CMakeFiles/yolov5_tph_topic.dir/src/yolov5_tph/yolov5trt_tph.cpp.o: In function `cmp(Yolo::Detection const&, Yolo::Detection const&)': /home/nvidia/object_detection/src/detect/include/../tensorrtx_tph/yolov5-tph/common.hpp:56: multiple definition of `cmp(Yolo::Detection const&, Yolo::Detection const&)' CMakeFiles/yolov5_tph_topic.dir/src/yolov5_tph/yolov5_topic_tph.cpp.o:/home/nvidia/object_detection/src/detect/include/../tensorrtx_tph/yolov5-tph/common.hpp:56: first defined here

时间: 2023-07-31 18:04:57 浏览: 148
这个错误提示显示在两个不同的目标文件中都存在相同的函数定义。具体来说,函数 `cmp(Yolo::Detection const&, Yolo::Detection const&)` 在两个文件中都被定义了一次。这种情况会导致重复定义错误。 要解决这个问题,您可以采取以下几个步骤: 1. 确保只有一个文件中定义了 `cmp` 函数。您可以查看这两个文件 `yolov5trt_tph.cpp` 和 `yolov5_topic_tph.cpp`,然后删除其中一个文件中的函数定义。 2. 如果这两个文件中都需要使用 `cmp` 函数,那么您可以将其定义为 `static` 函数,这样它们将成为内部链接,不会导致重复定义错误。 ```cpp static cmp(Yolo::Detection const&, Yolo::Detection const&) { // 函数实现 } ``` 3. 如果函数需要在多个文件之间共享,您可以将函数定义移到一个单独的源文件中,并在需要使用该函数的文件中引用它。 在一个新的源文件(例如 `common.cpp`)中定义函数: ```cpp #include "common.hpp" cmp(Yolo::Detection const&, Yolo::Detection const&) { // 函数实现 } ``` 在需要使用该函数的文件中,包含头文件 `common.hpp`: ```cpp #include "common.hpp" // 使用 cmp 函数 ``` 希望这些步骤能帮助您解决问题。如果您需要更多帮助,请提供更多上下文或相关代码。
阅读全文

相关推荐

Main主程序 #include "sys.h" #include "delay.h" #include "adc.h" #include "gpio.h" #include "OLED_I2C.h" #include "stmflash.h" #include "ds18b20.h" #include "timer.h" #include "usart1.h" #include <stdio.h> #include <stdlib.h> #include <string.h> #include <stdbool.h> #define FLASH_SAVE_ADDR ((u32)0x0800F000) //设置FLASH 保存地址(必须为偶数) #define STM32_RX1_BUF Usart1RecBuf #define STM32_Rx1Counter RxCounter #define STM32_RX1BUFF_SIZE USART1_RXBUFF_SIZE extern const unsigned char BMP1[]; extern const unsigned char BMP2[]; char display[16]; //显示缓存区 short temperature=0; //温度 u8 setTempValue = 40; //温度上限 u8 setSmokeValue = 60; //烟雾上限 u8 sendSmsFlag = 0; //发送短信标志 u8 alarmFlag = 0x00; //蜂鸣器报警标志 u16 smoke=0; //烟雾 u8 setn=0; //记录设置按键按下的次数 bool shanshuo=0; bool shuaxin=0; bool fangdao=0; char PhoneNumber[11];//手机号码 char uniPhoneNum[44];//手机号码转码后存放数组 void UsartRx1BufClear(void) { memset(STM32_RX1_BUF, 0, STM32_RX1BUFF_SIZE);//清除缓存 STM32_Rx1Counter = 0; } /***********************************************************************************************/ /****************************** 以下为SIM800相关部分 ****************************************/ /***********************************************************************************************/ void PhoneNumChangeUnicode(char *str1,char *str2) //手机号转码 { u8 i; char *buf = str1; for(i = 0;i < 11;i ++) //发送中文短信手机号必须转码,前面需要加上003 { str2[i*4+0] = '0'; str2[i*4+1] = '0'; str2[i*4+2] = '3'; str2[i*4+3] = buf[i]; } } void gsm_atcmd_send(char *at)//GSM AT指令发送函数 { unsigned short waittry;//延时变量 do { gsm_rev_start = 0;//接收开始标志清零 gsm_rev_okflag = 0;//接收完成标志清零 waittry = 0;//延时变量清零 uart1_send((unsigned char *)at,0xFF);//串口发送内容 while(waittry ++ < 3000)//进入while延时 { if (gsm_rev_okflag == 1)//等待GSM返回OK { return;//返回出去 } delay_ms(1); } } while(gsm_rev_okflag == 0); } void gsm_init(void)//gsm初始化 { gsm_atcmd_send("AT\r\n");//测试用的 delay_ms(1000); gsm_atcmd_send("AT+CSCS=\"UCS2\"\r\n");//设置为unicode编码 delay_ms(1000); gsm_atcmd_send("AT+CMGF=1\r\n");//设置为文本模式 delay_ms(1000); gsm_atcmd_send("AT+CNMI=2,1\r\n");//来短信时提示,并存储到模块内存 delay_ms(1000); gsm_atcmd_send("AT+CMGD=1,4\r\n");//清除短信 delay_ms(1000); gsm_atcmd_send("AT+CSMP=17,0,2,25\r\n");//设置短信保留为5分钟,发送中文 } /* *number 为对方手机号 */ void gsm_send_msg(const char*number,char * content) { u8 len; unsigned char gsm_at_txbuf[60];//GSM AT命令缓存区 memset(gsm_at_txbuf, 0, 60);//缓存清零 strncpy((char *)gsm_at_txbuf,"AT+CMGS=\"",9);//将AT+CMGS=\",复制到gsm_at_txbuf memcpy(gsm_at_txbuf + 9, number, 44);//将手机号码复制到AT+CMGS=\"之后 len = strlen((char *)gsm_at_txbuf);//获取gsm_at_txbuf字符串长度 gsm_at_txbuf[len] = '"'; // AT+CMGS=\"12345678901\" gsm_at_txbuf[len + 1] = '\r'; gsm_at_txbuf[len + 2] = '\n';//gsm_at_txbuf最终的格式"AT+CMGS=\"手机号码\"\r\n" uart1_send(gsm_at_txbuf,0xFF);//发送需要接受短信的手机号码 delay_ms(1000); uart1_send((unsigned char *)content,0xFF); //发短信内容 delay_ms(100); printf("%c",0x1a); //发送结束符号 delay_ms(10); } /* *content 为短信内容 */ void sim800_send_sms(char *content) { bool send_error = 0; u16 send_count = 0; gsm_rev_okflag = 0; OLED_ShowStr(32,2,"Send Sms... ",2,0); PhoneNumChangeUnicode(PhoneNumber,uniPhoneNum); //在发送短信前,先将手机号转码 gsm_send_msg(uniPhoneNum,content);//发送短信 delay_ms(1000);//延时1秒 while(gsm_rev_okflag == 0)//等待返回OK指令 { if(send_count++ > 8000) { send_count = 0; send_error = 1; break; } delay_ms(1); }; gsm_rev_okflag = 0; if(send_error == 1) OLED_ShowStr(32,2,"Send Fail! ",2,0);//显示发送超时 else OLED_ShowStr(32,2," Send OK! ",2,0); UsartRx1BufClear(); delay_ms(1000);//延时1秒 OLED_ShowStr(32,2," ",2,0); } /***********************************************************************************************/ /****************************** end ****************************************/ /***********************************************************************************************/ void STM32_FlashCheck(void) // 检查是否是新的单片机,是的话清空存储区,否则保留 { u8 comper_str[6],i; STMFLASH_Read(FLASH_SAVE_ADDR + 0x10,(u16*)comper_str,5); comper_str[5] = '\0'; if(strstr((char *)comper_str,"FDYDZ") == NULL) //新的单片机 { STMFLASH_Write(FLASH_SAVE_ADDR + 0x10,(u16*)"FDYDZ",5); //写入“FDYDZ”,方便下次校验 delay_ms(50); STMFLASH_Write(FLASH_SAVE_ADDR + 0x40,(u16*)"12345678910",11);//存入初始手机号 delay_ms(50); } STMFLASH_Read(FLASH_SAVE_ADDR + 0x40,(u16*)PhoneNumber,11); //读出手机号 for(i = 0; i < 11 ; i++) { if(PhoneNumber[i]<'0' || PhoneNumber[i]>'9') { break; } } if(i != 11) { memset(PhoneNumber, 0 , 11); //清除缓存 sprintf(PhoneNumber,"12345678910"); } delay_ms(100); } void display_mode(void) { u8 i; //显示中文: 防盗模式 if(fangdao==1){for(i = 0;i < 4;i ++)OLED_ShowCN(i*16+32,0,i+0,1);}else {for(i = 0;i < 4;i ++)OLED_ShowCN(i*16+32,0,i+24,1);} } void displayInitInterface(void) //显示初始页面 { u8 i; for(i = 0;i < 2;i ++)OLED_ShowCN(i*16,4,i+6,0); //显示中文: 温度 for(i = 0;i < 2;i ++)OLED_ShowCN(i*16,6,i+8,0); //显示中文: 烟雾 OLED_ShowChar(32,0,':',2,0); OLED_ShowChar(32,4,':',2,0); OLED_ShowChar(32,6,':',2,0); display_mode(); } void Get_Temperature(void) //获取温度 { temperature=ReadTemperature(); if(temperature>=setTempValue) { if(!(alarmFlag&0x01)) { alarmFlag|=0x01; shanshuo = 0; sendSmsFlag = 2; //发送短信标志 } } else { alarmFlag&=0xFE; } if(temperature>=setTempValue && shanshuo) { OLED_ShowStr(40, 4," ", 2,0); } else { sprintf(display," %d",temperature); OLED_ShowStr(40, 4, (u8*)display, 2,0);//显示温度 OLED_ShowCentigrade(68, 4); //显示摄氏度 } } void Get_Smoke(void) //获取烟雾浓度 { u16 test_adc=0; /* 获取烟雾浓度 */ test_adc = Get_Adc_Average(ADC_Channel_9,10);//读取通道9的10次AD平均值 smoke = test_adc*99/4096;//转换成0-99百分比 if(smoke>=setSmokeValue) { if(!(alarmFlag&0x02)) { alarmFlag|=0x02; shanshuo = 0; sendSmsFlag = 3; //发送短信标志 } } else { alarmFlag&=0xFD; } if(smoke>=setSmokeValue && shanshuo) { OLED_ShowStr(40, 6," ", 2,0); } else { sprintf(display," %02d %%",smoke); OLED_ShowStr(40, 6, (u8*)display, 2,0);//显示温度 } } void displaySetValue(void) //显示设置值 { u8 add=2,i; if(setn==1) { OLED_ShowChar(56,4,setTempValue%100/10+'0',2,0);//显示 OLED_ShowChar(64,4,setTempValue%10+'0',2,0);//显示 } if(setn==2) { OLED_ShowChar(56,4,setSmokeValue%100/10+'0',2,0);//显示 OLED_ShowChar(64,4,setSmokeValue%10+'0',2,0);//显示 OLED_ShowChar(72,4,'%',2,0); } if(setn>=3) { for(i = 0;i < 11;i ++) { OLED_ShowChar((add++)*8,4,PhoneNumber[i],2,(setn+1)-(3+i));//显示手机号码 } } } void keyscan(void) //按键扫描 { u8 i; if(KEY1 == 0) //设置键 { delay_ms(20); if(KEY1 == 0) { while(KEY1 == 0); setn ++; if(setn == 1) { OLED_CLS();//清屏 for(i = 0;i < 4;i ++)OLED_ShowCN(i*16+32,0,i+10,0);//显示中文:设置温度 OLED_ShowCentigrade(75, 4); //显示摄氏度 } if(setn == 2) { for(i = 0;i < 4;i ++)OLED_ShowCN(i*16+32,0,i+14,0);//显示中文:设置烟雾 OLED_ShowChar(80,4,' ',2,0); } if(setn == 3) { for(i = 0;i < 6;i ++)OLED_ShowCN(i*16+16,0,i+18,0);//显示中文:设置手机号码 } if(setn >= 14) { setn = 0; OLED_CLS();//清屏 displayInitInterface(); STMFLASH_Write(FLASH_SAVE_ADDR + 0x40,(u16*)PhoneNumber,11); //退出设置,存入设置的手机号 } displaySetValue(); } } if(KEY2 == 0) //加键 { delay_ms(80); if(KEY2 == 0) { if(setTempValue < 99 && setn==1)setTempValue++; if(setSmokeValue < 99 && setn==2)setSmokeValue++; if(setn>=3) { PhoneNumber[setn-3]++; if(PhoneNumber[setn-3]>'9')PhoneNumber[setn-3]='0'; } displaySetValue(); } } if(KEY3 == 0) //减键 { delay_ms(80); if(KEY3 == 0) { if(setn==0) { fangdao=!fangdao; display_mode(); } if(setTempValue > 0 && setn==1)setTempValue--; if(setSmokeValue > 0 && setn==2)setSmokeValue--; if(setn>=3) { PhoneNumber[setn-3]--; if(PhoneNumber[setn-3]<'0')PhoneNumber[setn-3]='9'; } displaySetValue(); } } } int main(void) { bool flameFlag=0; bool SomebodyFlag=0; char SEND_BUF[400]; //发送短信缓存 delay_init(); //延时函数初始化 NVIC_Configuration(); //中断优先级配置 I2C_Configuration(); //IIC初始化 STM32_FlashCheck(); //FLASH初始化 delay_ms(200); OLED_Init(); //OLED液晶初始化 OLED_CLS(); //清屏 OLED_ShowStr(0,2," GSM Init... ",2,0); uart1_Init(9600); gsm_init();//gsm初始化 OLED_CLS();//清屏 Adc_Init(); //adc初始化 KEY_GPIO_Init(); //按键引脚初始化 SR501_GPIO_Init(); //人体红外初始化 DS18B20_GPIO_Init(); //温度初始化 DS18B20_Init(); //初始化显示 displayInitInterface(); //显示初始界面 TIM3_Init(99,719); //定时器初始化,定时1ms //Tout = ((arr+1)*(psc+1))/Tclk ; //Tclk:定时器输入频率(单位MHZ) //Tout:定时器溢出时间(单位us) while(1) { keyscan(); //按键扫描 if(setn == 0) { if(shuaxin == 1) //大概300ms刷新一次数据 { Get_Temperature(); //获取温度 Get_Smoke(); //获取烟雾 shuaxin = 0; } if(FLAME == 0) //检测到火焰 { delay_ms(10); if(FLAME == 0) { if(flameFlag == 0) { OLED_DrawBMP(88,4,120,8,(unsigned char *)BMP1); //显示火焰图片 sendSmsFlag = 1; //发送短信标志 } flameFlag = 1; } } else { if(flameFlag == 1) { OLED_ShowStr(88, 4, " ", 2,0); OLED_ShowStr(88, 6, " ", 2,0); } flameFlag = 0; } if(fangdao==1&&SR501==1) //在防盗模式下检测到有人 { if(SomebodyFlag==0) { OLED_DrawBMP(0,0,32,4,(unsigned char *)BMP2); //图显示 sendSmsFlag = 4; //发送短信标志 SomebodyFlag = 1; } } else { if(SomebodyFlag==1) { OLED_ShowStr(0, 0, " ", 2,0); OLED_ShowStr(0, 2, " ", 2,0); SomebodyFlag = 0; } } if(temperature>=setTempValue || smoke>=setSmokeValue || flameFlag || SomebodyFlag)BEEP=1;else BEEP=0; //检测到温度烟雾超标火焰蜂鸣器报警 if(temperature>=setTempValue)FAN=1;else FAN=0; //温度超标都开启风扇 if(smoke>=setSmokeValue || flameFlag)RELAY = 1; else RELAY = 0; //检测到有火或者烟雾超标,开启水泵 if(sendSmsFlag != 0) //发送短信 { char TEMP_BUF[100]; /*******************************************************************************************/ /*******************以下为短信内容处理部分,发送中文短信必须转换为Unicode码**************/ /******************************************************************************************/ memset(SEND_BUF,0,sizeof(SEND_BUF)); //清空缓冲区 switch(sendSmsFlag) { case(1): strcat(SEND_BUF,"8B66544AFF0168C06D4B5230706B7130FF01"); break; //警告!检测到火焰! case(2): strcat(SEND_BUF,"8B66544AFF016E295EA68FC79AD8FF01"); break; //警告!温度过高! case(3): strcat(SEND_BUF,"8B66544AFF0170DF96FE6D535EA68FC79AD8FF01"); break; //警告!烟雾浓度过高! case(4): strcat(SEND_BUF,"8B66544AFF0168C06D4B523067094EBAFF01"); break; //警告!检测到有人! default: break; } if(sendSmsFlag!=4) { memset(TEMP_BUF,0,sizeof(TEMP_BUF)); //清空缓冲区 sprintf(TEMP_BUF,"6E295EA6003A003%1d003%1d2103FF0C70DF96FE003A003%1d003%1d0025",temperature/10,temperature%10,smoke/10,smoke%10); strcat(SEND_BUF,TEMP_BUF); } sim800_send_sms((char *)SEND_BUF);//发送短信 sendSmsFlag = 0; /*******************************************************************************************/ /*************************** end *****************************/ /******************************************************************************************/ } } delay_ms(10); } } void TIM3_IRQHandler(void)//定时器3中断服务程序,用于记录时间 { static u16 timeCount1 = 0; if (TIM_GetITStatus(TIM3, TIM_IT_Update) != RESET) //检查指定的TIM中断发生与否:TIM 中断源 { TIM_ClearITPendingBit(TIM3, TIM_IT_Update); //清除中断标志位 timeCount1++; if(timeCount1 >= 300) //300ms { timeCount1 = 0; shanshuo = !shanshuo; shuaxin = 1; } } } ADC初始化程序 #include "adc.h" #include "delay.h" //初始化ADC //这里我们仅以规则通道为例 //我们默认将开启通道0~3 void Adc_Init(void) { ADC_InitTypeDef ADC_InitStructure; GPIO_InitTypeDef GPIO_InitStructure; RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOB |RCC_APB2Periph_ADC1 , ENABLE ); //使能ADC1通道时钟 RCC_ADCCLKConfig(RCC_PCLK2_Div8); //设置ADC分频因子6 72M/8=9,ADC最大时间不能超过14M GPIO_InitStructure.GPIO_Pin = GPIO_Pin_1|GPIO_Pin_0; GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AIN; //模拟输入引脚 GPIO_Init(GPIOB, &GPIO_InitStructure); ADC_DeInit(ADC1); //复位ADC1,将外设 ADC1 的全部寄存器重设为缺省值 ADC_InitStructure.ADC_Mode = ADC_Mode_Independent; //ADC工作模式:ADC1和ADC2工作在独立模式 ADC_InitStructure.ADC_ScanConvMode = DISABLE; //模数转换工作在单通道模式 ADC_InitStructure.ADC_ContinuousConvMode = DISABLE; //模数转换工作在单次转换模式 ADC_InitStructure.ADC_ExternalTrigConv = ADC_ExternalTrigConv_None; //转换由软件而不是外部触发启动 ADC_InitStructure.ADC_DataAlign = ADC_DataAlign_Right; //ADC数据右对齐 ADC_InitStructure.ADC_NbrOfChannel = 1; //顺序进行规则转换的ADC通道的数目 ADC_Init(ADC1, &ADC_InitStructure); //根据ADC_InitStruct中指定的参数初始化外设ADCx的寄存器 ADC_Cmd(ADC1, ENABLE); //使能指定的ADC1 ADC_ResetCalibration(ADC1); //使能复位校准 while(ADC_GetResetCalibrationStatus(ADC1)); //等待复位校准结束 ADC_StartCalibration(ADC1); //开启AD校准 while(ADC_GetCalibrationStatus(ADC1)); //等待校准结束 } //获得ADC值 //ch:通道值 9 u16 Get_Adc(u8 ch) { //设置指定ADC的规则组通道,一个序列,采样时间 ADC_RegularChannelConfig(ADC1, ch, 1, ADC_SampleTime_71Cycles5 ); //ADC1,ADC通道,采样时间为13.5周期 ADC_SoftwareStartConvCmd(ADC1, ENABLE); //使能指定的ADC1的软件转换启动功能 while(!ADC_GetFlagStatus(ADC1, ADC_FLAG_EOC ));//等待转换结束 return ADC_GetConversionValue(ADC1); //返回最近一次ADC1规则组的转换结果 } u16 Get_Adc_Average(u8 ch,u8 times) { u32 temp_val=0; u8 t; for(t=0;t<times;t++) { temp_val+=Get_Adc(ch); delay_ms(5); } return temp_val/times; } #ifndef __ADC_H #define __ADC_H #include "sys.h" void Adc_Init(void); u16 Get_Adc(u8 ch); u16 Get_Adc_Average(u8 ch,u8 times); #endif GPIO引脚初始化程序 #include "gpio.h" ////////////////////////////////////////////////////////////////////////////////// //按键舵机的GPIO设置 ////////////////////////////////////////////////////////////////////////////////// void KEY_GPIO_Init(void) { GPIO_InitTypeDef GPIO_InitStructure; RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOA|RCC_APB2Periph_GPIOB|RCC_APB2Periph_GPIOC|RCC_APB2Periph_AFIO, ENABLE); //使能PABC端口时钟 GPIO_PinRemapConfig(GPIO_Remap_SWJ_JTAGDisable,ENABLE); //关闭JTAG模式 使PB3,PB4变成普通IO口 GPIO_InitStructure.GPIO_Pin = GPIO_Pin_12|GPIO_Pin_13|GPIO_Pin_14|GPIO_Pin_15; // 端口配置 GPIO_InitStructure.GPIO_Mode = GPIO_Mode_IPU; //上拉输入 GPIO_Init(GPIOB, &GPIO_InitStructure); GPIO_InitStructure.GPIO_Pin = GPIO_Pin_13|GPIO_Pin_14|GPIO_Pin_15; // 端口配置 GPIO_InitStructure.GPIO_Mode = GPIO_Mode_Out_PP; //推挽输出 GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz; //IO口速度为50MHz GPIO_Init(GPIOC, &GPIO_InitStructure); GPIO_ResetBits(GPIOC,GPIO_Pin_13|GPIO_Pin_14|GPIO_Pin_15); //输出0 } void SR501_GPIO_Init(void) { GPIO_InitTypeDef GPIO_InitStructure; RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOA, ENABLE); //使能PA端口时钟 GPIO_InitStructure.GPIO_Pin = GPIO_Pin_0; // 端口配置 GPIO_InitStructure.GPIO_Mode = GPIO_Mode_IPD; //下拉输入 GPIO_Init(GPIOA, &GPIO_InitStructure); } #ifndef __GPIO_H #define __GPIO_H #include "sys.h" #define KEY1 PBin(12) #define KEY2 PBin(13) #define KEY3 PBin(14) #define FLAME PBin(15) #define BEEP PCout(13) #define FAN PCout(14) #define RELAY PCout(15) #define SR501 PAin(0) void KEY_GPIO_Init(void);//引脚初始化 void SR501_GPIO_Init(void); #endif OLED驱动程序 /************************************************************************************ * * Description:128*64点阵的OLED显示屏驱动文件SD1306驱动IIC通信方式显示屏 * * Others: none; * * Function List: * 1. void I2C_Configuration(void) -- 配置CPU的硬件I2C * 2. void I2C_WriteByte(uint8_t addr,uint8_t data) -- 向寄存器地址写一个byte的数据 * 3. void WriteCmd(unsigned char I2C_Command) -- 写命令 * 4. void WriteDat(unsigned char I2C_Data) -- 写数据 * 5. void OLED_Init(void) -- OLED屏初始化 * 6. void OLED_SetPos(unsigned char x, unsigned char y) -- 设置起始点坐标 * 7. void OLED_Fill(unsigned char fill_Data) -- 全屏填充 * 8. void OLED_CLS(void) -- 清屏 * 9. void OLED_ON(void) -- 唤醒 * 10. void OLED_OFF(void) -- 睡眠 * 11. void OLED_ShowStr(unsigned char x, unsigned char y, unsigned char ch[], unsigned char TextSize) -- 显示字符串(字体大小有6*8和8*16两种) * 12. void OLED_ShowCN(unsigned char x, unsigned char y, unsigned char N) -- 显示中文(中文需要先取模,然后放到codetab.h中) * 13. void OLED_DrawBMP(unsigned char x0,unsigned char y0,unsigned char x1,unsigned char y1,unsigned char BMP[]) -- BMP图片 * * History: none; * *************************************************************************************/ #include "OLED_I2C.h" #include "delay.h" #include "codetab.h" /* 定义I2C总线连接的GPIO端口, 用户只需要修改下面4行代码即可任意改变SCL和SDA的引脚 */ #define RCC_I2C_PORT RCC_APB2Periph_GPIOB /* GPIO端口时钟 */ #define PORT_I2C_SCL GPIOB /* GPIO端口 */ #define PIN_I2C_SCL GPIO_Pin_6 /* GPIO引脚 */ #define PORT_I2C_SDA GPIOB /* GPIO端口 */ #define PIN_I2C_SDA GPIO_Pin_7 /* GPIO引脚 */ #define I2C_SCL_PIN GPIO_Pin_6 /* 连接到SCL时钟线的GPIO */ #define I2C_SDA_PIN GPIO_Pin_7 /* 连接到SDA数据线的GPIO */ /* 定义读写SCL和SDA的宏 */ #define I2C_SCL_1() PORT_I2C_SCL->BSRR = I2C_SCL_PIN /* SCL = 1 */ #define I2C_SCL_0() PORT_I2C_SCL->BRR = I2C_SCL_PIN /* SCL = 0 */ #define I2C_SDA_1() PORT_I2C_SDA->BSRR = I2C_SDA_PIN /* SDA = 1 */ #define I2C_SDA_0() PORT_I2C_SDA->BRR = I2C_SDA_PIN /* SDA = 0 */ #define I2C_SDA_READ() ((PORT_I2C_SDA->IDR & I2C_SDA_PIN) != 0) /* 读SDA口线状态 */ #define I2C_SCL_READ() ((PORT_I2C_SCL->IDR & I2C_SCL_PIN) != 0) /* 读SCL口线状态 */ /* ********************************************************************************************************* * 函 数 名: bsp_InitI2C * 功能说明: 配置I2C总线的GPIO,采用模拟IO的方式实现 * 形 参: 无 * 返 回 值: 无 ********************************************************************************************************* */ void bsp_InitI2C_2(void) { GPIO_InitTypeDef GPIO_InitStructure; RCC_APB2PeriphClockCmd(RCC_I2C_PORT, ENABLE); /* 打开GPIO时钟 */ GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz; GPIO_InitStructure.GPIO_Mode = GPIO_Mode_Out_OD; /* 开漏输出模式 */ GPIO_InitStructure.GPIO_Pin = PIN_I2C_SCL; GPIO_Init(PORT_I2C_SCL, &GPIO_InitStructure); GPIO_InitStructure.GPIO_Pin = PIN_I2C_SDA; GPIO_Init(PORT_I2C_SDA, &GPIO_InitStructure); /* 给一个停止信号, 复位I2C总线上的所有设备到待机模式 */ i2c_Stop_2(); } /* ********************************************************************************************************* * 函 数 名: i2c_Start * 功能说明: CPU发起I2C总线启动信号 * 形 参: 无 * 返 回 值: 无 ********************************************************************************************************* */ void i2c_Start_2(void) { /* 当SCL高电平时,SDA出现一个下跳沿表示I2C总线启动信号 */ I2C_SDA_1(); I2C_SCL_1(); delay_us(4); I2C_SDA_0(); delay_us(4); I2C_SCL_0(); } /* ********************************************************************************************************* * 函 数 名: i2c_Start * 功能说明: CPU发起I2C总线停止信号 * 形 参: 无 * 返 回 值: 无 ********************************************************************************************************* */ void i2c_Stop_2(void) { /* 当SCL高电平时,SDA出现一个上跳沿表示I2C总线停止信号 */ I2C_SDA_0(); I2C_SCL_1(); delay_us(4); I2C_SDA_1(); delay_us(4); } /* ********************************************************************************************************* * 函 数 名: i2c_SendByte * 功能说明: CPU向I2C总线设备发送8bit数据 * 形 参: _ucByte : 等待发送的字节 * 返 回 值: 无 ********************************************************************************************************* */ void i2c_SendByte_2(uint8_t _ucByte) { uint8_t i; /* 先发送字节的高位bit7 */ for (i = 0; i < 8; i++) { if (_ucByte & 0x80) { I2C_SDA_1(); } else { I2C_SDA_0(); } delay_us(2); I2C_SCL_1(); delay_us(2); I2C_SCL_0(); _ucByte <<= 1; /* 左移一个bit */ delay_us(2); } } /* ********************************************************************************************************* * 函 数 名: i2c_ReadByte * 功能说明: CPU从I2C总线设备读取8bit数据 * 形 参: 无 * 返 回 值: 读到的数据 ********************************************************************************************************* */ uint8_t i2c_ReadByte_2(void) { uint8_t i; uint8_t value; /* 读到第1个bit为数据的bit7 */ value = 0; for (i = 0; i < 8; i++) { value <<= 1; I2C_SCL_1();//SCL在高电平期间,数据必须保持稳定 delay_us(2); if (I2C_SDA_READ()) { value++; } I2C_SCL_0(); delay_us(1); } return value; } /* ********************************************************************************************************* * 函 数 名: i2c_WaitAck * 功能说明: CPU产生一个时钟,并读取器件的ACK应答信号 * 形 参: 无 * 返 回 值: 返回0表示正确应答,1表示无器件响应 ********************************************************************************************************* */ uint8_t i2c_WaitAck_2(void) { uint8_t tempTime; I2C_SDA_1(); /* CPU释放SDA总线 */ delay_us(1); I2C_SCL_1(); /* CPU驱动SCL = 1, 此时器件会返回ACK应答 */ delay_us(1); while(I2C_SDA_READ()) { tempTime++; if(tempTime>250) { i2c_Stop_2(); return 1; } } I2C_SCL_0(); return 0; } /* ********************************************************************************************************* * 函 数 名: i2c_Ack * 功能说明: CPU产生一个ACK信号 * 形 参: 无 * 返 回 值: 无 ********************************************************************************************************* */ void i2c_Ack_2(void) { I2C_SDA_0(); /* CPU驱动SDA = 0 */ delay_us(5); I2C_SCL_1(); /* CPU产生1个时钟 */ delay_us(5); I2C_SCL_0(); delay_us(5); I2C_SDA_1(); /* CPU释放SDA总线 */ } /* ********************************************************************************************************* * 函 数 名: i2c_NAck * 功能说明: CPU产生1个NACK信号 * 形 参: 无 * 返 回 值: 无 ********************************************************************************************************* */ void i2c_NAck_2(void) { I2C_SDA_1(); /* CPU驱动SDA = 1 */ delay_us(5); I2C_SCL_1(); /* CPU产生1个时钟 */ delay_us(5); I2C_SCL_0(); delay_us(5); } void I2C_Configuration(void) { bsp_InitI2C_2(); } void I2C_WriteByte(uint8_t addr,uint8_t data) { /* 第1步:发起I2C总线启动信号 */ i2c_Start_2(); /* 第2步:发起控制字节,高7bit是地址,bit0是读写控制位,0表示写,1表示读 */ i2c_SendByte_2(OLED_ADDRESS | I2C_WR); /* 此处是写指令 */ /* 第3步:发送ACK */ i2c_WaitAck_2(); /* 第4步:发送字节地址 */ i2c_SendByte_2(addr); i2c_WaitAck_2(); /* 第5步:开始写入数据 */ i2c_SendByte_2(data); /* 第6步:发送ACK */ i2c_WaitAck_2(); /* 发送I2C总线停止信号 */ i2c_Stop_2(); } void WriteCmd(unsigned char I2C_Command)//写命令 { I2C_WriteByte(0x00, I2C_Command); } void WriteDat(unsigned char I2C_Data)//写数据 { I2C_WriteByte(0x40, I2C_Data); } void OLED_Init(void) { delay_ms(100); //这里的延时很重要 WriteCmd(0xAE); //display off WriteCmd(0x20); //Set Memory Addressing Mode WriteCmd(0x10); //00,Horizontal Addressing Mode;01,Vertical Addressing Mode;10,Page Addressing Mode (RESET);11,Invalid WriteCmd(0xb0); //Set Page Start Address for Page Addressing Mode,0-7 WriteCmd(0xc8); //Set COM Output Scan Direction WriteCmd(0x00); //---set low column address WriteCmd(0x10); //---set high column address WriteCmd(0x40); //--set start line address WriteCmd(0x81); //--set contrast control register WriteCmd(0xff); //亮度调节 0x00~0xff WriteCmd(0xa1); //--set segment re-map 0 to 127 WriteCmd(0xa6); //--set normal display WriteCmd(0xa8); //--set multiplex ratio(1 to 64) WriteCmd(0x3F); // WriteCmd(0xa4); //0xa4,Output follows RAM content;0xa5,Output ignores RAM content WriteCmd(0xd3); //-set display offset WriteCmd(0x00); //-not offset WriteCmd(0xd5); //--set display clock divide ratio/oscillator frequency WriteCmd(0xf0); //--set divide ratio WriteCmd(0xd9); //--set pre-charge period WriteCmd(0x22); // WriteCmd(0xda); //--set com pins hardware configuration WriteCmd(0x12); WriteCmd(0xdb); //--set vcomh WriteCmd(0x20); //0x20,0.77xVcc WriteCmd(0x8d); //--set DC-DC enable WriteCmd(0x14); // WriteCmd(0xaf); //--turn on oled panel } void OLED_SetPos(unsigned char x, unsigned char y) //设置起始点坐标 { WriteCmd(0xb0+y); WriteCmd(((x&0xf0)>>4)|0x10); WriteCmd((x&0x0f)|0x01); } void OLED_Fill(unsigned char fill_Data)//全屏填充 { unsigned char m,n; for(m=0;m<8;m++) { WriteCmd(0xb0+m); //page0-page1 WriteCmd(0x00); //low column start address WriteCmd(0x10); //high column start address for(n=0;n<128;n++) { WriteDat(fill_Data); } } } void OLED_CLS(void)//清屏 { OLED_Fill(0x00); } //-------------------------------------------------------------- // Prototype : void OLED_ON(void) // Calls : // Parameters : none // Description : 将OLED从休眠中唤醒 //-------------------------------------------------------------- void OLED_ON(void) { WriteCmd(0X8D); //设置电荷泵 WriteCmd(0X14); //开启电荷泵 WriteCmd(0XAF); //OLED唤醒 } //-------------------------------------------------------------- // Prototype : void OLED_OFF(void) // Calls : // Parameters : none // Description : 让OLED休眠 -- 休眠模式下,OLED功耗不到10uA //-------------------------------------------------------------- void OLED_OFF(void) { WriteCmd(0X8D); //设置电荷泵 WriteCmd(0X10); //关闭电荷泵 WriteCmd(0XAE); //OLED休眠 } //在指定位置显示一个字符,包括部分字符 //x:0~127 //y:0~7 //chr:显示的字符 //TextSize:字符大小(1:6*8 ; 2:8*16) //mode:1,反白显示;0,正常显示 void OLED_ShowChar(unsigned char x,unsigned char y,unsigned char chr,unsigned char TextSize,u8 mode) { unsigned char c=0,i=0; c=chr-' ';//得到偏移后的值 if(TextSize == 2) { if(x>120){x=0;y++;} OLED_SetPos(x,y); for(i=0;i<8;i++) if(mode==1)WriteDat(~(F8X16[c*16+i]));else WriteDat(F8X16[c*16+i]); OLED_SetPos(x,y+1); for(i=0;i<8;i++) if(mode==1)WriteDat(~(F8X16[c*16+i+8]));else WriteDat(F8X16[c*16+i+8]); } else { if(x>126){x=0;y++;} OLED_SetPos(x,y); for(i=0;i<6;i++) if(mode==1)WriteDat(~(F6x8[c][i])); else WriteDat(F6x8[c][i]); } } //-------------------------------------------------------------- // Prototype : void OLED_ShowChar(unsigned char x, unsigned char y, unsigned char ch[], unsigned char TextSize) // Calls : // Parameters : x,y -- 起始点坐标(x:0~127, y:0~7); ch[] -- 要显示的字符串; TextSize -- 字符大小(1:6*8 ; 2:8*16) // Description : 显示codetab.h中的ASCII字符,有6*8和8*16可选择 //-------------------------------------------------------------- void OLED_ShowStr(unsigned char x, unsigned char y, unsigned char ch[], unsigned char TextSize,u8 mode) { unsigned char c = 0,i = 0,j = 0; switch(TextSize) { case 1: { while(ch[j] != '\0') { c = ch[j] - 32; if(x > 126) { x = 0; y++; } OLED_SetPos(x,y); for(i=0;i<6;i++) if(mode==1)WriteDat(~(F6x8[c][i])); else WriteDat(F6x8[c][i]); x += 6; j++; } }break; case 2: { while(ch[j] != '\0') { c = ch[j] - 32; if(x > 120) { x = 0; y++; } OLED_SetPos(x,y); for(i=0;i<8;i++) if(mode==1)WriteDat(~(F8X16[c*16+i])); else WriteDat(F8X16[c*16+i]); OLED_SetPos(x,y+1); for(i=0;i<8;i++) if(mode==1)WriteDat(~(F8X16[c*16+i+8])); else WriteDat(F8X16[c*16+i+8]); x += 8; j++; } }break; } } //-------------------------------------------------------------- // Prototype : void OLED_ShowCN(unsigned char x, unsigned char y, unsigned char N) // Calls : // Parameters : x,y -- 起始点坐标(x:0~127, y:0~7); N:汉字在codetab.h中的索引 // Description : 显示codetab.h中的汉字,16*16点阵 //mode:1,反白显示;0,正常显示 //-------------------------------------------------------------- void OLED_ShowCN(unsigned char x, unsigned char y, unsigned char N,u8 mode) { unsigned char wm=0; unsigned int adder=32*N; OLED_SetPos(x , y); for(wm = 0;wm < 16;wm++) { if(mode==1)WriteDat(~(F16x16[adder]));else WriteDat(F16x16[adder]); adder += 1; } OLED_SetPos(x,y + 1); for(wm = 0;wm < 16;wm++) { if(mode==1)WriteDat(~(F16x16[adder]));else WriteDat(F16x16[adder]); adder += 1; } } //-------------------------------------------------------------- // Prototype : void OLED_DrawBMP(unsigned char x0,unsigned char y0,unsigned char x1,unsigned char y1,unsigned char BMP[]); // Calls : // Parameters : x0,y0 -- 起始点坐标(x0:0~127, y0:0~7); x1,y1 -- 起点对角线(结束点)的坐标(x1:1~128,y1:1~8) // Description : 显示BMP位图 //-------------------------------------------------------------- void OLED_DrawBMP(unsigned char x0,unsigned char y0,unsigned char x1,unsigned char y1,unsigned char BMP[]) { unsigned int j=0; unsigned char x,y; if(y1%8==0) y = y1/8; else y = y1/8 + 1; for(y=y0;y<y1;y++) { OLED_SetPos(x0,y); for(x=x0;x<x1;x++) { WriteDat(BMP[j++]); } } } void OLED_ShowCentigrade(unsigned char x, unsigned char y)//显示℃ { unsigned char wm=0; unsigned char BUF[]={ 0x10,0x28,0x10,0xC0,0x20,0x10,0x10,0x10,0x20,0x70,0x00,0x00,0x00,0x00,0x00,0x07, 0x08,0x10,0x10,0x10,0x10,0x08,0x04,0x00,/*"℃"*/ }; OLED_SetPos(x , y); for(wm = 0;wm < 12;wm++) { WriteDat(BUF[wm]); } OLED_SetPos(x,y + 1); for(wm = 0;wm < 12;wm++) { WriteDat(BUF[wm+12]); } } #ifndef __OLED_I2C_H #define __OLED_I2C_H #include "stm32f10x.h" #define OLED_ADDRESS 0x78 //通过调整0R电阻,屏可以0x78和0x7A两个地址 -- 默认0x78 #define I2C_WR 0 /* 写控制bit */ #define I2C_RD 1 /* 读控制bit */ void bsp_InitI2C_2(void); void i2c_Start_2(void); void i2c_Stop_2(void); void i2c_SendByte_2(uint8_t _ucByte); uint8_t i2c_ReadByte_2(void); uint8_t i2c_WaitAck_2(void); void i2c_Ack_2(void); void i2c_NAck_2(void); void I2C_Configuration(void); void I2C_WriteByte(uint8_t addr,uint8_t data); void WriteCmd(unsigned char I2C_Command); void WriteDat(unsigned char I2C_Data); void OLED_Init(void); void OLED_SetPos(unsigned char x, unsigned char y); void OLED_Fill(unsigned char fill_Data); void OLED_CLS(void); void OLED_ON(void); void OLED_OFF(void); void OLED_ShowChar(unsigned char x,unsigned char y,unsigned char chr,unsigned char TextSize,u8 mode); void OLED_ShowStr(unsigned char x, unsigned char y, unsigned char ch[], unsigned char TextSize,u8 mode); void OLED_ShowCN(unsigned char x, unsigned char y, unsigned char N,u8 mode); void OLED_DrawBMP(unsigned char x0,unsigned char y0,unsigned char x1,unsigned char y1,unsigned char BMP[]); void OLED_ShowCentigrade(unsigned char x, unsigned char y); #endif TIME定时器程序 #include "timer.h" //通用定时器中断初始化 //这里时钟选择为APB1的2倍,而APB1为36M //arr:自动重装值。 //psc:时钟预分频数 //这里使用的是定时器3! void TIM3_Init(u16 arr,u16 psc) { TIM_TimeBaseInitTypeDef TIM_TimeBaseStructure; NVIC_InitTypeDef NVIC_InitStructure; RCC_APB1PeriphClockCmd(RCC_APB1Periph_TIM3, ENABLE); //时钟使能 TIM_TimeBaseStructure.TIM_Period = arr; //设置在下一个更新事件装入活动的自动重装载寄存器周期的值 计数到5000为500ms TIM_TimeBaseStructure.TIM_Prescaler =psc; //设置用来作为TIMx时钟频率除数的预分频值 10Khz的计数频率 TIM_TimeBaseStructure.TIM_ClockDivision = 0; //设置时钟分割:TDTS = Tck_tim TIM_TimeBaseStructure.TIM_CounterMode = TIM_CounterMode_Up; //TIM向上计数模式 TIM_TimeBaseInit(TIM3, &TIM_TimeBaseStructure); //根据TIM_TimeBaseInitStruct中指定的参数初始化TIMx的时间基数单位 TIM_ITConfig( //使能或者失能指定的TIM中断 TIM3, //TIM3 TIM_IT_Update , ENABLE //使能 ); NVIC_InitStructure.NVIC_IRQChannel = TIM3_IRQn; //TIM3中断 NVIC_InitStructure.NVIC_IRQChannelPreemptionPriority = 1; //先占优先级0级 NVIC_InitStructure.NVIC_IRQChannelSubPriority = 1; //从优先级2级 NVIC_InitStructure.NVIC_IRQChannelCmd = ENABLE; //IRQ通道被使能 NVIC_Init(&NVIC_InitStructure); //根据NVIC_InitStruct中指定的参数初始化外设NVIC寄存器 TIM_Cmd(TIM3, ENABLE); //使能定时器3 } #ifndef __TIMER_H #define __TIMER_H #include "sys.h" void TIM3_Init(u16 arr,u16 psc); #endif DS18B20温度程序 #include "ds18b20.h" #include "delay.h" /******************************************************************************* 函数名:DS18B20_GPIO_Init 功能:初始化DS18B20引脚 输入: 输出: 返回值: 备注: *******************************************************************************/ void DS18B20_GPIO_Init(void) { GPIO_InitTypeDef GPIO_InitStructure; RCC_APB2PeriphClockCmd(RCC_DS18B20_PORT, ENABLE); //使能PORTA口时钟 GPIO_InitStructure.GPIO_Pin = DS18B20_GPIO_PIN; GPIO_InitStructure.GPIO_Mode = GPIO_Mode_Out_PP; GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz; GPIO_Init(DS18B20_GPIO_PORT, &GPIO_InitStructure); GPIO_SetBits(DS18B20_GPIO_PORT,DS18B20_GPIO_PIN); //输出1 } /******************************************************************************* 函数名:DS18B20_Init 功能:初始化DS18B20 输入: 输出: 返回值:初始化成功为0,不成功为1 备注: *******************************************************************************/ u8 DS18B20_Init(void) { unsigned char wait=0; DS18B20_IO_OUT(); //输出模式 DS18B20_OUT_0; //拉低 delay_us(750); //至少延时480us DS18B20_OUT_1; //拉高 delay_us(15); //15us DS18B20_IO_IN(); //输入模式 while(READ_DS18B20_IO && wait++<200)delay_us(1);//等待高电平结束 if(wait>=200)return 1; else wait=0; while(!READ_DS18B20_IO && wait++<240)delay_us(1);//等待低电平结束 if(wait>=240)return 1; else return 0; } /******************************************************************************* 函数名:DS18B20_ReadByte 功能:从DS18B20读一个字节 输入: 输出: 返回值:读取到的字节 备注: *******************************************************************************/ unsigned char DS18B20_ReadByte(void) { unsigned char i; unsigned char dat = 0; for (i=0; i<8; i++) //8位计数器 { dat >>= 1; DS18B20_IO_OUT(); //输出模式 DS18B20_OUT_0; //开始时间片 delay_us(2); //延时等待 DS18B20_OUT_1; //准备接收 DS18B20_IO_IN(); //输入模式 delay_us(12); //接收延时 if(READ_DS18B20_IO) dat |= 0x80; //读取数据 delay_us(60); //等待时间片结束 } return dat; } /******************************************************************************* 函数名:DS18B20_WriteByte 功能:写一个字节 输入:unsigned char dat 输出: 返回值: 备注: *******************************************************************************/ void DS18B20_WriteByte(unsigned char dat) { unsigned char i; unsigned char temp; DS18B20_IO_OUT();//输出模式 for (i=1; i<=8; i++) { temp = dat & 0x01; dat = dat >> 1; if (temp) { DS18B20_OUT_0; delay_us(2); DS18B20_OUT_1; //写1 delay_us(60); } else { DS18B20_OUT_0;//写0 delay_us(60); DS18B20_OUT_1; delay_us(2); } } } /************************************** 从DS18B20中获取温度值得浮点值 参数: 空 返回值: 读取到的温度值(有效范围-55.0~125.0) **************************************/ float ReadTemperature(void) { unsigned char TPH; //存放温度值的高字节 unsigned char TPL; //存放温度值的低字节 short i16=0; float f32=0; DS18B20_Init(); DS18B20_WriteByte(0xCC); //跳过ROM命令 DS18B20_WriteByte(0x44); //开始转换命令 DS18B20_Init(); DS18B20_WriteByte(0xCC); //跳过ROM命令 DS18B20_WriteByte(0xBE); //读暂存存储器命令 TPL = DS18B20_ReadByte(); //读温度低字节 TPH = DS18B20_ReadByte(); //读温度高字节 i16 = 0; i16 = (TPH<<8) |TPL; // 将高位(MSB)与低位(LSB)合并 f32 = i16 * 0.0625; // 12bit精度时温度值计算 return(f32); // 返回读取到的温度数值(float型) } #ifndef __DS18B20_H #define __DS18B20_H #include "sys.h" //如果想要修改引脚,只需修改下面的宏 #define RCC_DS18B20_PORT RCC_APB2Periph_GPIOA /* GPIO端口时钟 */ #define DS18B20_GPIO_PIN GPIO_Pin_11 #define DS18B20_GPIO_PORT GPIOA //IO方向设置(CRL寄存器对应引脚0~7,CRH寄存器对应引脚8~15) //DS18B20_GPIO_PORT->CRH&=0xFFFFFFF0为PA8引脚输出模式对应的寄存器清空 //DS18B20_GPIO_PORT->CRH|=0x00000008将(CNF8[1:0]设置为10:上拉/下拉输入模式,MODE8[1;0]设置为00:输入模式) //DS18B20_GPIO_PORT->CRH|=0x00000003将(CNF8[1:0]设置为00:通用推挽输出模式 ,MODE8[1;0]设置为11:最大50MHZ) #define DS18B20_IO_IN() {DS18B20_GPIO_PORT->CRH&=0xFFFF0FFF;DS18B20_GPIO_PORT->CRH|=0x00008000;} #define DS18B20_IO_OUT() {DS18B20_GPIO_PORT->CRH&=0xFFFF0FFF;DS18B20_GPIO_PORT->CRH|=0x00003000;} #define DS18B20_OUT_0 GPIO_ResetBits(DS18B20_GPIO_PORT, DS18B20_GPIO_PIN)//IO为低电平 #define DS18B20_OUT_1 GPIO_SetBits(DS18B20_GPIO_PORT, DS18B20_GPIO_PIN)//IO为高电平 #define READ_DS18B20_IO GPIO_ReadInputDataBit(DS18B20_GPIO_PORT, DS18B20_GPIO_PIN)//读取IO电平 void DS18B20_GPIO_Init(void); u8 DS18B20_Init(void); //初始化DS18B20 float ReadTemperature(void); //获取温度值 #endif 修改代码中使用OLED的部分,改为使用LCD1602实现

最新推荐

recommend-type

高分子与计算机模拟.doc

高分子与计算机模拟.doc
recommend-type

iBatisNet基础教程:入门级示例程序解析

iBatisNet是一个流行的.NET持久层框架,它提供了数据持久化层的解决方案。这个框架允许开发者通过配置文件或XML映射文件来操作数据库,从而将数据操作与业务逻辑分离,提高了代码的可维护性和扩展性。由于它具备与Java领域广泛使用的MyBatis类似的特性,对于Java开发者来说,iBatisNet易于上手。 ### iBatisNet入门关键知识点 1. **框架概述**: iBatisNet作为一个持久层框架,其核心功能是减少数据库操作代码。它通过映射文件实现对象与数据库表之间的映射,使得开发者在处理数据库操作时更加直观。其提供了一种简单的方式,让开发者能够通过配置文件来管理SQL语句和对象之间的映射关系,从而实现对数据库的CRUD操作(创建、读取、更新和删除)。 2. **配置与初始化**: - **配置文件**:iBatisNet使用配置文件(通常为`SqlMapConfig.xml`)来配置数据库连接和SQL映射文件。 - **环境设置**:包括数据库驱动、连接池配置、事务管理等。 - **映射文件**:定义SQL语句和结果集映射到对象的规则。 3. **核心组件**: - **SqlSessionFactory**:用于创建SqlSession对象,它类似于一个数据库连接池。 - **SqlSession**:代表一个与数据库之间的会话,可以执行SQL命令,获取映射对象等。 - **Mapper接口**:定义与数据库操作相关的接口,通过注解或XML文件实现具体方法与SQL语句的映射。 4. **基本操作**: - **查询(SELECT)**:使用`SqlSession`的`SelectList`或`SelectOne`方法从数据库查询数据。 - **插入(INSERT)**:使用`Insert`方法向数据库添加数据。 - **更新(UPDATE)**:使用`Update`方法更新数据库中的数据。 - **删除(DELETE)**:使用`Delete`方法从数据库中删除数据。 5. **数据映射**: - **一对一**:单个记录与另一个表中的单个记录之间的关系。 - **一对多**:单个记录与另一个表中多条记录之间的关系。 - **多对多**:多个记录与另一个表中多个记录之间的关系。 6. **事务处理**: iBatisNet不会自动处理事务,需要开发者手动开始事务、提交事务或回滚事务。开发者可以通过`SqlSession`的`BeginTransaction`、`Commit`和`Rollback`方法来控制事务。 ### 具体示例分析 从文件名称列表可以看出,示例程序中包含了完整的解决方案文件`IBatisNetDemo.sln`,这表明它可能是一个可视化的Visual Studio解决方案,其中可能包含多个项目文件和资源文件。示例项目可能包括了数据库访问层、业务逻辑层和表示层等。而`51aspx源码必读.txt`文件可能包含关键的源码解释和配置说明,帮助开发者理解示例程序的代码结构和操作数据库的方式。`DB_51aspx`可能指的是数据库脚本或者数据库备份文件,用于初始化或者恢复数据库环境。 通过这些文件,我们可以学习到如何配置iBatisNet的环境、如何定义SQL映射文件、如何创建和使用Mapper接口、如何实现基本的CRUD操作,以及如何正确地处理事务。 ### 学习步骤 为了有效地学习iBatisNet,推荐按照以下步骤进行: 1. 了解iBatisNet的基本概念和框架结构。 2. 安装.NET开发环境(如Visual Studio)和数据库(如SQL Server)。 3. 熟悉示例项目结构,了解`SqlMapConfig.xml`和其他配置文件的作用。 4. 学习如何定义和使用映射文件,如何通过`SqlSessionFactory`和`SqlSession`进行数据库操作。 5. 逐步实现增删改查操作,理解数据对象到数据库表的映射原理。 6. 理解并实践事务处理机制,确保数据库操作的正确性和数据的一致性。 7. 通过`51aspx源码必读.txt`学习示例项目的代码逻辑,加深理解。 8. 在数据库中尝试运行示例程序的SQL脚本,观察操作结果。 9. 最后,尝试根据实际需求调整和扩展示例程序,加深对iBatisNet的掌握。 ### 总结 iBatisNet是一个为.NET环境量身定制的持久层框架,它使数据库操作变得更加高效和安全。通过学习iBatisNet的入门示例程序,可以掌握.NET中数据持久化的高级技巧,为后续的复杂数据处理和企业级应用开发打下坚实的基础。
recommend-type

【Dify工作流应用搭建指南】:一站式掌握文档图片上传系统的构建与优化

# 1. Dify工作流应用概述 在现代IT行业中,工作流自动化逐渐成为推动效率和减少人为错误的关键因素。本章将介绍Dify工作流应用的基本概念、核心优势以及应用场景,以助于理解其在企业流程中的重要性。 ## 工作流的定义与重要性 工作流是一系列按照既定顺序完成任务的过程,它旨在实现任务分配、管理和监控的自动化。在企业环境中,工作流应用可以提高任务执行效率、降低
recommend-type

Tree-RAG

<think>我们正在讨论Tree-RAG技术,需要结合用户提供的引用和之前对话中的技术背景。用户之前的问题是关于电力行业设备分析报告中Fine-tuned LLM与RAG的结合,现在转向Tree-RAG技术原理、应用场景及与传统RAG的对比。 根据引用[1]和[4]: - 引用[1]提到GraphRAG与传统RAG的7大区别,指出GraphRAG有更好的数据扩展性,但索引创建和查询处理更复杂。 - 引用[4]提到RAPTOR(Recursive Abstractive Processing for Tree-Organized Retrieval),这是一种Tree-RAG的实现,通过层次
recommend-type

VC数据库实现员工培训与仓库管理系统分析

### VC数据库实例:员工培训系统、仓库管理系统知识点详解 #### 员工培训系统 员工培训系统是企业用来管理员工教育和培训活动的平台,它使得企业能够有效地规划和执行员工的培训计划,跟踪培训进程,评估培训效果,并且提升员工的技能水平。以下是员工培训系统的关键知识点: 1. **需求分析**:首先需要了解企业的培训需求,包括员工当前技能水平、岗位要求、职业发展路径等。 2. **课程管理**:系统需要具备创建和管理课程的能力,包括课程内容、培训方式、讲师信息、时间安排等。 3. **用户管理**:包括员工信息管理、培训师信息管理以及管理员账户管理,实现对参与培训活动的不同角色进行有效管理。 4. **培训进度跟踪**:系统能够记录员工的培训情况,包括参加的课程、完成的课时、获得的证书等信息。 5. **评估系统**:提供考核工具,如考试、测验、作业提交等方式,来评估员工的学习效果和知识掌握情况。 6. **报表统计**:能够生成各种统计报表,如培训课程参与度报表、员工培训效果评估报表等,以供管理层决策。 7. **系统集成**:与企业其它信息系统,如人力资源管理系统(HRMS)、企业资源规划(ERP)系统等,进行集成,实现数据共享。 8. **安全性设计**:确保培训资料和员工信息的安全,需要有相应的权限控制和数据加密措施。 #### 仓库管理系统 仓库管理系统用于控制和管理仓库内部的物资流转,确保物资的有效存储和及时供应,以及成本控制。以下是仓库管理系统的关键知识点: 1. **库存管理**:核心功能之一,能够实时监控库存水平、跟踪库存流动,预测库存需求。 2. **入库操作**:系统要支持对物品的接收入库操作,包括物品验收、编码、上架等。 3. **出库操作**:管理物品的出库流程,包括订单处理、拣货、打包、发货等环节。 4. **物料管理**:对物料的分类管理、有效期管理、质量状态管理等。 5. **仓库布局优化**:系统应具备优化仓库布局功能,以提高存储效率和拣选效率。 6. **设备管理**:管理仓库内使用的各种设备,如叉车、货架、输送带等的维护和调度。 7. **数据报表**:生成各类数据报表,如库存报表、周转报表、成本报表等,提供管理决策支持。 8. **条码与RFID技术**:通过条码扫描或RFID技术,实现仓库作业的自动化和快速识别。 9. **系统集成**:与供应链管理系统(SCM)、制造执行系统(MES)、订单管理系统等进行集成,提升整个供应链的效率。 #### 文件名称列表解读 1. **第04章仓库管理系统**:这部分内容很可能是整个培训或教学材料中关于仓库管理系统的核心章节。它可能详细介绍了仓库管理系统的功能模块、操作流程、数据结构、安全性和维护等内容。 2. **第03章员工培训系统**:这一章节专注于讲解员工培训系统的设计和实施。可能包含培训系统的架构设计、用户交互设计、数据库设计、安全性考虑、系统测试及案例分析等。 通过对以上系统的学习和应用,可以理解IT系统在企业管理中所扮演的角色,提升企业管理效率和员工技能水平。同时,掌握这些系统的设计与实现,对于IT专业人员来说具有重要的实践价值。
recommend-type

【IFIX 4.5 MB1 驱动更新深度解析】:专家分享关键步骤,避免更新陷阱

# 摘要 本文全面介绍了IFIX 4.5 MB1驱动更新的各个方面,包括技术基础、更新的必要性、实践步骤、避免更新陷阱的策略和案例分析。首先概述了IFIX 4.5 MB1的驱动更新概览和技术架构,强调了更新对于提升系统性能和安全性的重要性。然后,具体阐述了更新前的准备、具体操作步骤以及更新后的验证和问题处理。为规避风险,文章接着提出风险评估、预防措施以及更新后的监控和维护方法。最后,通过成功和失败的案例分析,提供了实用的专
recommend-type

display: grid;瀑布流

<think>我们正在解决使用CSS Grid实现瀑布流布局时的重排问题。瀑布流布局中,项目通常具有不同的高度,并按列排列,每列项目依次填充,形成类似瀑布的效果。使用Grid布局时,如果不采取特殊措施,项目会严格遵循网格轨道,导致出现空白间隙或破坏视觉顺序的重排问题。 引用[1]提到Grid布局提供了强大的布局能力,但需要平衡功能性和性能。引用[2]和引用[3]都提到了瀑布流布局的动态内容排版问题,以及使用容器查询和JavaScript计算的方法。 解决方案思路: 1. 使用Grid布局创建列结构,但允许项目跨越多个行,从而避免严格网格带来的空白。 2. 结合JavaScript动
recommend-type

C++实现高效文件传输源码解析

根据给定的信息,可以看出我们主要讨论的是“C++文件传输源码”。以下是关于C++文件传输源码的详细知识点: 1. C++基础知识点: - C++是一种静态类型的、编译式的、通用的编程语言。 - 它支持面向对象编程(OOP)的多个概念,比如封装、继承和多态。 - 文件传输功能通常涉及到输入输出流(iostream)和文件系统库(file system)。 - C++标准库提供了用于文件操作的类,如`<fstream>`中的`ifstream`(文件输入流)和`ofstream`(文件输出流)。 2. 文件传输概念: - 文件传输通常指的是在不同系统、网络或存储设备间传递文件的过程。 - 文件传输可以是本地文件系统的操作,也可以是通过网络协议(如TCP/IP)进行的远程传输。 - 在C++中进行文件传输,我们可以编写程序来读取、写入、复制和移动文件。 3. C++文件操作: - 使用`<fstream>`库中的`ifstream`和`ofstream`类可以进行简单的文件读写操作。 - 对于文件的读取,可以创建一个`ifstream`对象,并使用其`open`方法打开文件,然后使用`>>`运算符或`getline`函数读取文件内容。 - 对于文件的写入,可以创建一个`ofstream`对象,并同样使用`open`方法打开文件,然后使用`<<`运算符或`write`方法写入内容。 - 使用`<filesystem>`库可以进行更复杂的文件系统操作,如创建、删除、重命名和移动目录或文件。 4. 网络文件传输: - 在网络中进行文件传输,会涉及到套接字编程(socket programming)。 - C++提供了`<sys/socket.h>`(在Unix-like系统中)和`<winsock2.h>`(在Windows系统中)用于网络编程。 - 基本的网络文件传输流程包括:创建服务器和客户端套接字,绑定和监听端口,连接建立,数据传输,最后关闭连接。 - 在C++中进行网络编程还需要正确处理异常和错误,以及实现协议如TCP/IP或UDP/IP来确保数据传输的可靠性。 5. 实现文件传输的源码解读: - C++文件传输源码可能会包含多个函数或类,用于处理不同的文件传输任务。 - 一个典型的源码文件可能会包含网络监听、数据包处理、文件读写等功能模块。 - 代码中可能会涉及多线程或异步IO,以提高文件传输的效率和响应速度。 - 安全性也是重要的考虑因素,源码中可能会实现加密解密机制以保护传输数据。 6. 实践中的应用: - 在实际应用中,C++文件传输源码可能被用于文件共享服务、分布式系统、网络备份工具等。 - 了解和掌握文件传输的源码,可以为开发者提供定制和优化文件传输服务的机会。 - 考虑到性能和资源限制,进行文件传输的源码优化也是必要的,比如在大数据量传输时实现缓冲机制、流控制、重传机制等。 7. 常见问题与调试技巧: - 编写文件传输代码时,常见的问题包括路径错误、权限问题、网络中断和数据不完整等。 - 调试时可以使用C++的断点调试、日志记录和单元测试来检查和确认代码的正确性。 - 处理网络文件传输时,还可能需要借助网络分析工具来诊断网络问题。 以上知识点涵盖了C++文件传输源码的多个方面,包括基础编程、文件操作、网络编程、安全性以及实践应用等。对于想要深入理解和实现C++文件传输功能的开发者来说,这些知识是必备的。掌握这些知识可以大大提高在C++环境下开发文件传输功能的效率和质量。
recommend-type

【IFIX 4.5 MB1 驱动安装与配置指南】:专业步骤解析,确保一次性成功安装

# 摘要 本文针对IFIX 4.5 MB1驱动进行了全面的探讨,涵盖了系统要求、安装前准备、详细的安装步骤、配置与优化,以及案例分析。首先介绍了IFIX 4.5 MB1驱动的功能与应用环境,然后详细阐述了安装前的系统要求、准备工作以及如何获取并验证驱动资源。第三章详细说明了驱动安装向导的使用、系统检测、实际安装操作步骤及后续的验证和测试。第四章则深入探讨了驱动的配置、性能优化、故障排查与修复。最后,在第五章中,通过不同场景下的应用案例,展示了驱动的实际应用价值和与其他设备驱动协同工作的能力,同时对未来驱动的更新和维护提出了展望。本文旨在为技术人员提供一个全面的指南,以确保IFIX 4.5 MB
recommend-type

Property or method "rightList" is not defined on the instance but referenced during render. Make sure that this property is reactive, either in the data option, or for class-based components, by initializing the property.

<think>我们正在解决Uniapp中出现的错误:"Property or method 'rightList' is not defined on the instance but referenced during render."。根据引用[1]和引用[3]的解释,这个错误通常是因为在模板中使用了未在实例中定义的属性或方法。具体来说,我们在模板中引用了`rightList`,但在组件的data或methods中并没有定义它。 根据引用[1]中的描述,这个问题可能是由于数据或方法未正确初始化导致的。引用[3]进一步说明,需要确保在data选项中定义该属性,或者对于方法,在methods