文中提供的代码片段可以直接应用于相关项目中作为参考模板。
recommend-type

springboot213大学生心理健康管理系统的设计与实现.zip

springboot213大学生心理健康管理系统的设计与实现
recommend-type

三轴自动锁螺丝机PLC配方编程:吸钉式锁螺丝智能调整与注释详解 变址寄存器 高效版

一种基于三菱FX系列PLC的三轴自动锁螺丝机的配方编程方法。该系统采用吸钉式锁螺丝方式,通过PLC进行智能管理和调整。主要内容包括:利用D寄存器阵列和变址寄存器Z来存储和管理不同配方的数据,如坐标和螺丝数量;通过触摸屏和示教器简化调试流程,使工人能够快速设置和保存参数;并通过RS指令将数据保存到触摸屏内置存储中。此外,还展示了具体的PLC程序片段,解释了如何通过简单的寄存器操作实现复杂的配方管理和自动化操作。 适合人群:从事工业自动化领域的工程师和技术人员,尤其是熟悉PLC编程和机械设备调试的专业人士。 使用场景及目标:适用于需要提高生产效率和简化调试流程的制造业企业。主要目标是帮助技术人员掌握如何使用PLC进行配方管理,优化自动锁螺丝机的操作流程,减少人工干预,提升设备的智能化水平。 其他说明:文中提供的具体PLC程序代码和详细的注释有助于读者更好地理解和应用相关技术。同时,通过实例演示了如何利用PLC寄存器寻址特性和变址寄存器简化程序逻辑,为类似项目提供有价值的参考。
recommend-type

基于QT与STM32的Modbus-TCP四遥功能实现及源码解析

基于Qt开发的Modbus-TCP远程控制系统,用于实现四遥(遥测、遥控、遥信、遥调)功能。系统由上位机和下位机组成,上位机使用Qt进行图形界面开发,下位机采用STM32和W5500以太网模块,所有Modbus功能均自行实现,未使用第三方库。文中具体展示了各个功能的实现细节,包括ADC数据采集、LED控制、按键状态读取以及参数调节等功能的具体代码实现。 适合人群:具有一定嵌入式开发经验的研发人员,尤其是熟悉Qt和STM32的开发者。 使用场景及目标:适用于工业自动化、智能家居等领域,旨在帮助开发者理解和实现基于Modbus-TCP协议的远程控制系统,掌握四遥功能的具体实现方法。 其他说明:文中提供了详细的代码片段和技术难点解析,有助于读者深入理解系统的实现过程。同时,针对常见的开发问题给出了具体的解决方案,如浮点数转换、字节序处理等。
recommend-type

ERP系统客户与供应商信息视图创建:Oracle数据库中客户和供应商数据整合查询设计

内容概要:本文档定义了一个名为 `xxx_SCustSuplier_info` 的视图,用于整合和展示客户(Customer)和供应商(Supplier)的相关信息。视图通过连接多个表来获取组织单位、客户账户、站点使用、位置、财务代码组合等数据。对于客户部分,视图选择了与账单相关的记录,并提取了账单客户ID、账单站点ID、客户名称、账户名称、站点代码、状态、付款条款等信息;对于供应商部分,视图选择了有效的供应商及其站点信息,包括供应商ID、供应商名称、供应商编号、状态、付款条款、财务代码组合等。视图还通过外连接确保即使某些字段为空也能显示相关信息。 适合人群:熟悉Oracle ERP系统,尤其是应付账款(AP)和应收账款(AR)模块的数据库管理员或开发人员;需要查询和管理客户及供应商信息的业务分析师。 使用场景及目标:① 数据库管理员可以通过此视图快速查询客户和供应商的基本信息,包括账单信息、财务代码组合等;② 开发人员可以利用此视图进行报表开发或数据迁移;③ 业务分析师可以使用此视图进行数据分析,如信用评估、付款周期分析等。 阅读建议:由于该视图涉及多个表的复杂连接,建议读者先熟悉各个表的结构和关系,特别是 `hz_parties`、`hz_cust_accounts`、`ap_suppliers` 等核心表。此外,注意视图中使用的外连接(如 `gl_code_combinations_kfv` 表的连接),这可能会影响查询结果的完整性。
recommend-type

Web前端开发:CSS与HTML设计模式深入解析

《Pro CSS and HTML Design Patterns》是一本专注于Web前端设计模式的书籍,特别针对CSS(层叠样式表)和HTML(超文本标记语言)的高级应用进行了深入探讨。这本书籍属于Pro系列,旨在为专业Web开发人员提供实用的设计模式和实践指南,帮助他们构建高效、美观且可维护的网站和应用程序。 在介绍这本书的知识点之前,我们首先需要了解CSS和HTML的基础知识,以及它们在Web开发中的重要性。 HTML是用于创建网页和Web应用程序的标准标记语言。它允许开发者通过一系列的标签来定义网页的结构和内容,如段落、标题、链接、图片等。HTML5作为最新版本,不仅增强了网页的表现力,还引入了更多新的特性,例如视频和音频的内置支持、绘图API、离线存储等。 CSS是用于描述HTML文档的表现(即布局、颜色、字体等样式)的样式表语言。它能够让开发者将内容的表现从结构中分离出来,使得网页设计更加模块化和易于维护。随着Web技术的发展,CSS也经历了多个版本的更新,引入了如Flexbox、Grid布局、过渡、动画以及Sass和Less等预处理器技术。 现在让我们来详细探讨《Pro CSS and HTML Design Patterns》中可能包含的知识点: 1. CSS基础和选择器: 书中可能会涵盖CSS基本概念,如盒模型、边距、填充、边框、背景和定位等。同时还会介绍CSS选择器的高级用法,例如属性选择器、伪类选择器、伪元素选择器以及选择器的组合使用。 2. CSS布局技术: 布局是网页设计中的核心部分。本书可能会详细讲解各种CSS布局技术,包括传统的浮动(Floats)布局、定位(Positioning)布局,以及最新的布局模式如Flexbox和CSS Grid。此外,也会介绍响应式设计的媒体查询、视口(Viewport)单位等。 3. 高级CSS技巧: 这些技巧可能包括动画和过渡效果,以及如何优化性能和兼容性。例如,CSS3动画、关键帧动画、转换(Transforms)、滤镜(Filters)和混合模式(Blend Modes)。 4. HTML5特性: 书中可能会深入探讨HTML5的新标签和语义化元素,如`<article>`、`<section>`、`<nav>`等,以及如何使用它们来构建更加标准化和语义化的页面结构。还会涉及到Web表单的新特性,比如表单验证、新的输入类型等。 5. 可访问性(Accessibility): Web可访问性越来越受到重视。本书可能会介绍如何通过HTML和CSS来提升网站的无障碍访问性,比如使用ARIA标签(Accessible Rich Internet Applications)来增强屏幕阅读器的使用体验。 6. 前端性能优化: 性能优化是任何Web项目成功的关键。本书可能会涵盖如何通过优化CSS和HTML来提升网站的加载速度和运行效率。内容可能包括代码压缩、合并、避免重绘和回流、使用Web字体的最佳实践等。 7. JavaScript与CSS/HTML的交互: 在现代Web开发中,JavaScript与CSS及HTML的交云并用是不可或缺的。书中可能会讲解如何通过JavaScript动态地修改样式、操作DOM元素以及使用事件监听和响应用户交互。 8. Web框架和预处理器: 这本书可能会提到流行的Web开发框架和预处理器,比如Bootstrap、Foundation、Sass和Less等,它们是如何简化和加速开发流程的。 9. 测试和维护: 书中也可能包含关于如何测试网页以及如何持续优化和维护CSS和HTML代码的章节。例如,使用断言测试、自动化测试、性能分析工具等。 最后,鉴于文件名称列表中的“压缩包子文件”的表述,这可能是对“压缩包”文件的一种误译或误用,此处“压缩包”应该指的是包含该书籍PDF文件的压缩文件格式,如ZIP或RAR。而“Pro CSS and HTML Design Patterns.pdf”指的就是该书籍的PDF格式电子版文件。 以上所述,构成了《Pro CSS and HTML Design Patterns》一书可能包含的核心知识点。通过学习这些内容,Web前端开发者可以掌握更为高效和优雅的设计模式,从而在日常工作中更高效地解决实际问题。
recommend-type

Zotero 7数据同步:Attanger插件安装&设置,打造文献管理利器

/i.s3.glbimg.com/v1/AUTH_08fbf48bc0524877943fe86e43087e7a/internal_photos/bs/2018/L/j/ipKA8TRPyt4ptaG1DGww/t-m-01.png) # 1. Zotero 7数据同步简介 在数字时代,管理研究数据变得日益重要,而Zot
recommend-type

卷积神经网络的基础理论200字

<think>我们正在回答用户关于卷积神经网络(CNN)基础理论的询问。根据提供的引用资料,我们可以概述CNN的基本结构和工作原理。引用[1]提到CNN是一种前馈神经网络,信息从输入单向流动到输出。引用[2]指出CNN在图像处理等领域应用广泛,通过层次结构和参数调整实现模式识别。引用[3]说明CNN包含卷积层,使用卷积核提取局部特征,减少参数量,提高效率。引用[4]则提到了训练过程,包括前向传播、误差计算和反向传播(梯度下降)。因此,我们将从以下几个方面概述CNN:1.CNN的基本结构(卷积层、池化层、全连接层)2.卷积操作的工作原理(局部感受野、权重共享)3.训练过程(前向传播、损失函数、反
recommend-type

轻便实用的Java库类查询工具介绍

标题 "java2库类查询" 和描述表明,所提及的工具是一个专门用于查询Java库类的应用程序。此软件旨在帮助开发者快速地查找和引用Java的标准开发工具包(SDK)中包含的所有应用程序编程接口(API)类。通过这样的工具,开发者可以节省大量在官方文档或搜索引擎上寻找类定义和使用方法的时间。它被描述为轻巧且方便,这表明其占用的系统资源相对较少,同时提供直观的用户界面,使得查询过程简洁高效。 从描述中可以得出几个关键知识点: 1. Java SDK:Java的软件开发工具包(SDK)是Java平台的一部分,提供了一套用于开发Java应用软件的软件包和库。这些软件包通常被称为API,为开发者提供了编程界面,使他们能够使用Java语言编写各种类型的应用程序。 2. 库类查询:这个功能对于开发者来说非常关键,因为它提供了一个快速查找特定库类及其相关方法、属性和使用示例的途径。良好的库类查询工具可以帮助开发者提高工作效率,减少因查找文档而中断编程思路的时间。 3. 轻巧性:软件的轻巧性通常意味着它对计算机资源的要求较低。这样的特性对于资源受限的系统尤为重要,比如老旧的计算机、嵌入式设备或是当开发者希望最小化其开发环境占用空间时。 4. 方便性:软件的方便性通常关联于其用户界面设计,一个直观、易用的界面可以让用户快速上手,并减少在使用过程中遇到的障碍。 5. 包含所有API:一个优秀的Java库类查询软件应当能够覆盖Java所有标准API,这包括Java.lang、Java.util、Java.io等核心包,以及Java SE平台的所有其他标准扩展包。 从标签 "java 库 查询 类" 可知,这个软件紧密关联于Java编程语言的核心功能——库类的管理和查询。这些标签可以关联到以下知识点: - Java:一种广泛用于企业级应用、移动应用(如Android应用)、网站后端、大型系统和许多其他平台的编程语言。 - 库:在Java中,库是一组预打包的类和接口,它们可以被应用程序重复使用。Java提供了庞大的标准库,以支持各种常见的任务和功能。 - 查询:查询指的是利用软件工具搜索、定位和检索信息的过程。对于Java库类查询工具来说,这意味着可以通过类名、方法签名或其他标识符来查找特定的API条目。 最后,压缩包文件列表包含了两个文件:“java.dit”和“Java.exe”。其中“Java.exe”很可能是程序的可执行文件,而“java.dit”可能是一个数据文件,用于存储Java类的索引或数据。由于文件名后缀通常与文件类型相关联,但“dit”并不是一个常见的文件扩展名。这可能是一个特定于软件的自定义格式,或是一个打字错误。 总结来说,"java2库类查询" 是一个针对Java开发者的实用工具,它提供了一个轻量级、易用的平台来查询和定位Java标准库中的所有类和API。此工具对优化开发流程,减少查找Java类文档的时间大有裨益,尤其适合需要频繁查阅Java API的开发者使用。
recommend-type

【Zotero 7终极指南】:新手必备!Attanger插件全攻略与数据同步神技

# 1. Zotero 7与Attanger插件的介绍 在当今的学术研究和知识管理领域,高效的文献管理工具至关重要。Zotero 7作为一个流行的参考文献管理软件,因其强大的功能和用户友好的界面而受到专业人士的青睐。而Attanger插件则为Zotero 7带来了更多定制化和高级功能,极大地增强