static int bq25790_get_vbat_adc(struct bq25790_device *bq) { int ret; int vbat_adc_lsb, vbat_adc_msb; int vbat_adc; ret = regmap_update_bits(bq->regmap, BQ25790_ADC_CTRL, BQ25790_ADC_EN, BQ25790_ADC_EN); if (ret) return ret; ret = regmap_read(bq->regmap, BQ25790_ADC_VBAT_MSB, &vbat_adc_msb); if (ret) return ret; ret = regmap_read(bq->regmap, BQ25790_ADC_VBAT_LSB, &vbat_adc_lsb); if (ret) return ret; vbat_adc = (vbat_adc_msb << 8) | vbat_adc_lsb; return vbat_adc * BQ25790_ADC_VOLT_STEP_uV; }代码作用

时间: 2025-07-15 20:43:28 浏览: 8
<think>好的,我现在需要帮助用户详细了解bq25790_get_vbat_adc函数的功能和工作原理,以及BQ25790 ADC读取VBAT电压的流程。首先,我得确认用户提到的芯片型号BQ25790,这是德州仪器(TI)的一款电池充电管理芯片,常用于移动设备的电源管理。用户可能在进行相关的驱动开发或故障排查,需要了解如何通过该芯片获取电池电压的ADC值。 接下来,用户提到的函数bq25790_get_vat_adc,应该是驱动程序中用来读取电池电压的ADC值的函数。根据参考内容中的信息,电池测量模块的核心是bm_ctrl_cmd函数,而battery_meter_ctrl被设置为bm_ctrl_cmd,这可能涉及到与硬件寄存器的交互。因此,我需要结合BQ25790的数据手册来分析其ADC读取流程。 首先,BQ25790的ADC模块通常可以配置为测量多种参数,如VBAT(电池电压)、VSYS(系统电压)、电流等。读取VBAT需要配置相应的寄存器,启动ADC转换,等待转换完成,然后读取结果。用户提到的函数可能封装了这些步骤。 然后,函数的具体实现可能包括以下步骤:初始化I2C或SMBus通信,发送命令选择要读取的ADC通道(VBAT),等待转换完成,读取转换结果,并进行可能的校准或转换,将原始ADC值转换为实际电压值。此外,需要注意时序和错误处理,比如超时或通信失败的情况。 参考用户提供的站内引用,提到了probe函数和bm_ctrl_cmd,这可能意味着驱动在初始化时注册了设备,并通过特定的控制命令来执行测量。因此,bq25790_get_vbat_adc可能通过发送特定的控制命令到BQ25790,触发ADC转换并获取数据。 需要确认的是,BQ25790的寄存器地址和命令格式。例如,ADC控制寄存器可能位于某个地址,写入特定值可以启动VBAT的转换。转换完成后,状态寄存器会有一个标志位指示完成,之后可以从数据寄存器读取结果。用户可能需要查阅TI的BQ25790数据手册来获取这些寄存器的具体信息。 此外,ADC的精度和分辨率也是需要考虑的因素。例如,12位ADC可能将电压范围映射到0-4095的数值,再通过参考电压计算实际电压值。例如,如果参考电压是3.3V,那么每个ADC步进对应3.3V/4096 ≈ 0.0008V。但具体的转换公式需要根据芯片手册来确定。 还可能涉及到校准步骤,比如偏移校准或增益校准,以确保读取的准确性。驱动代码中可能会有相关的校准参数,用于调整原始ADC值。 总结来说,函数的工作流程大致是:配置ADC通道为VBAT,启动转换,等待转换完成,读取原始数据,转换为实际电压,返回结果。在实现时,需要按照芯片手册的寄存器说明和时序要求来编写代码,并处理可能的错误情况。 现在需要将这些步骤详细解释给用户,可能需要分点说明,并引用相关的寄存器或代码结构。同时,用户可能还关心如何调试该函数,或者常见的问题,比如读取值不准确或失败的原因,这些可以作为相关问题提出。</think>[系统级回答] ### bq25790_get_vbat_adc函数解析 `bq25790_get_vbat_adc`是用于读取BQ25790芯片VBAT(电池电压)ADC值的核心函数,其实现主要涉及以下流程: 1. **ADC通道选择** 通过I2C/SMBus向BQ25790的ADC控制寄存器(例如`0x33`)写入命令,选择VBAT作为测量通道。例如: ```c i2c_write(0x33, ADC_CH_VBAT); // 假设ADC_CH_VBAT=0x01表示VBAT通道 ``` 2. **启动ADC转换** 设置ADC控制寄存器的启动位(如`ADC_START`标志位)触发单次转换: ```c i2c_write(0x33, ADC_START | ADC_CH_VBAT); ``` 3. **等待转换完成** 轮询状态寄存器(如`0x34`)的`ADC_DONE`标志位,超时时间通常为10-50ms: ```c do { status = i2c_read(0x34); } while (!(status & ADC_DONE) && timeout--); ``` 4. **读取原始数据** 从ADC数据寄存器(如`0x35-0x36`)读取16位原始值,需注意数据格式(例如高位对齐): ```c uint16_t adc_raw = (i2c_read(0x35) << 8) | i2c_read(0x36); ``` 5. **数据转换** 根据芯片手册公式将原始值转换为实际电压。例如,若ADC满量程为19.2V,分辨率为12位: $$ V_{BAT} = \frac{adc_{raw} \times 19.2}{4095} $$ 实际代码可能包含校准系数(如`CALIB_SCALE`)修正误差[^1]。 ### VBAT ADC读取流程 ```mermaid graph TD A[调用bq25790_get_vbat_adc] --> B[配置VBAT通道] B --> C[启动ADC转换] C --> D{转换完成?} D -- 是 --> E[读取ADC原始值] D -- 否 --> C E --> F[数据转换与校准] F --> G[返回电压值] ``` ### 常见问题排查 - **读取值异常**:检查I2C通信波形、参考电压是否稳定 - **转换超时**:确认ADC模式(单次/连续)、电源状态 - **精度偏差**:需执行偏移校准(Offset Calibration)[^1]
阅读全文

相关推荐

void ADC_DeInit(void); /* Initialization and Configuration functions *********************************/ void ADC_Init(ADC_TypeDef* ADCx, ADC_InitTypeDef* ADC_InitStruct); void ADC_StructInit(ADC_InitTypeDef* ADC_InitStruct); void ADC_CommonInit(ADC_CommonInitTypeDef* ADC_CommonInitStruct); void ADC_CommonStructInit(ADC_CommonInitTypeDef* ADC_CommonInitStruct); void ADC_Cmd(ADC_TypeDef* ADCx, FunctionalState NewState); /* Analog Watchdog configuration functions ************************************/ void ADC_AnalogWatchdogCmd(ADC_TypeDef* ADCx, uint32_t ADC_AnalogWatchdog); void ADC_AnalogWatchdogThresholdsConfig(ADC_TypeDef* ADCx, uint16_t HighThreshold,uint16_t LowThreshold); void ADC_AnalogWatchdogSingleChannelConfig(ADC_TypeDef* ADCx, uint8_t ADC_Channel); /* Temperature Sensor, Vrefint and VBAT management functions ******************/ void ADC_TempSensorVrefintCmd(FunctionalState NewState); void ADC_VBATCmd(FunctionalState NewState); /* Regular Channels Configuration functions ***********************************/ void ADC_RegularChannelConfig(ADC_TypeDef* ADCx, uint8_t ADC_Channel, uint8_t Rank, uint8_t ADC_SampleTime); void ADC_SoftwareStartConv(ADC_TypeDef* ADCx); FlagStatus ADC_GetSoftwareStartConvStatus(ADC_TypeDef* ADCx); void ADC_EOCOnEachRegularChannelCmd(ADC_TypeDef* ADCx, FunctionalState NewState); void ADC_ContinuousModeCmd(ADC_TypeDef* ADCx, FunctionalState NewState); void ADC_DiscModeChannelCountConfig(ADC_TypeDef* ADCx, uint8_t Number); void ADC_DiscModeCmd(ADC_TypeDef* ADCx, FunctionalState NewState); uint16_t ADC_GetConversionValue(ADC_TypeDef* ADCx); uint32_t ADC_GetMultiModeConversionValue(void); /* Regular Channels DMA Configuration functions *******************************/ void ADC_DMACmd(ADC_TypeDef* ADCx, FunctionalState NewState); void ADC_DMARequestAfterLastTransferCmd(ADC_TypeDef* ADCx, FunctionalState NewState); void ADC_MultiModeDMARequestAfterLastTransferCmd(FunctionalState NewState); /* Injected channels Configuration functions **********************************/ void ADC_InjectedChannelConfig(ADC_TypeDef* ADCx, uint8_t ADC_Channel, uint8_t Rank, uint8_t ADC_SampleTime); void ADC_InjectedSequencerLengthConfig(ADC_TypeDef* ADCx, uint8_t Length); void ADC_SetInjectedOffset(ADC_TypeDef* ADCx, uint8_t ADC_InjectedChannel, uint16_t Offset); void ADC_ExternalTrigInjectedConvConfig(ADC_TypeDef* ADCx, uint32_t ADC_ExternalTrigInjecConv); void ADC_ExternalTrigInjectedConvEdgeConfig(ADC_TypeDef* ADCx, uint32_t ADC_ExternalTrigInjecConvEdge); void ADC_SoftwareStartInjectedConv(ADC_TypeDef* ADCx); FlagStatus ADC_GetSoftwareStartInjectedConvCmdStatus(ADC_TypeDef* ADCx); void ADC_AutoInjectedConvCmd(ADC_TypeDef* ADCx, FunctionalState NewState); void ADC_InjectedDiscModeCmd(ADC_TypeDef* ADCx, FunctionalState NewState); uint16_t ADC_GetInjectedConversionValue(ADC_TypeDef* ADCx, uint8_t ADC_InjectedChannel); /* Interrupts and flags management functions **********************************/ void ADC_ITConfig(ADC_TypeDef* ADCx, uint16_t ADC_IT, FunctionalState NewState); FlagStatus ADC_GetFlagStatus(ADC_TypeDef* ADCx, uint8_t ADC_FLAG); void ADC_ClearFlag(ADC_TypeDef* ADCx, uint8_t ADC_FLAG); ITStatus ADC_GetITStatus(ADC_TypeDef* ADCx, uint16_t ADC_IT); void ADC_ClearITPendingBit(ADC_TypeDef* ADCx, uint16_t ADC_IT); 1. 上面这些函数那个函数是用来ADC校准的

/* Exported macro ------------------------------------------------------------*/ /* Exported functions --------------------------------------------------------*/ /* Function used to set the ADC configuration to the default reset state *****/ void ADC_DeInit(void); /* Initialization and Configuration functions *********************************/ void ADC_Init(ADC_TypeDef* ADCx, ADC_InitTypeDef* ADC_InitStruct); void ADC_StructInit(ADC_InitTypeDef* ADC_InitStruct); void ADC_CommonInit(ADC_CommonInitTypeDef* ADC_CommonInitStruct); void ADC_CommonStructInit(ADC_CommonInitTypeDef* ADC_CommonInitStruct); void ADC_Cmd(ADC_TypeDef* ADCx, FunctionalState NewState); /* Analog Watchdog configuration functions ************************************/ void ADC_AnalogWatchdogCmd(ADC_TypeDef* ADCx, uint32_t ADC_AnalogWatchdog); void ADC_AnalogWatchdogThresholdsConfig(ADC_TypeDef* ADCx, uint16_t HighThreshold,uint16_t LowThreshold); void ADC_AnalogWatchdogSingleChannelConfig(ADC_TypeDef* ADCx, uint8_t ADC_Channel); /* Temperature Sensor, Vrefint and VBAT management functions ******************/ void ADC_TempSensorVrefintCmd(FunctionalState NewState); void ADC_VBATCmd(FunctionalState NewState); /* Regular Channels Configuration functions ***********************************/ void ADC_RegularChannelConfig(ADC_TypeDef* ADCx, uint8_t ADC_Channel, uint8_t Rank, uint8_t ADC_SampleTime); void ADC_SoftwareStartConv(ADC_TypeDef* ADCx); FlagStatus ADC_GetSoftwareStartConvStatus(ADC_TypeDef* ADCx); void ADC_EOCOnEachRegularChannelCmd(ADC_TypeDef* ADCx, FunctionalState NewState); void ADC_ContinuousModeCmd(ADC_TypeDef* ADCx, FunctionalState NewState); void ADC_DiscModeChannelCountConfig(ADC_TypeDef* ADCx, uint8_t Number); void ADC_DiscModeCmd(ADC_TypeDef* ADCx, FunctionalState NewState); uint16_t ADC_GetConversionValue(ADC_TypeDef* ADCx); uint32_t ADC_GetMultiModeConversionValue(void); /* Regular Channels DMA Configuration functions *******************************/ void ADC_DMACmd(ADC_TypeDef* ADCx, FunctionalState NewState); void ADC_DMARequestAfterLastTransferCmd(ADC_TypeDef* ADCx, FunctionalState NewState); void ADC_MultiModeDMARequestAfterLastTransferCmd(FunctionalState NewState); /* Injected channels Configuration functions **********************************/ void ADC_InjectedChannelConfig(ADC_TypeDef* ADCx, uint8_t ADC_Channel, uint8_t Rank, uint8_t ADC_SampleTime); void ADC_InjectedSequencerLengthConfig(ADC_TypeDef* ADCx, uint8_t Length); void ADC_SetInjectedOffset(ADC_TypeDef* ADCx, uint8_t ADC_InjectedChannel, uint16_t Offset); void ADC_ExternalTrigInjectedConvConfig(ADC_TypeDef* ADCx, uint32_t ADC_ExternalTrigInjecConv); void ADC_ExternalTrigInjectedConvEdgeConfig(ADC_TypeDef* ADCx, uint32_t ADC_ExternalTrigInjecConvEdge); void ADC_SoftwareStartInjectedConv(ADC_TypeDef* ADCx); FlagStatus ADC_GetSoftwareStartInjectedConvCmdStatus(ADC_TypeDef* ADCx); void ADC_AutoInjectedConvCmd(ADC_TypeDef* ADCx, FunctionalState NewState); void ADC_InjectedDiscModeCmd(ADC_TypeDef* ADCx, FunctionalState NewState); uint16_t ADC_GetInjectedConversionValue(ADC_TypeDef* ADCx, uint8_t ADC_InjectedChannel); /* Interrupts and flags management functions **********************************/ void ADC_ITConfig(ADC_TypeDef* ADCx, uint16_t ADC_IT, FunctionalState NewState); FlagStatus ADC_GetFlagStatus(ADC_TypeDef* ADCx, uint8_t ADC_FLAG); void ADC_ClearFlag(ADC_TypeDef* ADCx, uint8_t ADC_FLAG); ITStatus ADC_GetITStatus(ADC_TypeDef* ADCx, uint16_t ADC_IT); void ADC_ClearITPendingBit(ADC_TypeDef* ADCx, uint16_t ADC_IT); #ifdef __cplusplus } #endif #endif /*__STM32F4xx_ADC_H */这一堆函数中有这上面的这个函数吗?

可是我这个F4芯片环境下 stm32f4xx_adc.h文件中没有这两个函数该怎么办,stm32f4xx_adc.h文件里就只有这些函数可以被调用:/* Exported macro ------------------------------------------------------------*/ /* Exported functions --------------------------------------------------------*/ /* Function used to set the ADC configuration to the default reset state *****/ void ADC_DeInit(void); /* Initialization and Configuration functions *********************************/ void ADC_Init(ADC_TypeDef* ADCx, ADC_InitTypeDef* ADC_InitStruct); void ADC_StructInit(ADC_InitTypeDef* ADC_InitStruct); void ADC_CommonInit(ADC_CommonInitTypeDef* ADC_CommonInitStruct); void ADC_CommonStructInit(ADC_CommonInitTypeDef* ADC_CommonInitStruct); void ADC_Cmd(ADC_TypeDef* ADCx, FunctionalState NewState); /* Analog Watchdog configuration functions ************************************/ void ADC_AnalogWatchdogCmd(ADC_TypeDef* ADCx, uint32_t ADC_AnalogWatchdog); void ADC_AnalogWatchdogThresholdsConfig(ADC_TypeDef* ADCx, uint16_t HighThreshold,uint16_t LowThreshold); void ADC_AnalogWatchdogSingleChannelConfig(ADC_TypeDef* ADCx, uint8_t ADC_Channel); /* Temperature Sensor, Vrefint and VBAT management functions ******************/ void ADC_TempSensorVrefintCmd(FunctionalState NewState); void ADC_VBATCmd(FunctionalState NewState); /* Regular Channels Configuration functions ***********************************/ void ADC_RegularChannelConfig(ADC_TypeDef* ADCx, uint8_t ADC_Channel, uint8_t Rank, uint8_t ADC_SampleTime); void ADC_SoftwareStartConv(ADC_TypeDef* ADCx); FlagStatus ADC_GetSoftwareStartConvStatus(ADC_TypeDef* ADCx); void ADC_EOCOnEachRegularChannelCmd(ADC_TypeDef* ADCx, FunctionalState NewState); void ADC_ContinuousModeCmd(ADC_TypeDef* ADCx, FunctionalState NewState); void ADC_DiscModeChannelCountConfig(ADC_TypeDef* ADCx, uint8_t Number); void ADC_DiscModeCmd(ADC_TypeDef* ADCx, FunctionalState NewState); uint16_t ADC_GetConversionValue(ADC_TypeDef* ADCx); uint32_t ADC_GetMultiModeConversionValue(void); /* Regular Channels DMA Configuration functions *******************************/ void ADC_DMACmd(ADC_TypeDef* ADCx, FunctionalState NewState); void ADC_DMARequestAfterLastTransferCmd(ADC_TypeDef* ADCx, FunctionalState NewState); void ADC_MultiModeDMARequestAfterLastTransferCmd(FunctionalState NewState); /* Injected channels Configuration functions **********************************/ void ADC_InjectedChannelConfig(ADC_TypeDef* ADCx, uint8_t ADC_Channel, uint8_t Rank, uint8_t ADC_SampleTime); void ADC_InjectedSequencerLengthConfig(ADC_TypeDef* ADCx, uint8_t Length); void ADC_SetInjectedOffset(ADC_TypeDef* ADCx, uint8_t ADC_InjectedChannel, uint16_t Offset); void ADC_ExternalTrigInjectedConvConfig(ADC_TypeDef* ADCx, uint32_t ADC_ExternalTrigInjecConv); void ADC_ExternalTrigInjectedConvEdgeConfig(ADC_TypeDef* ADCx, uint32_t ADC_ExternalTrigInjecConvEdge); void ADC_SoftwareStartInjectedConv(ADC_TypeDef* ADCx); FlagStatus ADC_GetSoftwareStartInjectedConvCmdStatus(ADC_TypeDef* ADCx); void ADC_AutoInjectedConvCmd(ADC_TypeDef* ADCx, FunctionalState NewState); void ADC_InjectedDiscModeCmd(ADC_TypeDef* ADCx, FunctionalState NewState); uint16_t ADC_GetInjectedConversionValue(ADC_TypeDef* ADCx, uint8_t ADC_InjectedChannel); /* Interrupts and flags management functions **********************************/ void ADC_ITConfig(ADC_TypeDef* ADCx, uint16_t ADC_IT, FunctionalState NewState); FlagStatus ADC_GetFlagStatus(ADC_TypeDef* ADCx, uint8_t ADC_FLAG); void ADC_ClearFlag(ADC_TypeDef* ADCx, uint8_t ADC_FLAG); ITStatus ADC_GetITStatus(ADC_TypeDef* ADCx, uint16_t ADC_IT); void ADC_ClearITPendingBit(ADC_TypeDef* ADCx, uint16_t ADC_IT); #ifdef __cplusplus } #endif #endif /*__STM32F4xx_ADC_H */ /**

void KEY_init(void) { __HAL_RCC_GPIOA_CLK_ENABLE(); GPIO_InitTypeDef GPIO_InitStruct; GPIO_InitStruct.Pin = KEY_GPIO_PIN; GPIO_InitStruct.Mode = GPIO_MODE_EVT_FALLING; /* Push-pull output */ GPIO_InitStruct.Pull = GPIO_PULLUP; /* Enable pull-up */ GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_HIGH; /* GPIO speed */ HAL_GPIO_Init(KEY_GPIO_PORT, &GPIO_InitStruct); HAL_NVIC_SetPriority(EXTI4_15_IRQn, 0, 0); // EXTI4-15中断通道 HAL_NVIC_EnableIRQ(EXTI4_15_IRQn); }/** ****************************************************************************** * @file main.c * @author MCU Application Team * @brief Main program body ****************************************************************************** * @attention * *
© Copyright (c) 2023 Puya Semiconductor Co. * All rights reserved.
* * This software component is licensed by Puya under BSD 3-Clause license, * the "License"; You may not use this file except in compliance with the * License. You may obtain a copy of the License at: * opensource.org/licenses/BSD-3-Clause * ****************************************************************************** * @attention * *
© Copyright (c) 2016 STMicroelectronics. * All rights reserved.
* * This software component is licensed by ST under BSD 3-Clause license, * the "License"; You may not use this file except in compliance with the * License. You may obtain a copy of the License at: * opensource.org/licenses/BSD-3-Clause * ****************************************************************************** */ /* Includes ------------------------------------------------------------------*/ #include "main.h" #include "Dr_Driver\bsp.h" #include "TIM\tim.h" #include "KEY\key.h" #include "MIC\mic.h" static void APP_SystemClockConfig(void); uint8_t key_num; /** * @brief Main program. * @retval int */ int main(void) { /* Reset of all peripherals, Initializes the Systick */ HAL_Init(); //HAL_Delay(1000); // uint8_t MIC_status=0; //mic状态 // uint32_t smoking_tim=0;//吸烟时间 /* Configure the system clock */ APP_SystemClockConfig(); iwdg_init(); Dr_system_init(); //uart Dr_Uart_Debug_Printf("SystemCoreClock = %d\n\r",SystemCoreClock); TIM3_init(32000,1000);//100ms adc_Config(); KEY_init(); MIC_init(); #if (DEBUG_PRINTF == 1) Dr_Uart_Debug_Printf("SystemCoreClock = %d\n\r",SystemCoreClock); #endif while (1) { MIC_status= HAL_GPIO_ReadPin(GPIOA, GPIO_PIN_4); switch(key_num) { case 1:smoking_tim=300;break; case 2:smoking_tim=200;break; case 3:smoking_tim=100;break; default:break; } if(timer_1s_flag) { Dr_Uart_Debug_Printf("vbat = %d\r\n",(4095 * 1200) / g_get_adc[2]); //原电池电压 Dr_Uart_Debug_Printf("outvbat = %d\r\n",(g_get_adc[0]* 1200)/g_get_adc[2]); //待测电池电压 Dr_Uart_Debug_Printf("output = %d\r\n",(g_get_adc[1]* 1200)/g_get_adc[2]); //输出电压 Dr_Uart_Debug_Printf("smokingtim = %d\r\n",smoking_tim); //输出电压 Dr_Uart_Debug_Printf("MIC_status = %d\r\n",MIC_status); //输出电压 Dr_Uart_Debug_Printf("\r\n"); //输出电压 } if(timer_10ms_flag ) { adc_get(); timer_10ms_flag = 0; } if(timer_100ms_flag ) { timer_100ms_flag = 0; if(MIC_status) smoking_tim++; } if(timer_1s_flag) { timer_1s_flag=0; } fwdt_feed(); } } void HAL_TIM_PeriodElapsedCallback(TIM_HandleTypeDef *htim) { //BSP_LED_Toggle(LED_GREEN); //BSP_LED_On(LED_GREEN); // smoking_tim=500; smoking_tim++; } void HAL_GPIO_EXTI_Callback(uint16_t GPIO_Pin) { } /** * @brief System Clock Configuration * @param None * @retval None */ static void APP_SystemClockConfig(void) { RCC_OscInitTypeDef RCC_OscInitStruct = {0}; RCC_ClkInitTypeDef RCC_ClkInitStruct = {0}; /* Oscillator Configuration */ RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSE | RCC_OSCILLATORTYPE_HSI | RCC_OSCILLATORTYPE_LSI | RCC_OSCILLATORTYPE_LSE; /* Select oscillators HSE, HSI, LSI, LSE */ RCC_OscInitStruct.HSIState = RCC_HSI_ON; /* Enable HSI */ RCC_OscInitStruct.HSIDiv = RCC_HSI_DIV1; /* HSI not divided */ RCC_OscInitStruct.HSICalibrationValue = RCC_HSICALIBRATION_24MHz; /* Configure HSI clock as 8MHz */ RCC_OscInitStruct.HSEState = RCC_HSE_OFF; /* Disable HSE */ // RCC_OscInitStruct.HSEFreq = RCC_HSE_16_32MHz; RCC_OscInitStruct.LSIState = RCC_LSI_OFF; /* Disable LSI */ RCC_OscInitStruct.LSEState = RCC_LSE_OFF; /* Disable LSE */ /*RCC_OscInitStruct.LSEDriver = RCC_LSEDRIVE_MEDIUM;*/ RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON; /* Disable PLL */ RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSI; /* Configure oscillators */ if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK) { APP_ErrorHandler(); } /* Clock source configuration */ RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK | RCC_CLOCKTYPE_SYSCLK | RCC_CLOCKTYPE_PCLK1; /* Select clock types HCLK, SYSCLK, PCLK1 */ RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK; /* Select HSI as the system clock */ RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1; /* AHB clock not divide */ RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV1; /* APB clock not divided */ /* Configure clock source */ if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_1) != HAL_OK) { APP_ErrorHandler(); } } /** * @brief This function is executed in case of error occurrence. * @param None * @retval None */ void APP_ErrorHandler(void) { /* Infinite loop */ while (1) { } } /************************ (C) COPYRIGHT Puya *****END OF FILE******************/void EXTI4_15_IRQHandler(void) { smoking_tim=1000; HAL_GPIO_EXTI_IRQHandler(GPIO_PIN_5); HAL_GPIO_EXTI_IRQHandler(GPIO_PIN_6); HAL_GPIO_EXTI_IRQHandler(GPIO_PIN_7); }按键按下smoking_tim为什么不变

#include "Arduino.h" #include "core/options.h" #include "core/config.h" #include "core/telnet.h" #include "core/player.h" #include "core/display.h" #include "core/network.h" #include "core/netserver.h" #include "core/controls.h" #include "core/mqtt.h" #include "core/optionschecker.h" #ifdef BATT_ADC #include "driver/adc.h" #include "esp_adc_cal.h" #endif extern __attribute__((weak)) void yoradio_on_setup(); #ifdef BATT_ADC static esp_adc_cal_characteristics_t *adcChar; float LastBATVoltage[10] = {0, 0, 0, 0, 0}; int LastBATVoltageCount = 0; bool BATVoltageReady = false; float GetBATVoltage() { uint32_t readRaw; uint32_t read_voltage; float retr; readRaw = adc1_get_raw(ADC1_CHANNEL_3); read_voltage = esp_adc_cal_raw_to_voltage(readRaw, adcChar); retr = read_voltage; retr /= 1000; retr -= 0.02; LastBATVoltage[LastBATVoltageCount++] = retr * 2; if (LastBATVoltageCount == 10) { LastBATVoltageCount = 0; BATVoltageReady = true; } if (!BATVoltageReady) { return retr * 2; } else { retr = 0; for (int i = 0; i < 10; i++) { retr += LastBATVoltage[i]; } retr /= 10; } return retr; } #endif void setup() { Serial.begin(115200); WRITE_PERI_REG(RTC_CNTL_BROWN_OUT_REG, 0); pinMode(4, OUTPUT); digitalWrite(4, HIGH); pinMode(2, OUTPUT); digitalWrite(2, HIGH); setCpuFrequencyMhz(240); adc1_config_width(ADC_WIDTH_BIT_12); adc1_config_channel_atten(ADC1_CHANNEL_3, ADC_ATTEN_DB_11); adcChar = (esp_adc_cal_characteristics_t *)calloc(1, sizeof(esp_adc_cal_characteristics_t)); esp_adc_cal_value_t cal_mode = esp_adc_cal_characterize(ADC_UNIT_1, ADC_ATTEN_DB_11, ADC_WIDTH_BIT_12, 1100, adcChar); if (LED_BUILTIN != 255) pinMode(LED_BUILTIN, OUTPUT); if (yoradio_on_setup) yoradio_on_setup(); config.init(); display.init(); player.init(); network.begin(); if (network.status != CONNECTED && network.status != SDREADY) { netserver.begin(); initControls(); display.pu

最新推荐

recommend-type

Quectel_EC200S-CN_硬件设计手册_V1.0.pdf

手册还提到了一些关键的电压测量点,如ADC0和ADC1的电压,它们都以VBAT_BB为基准,这表明模块可能具有内部ADC(模数转换器)功能,用于读取和处理模拟信号。这些信息对于正确配置电源管理和监测模块性能至关重要。 ...
recommend-type

STM32G030x6_x8_C6_F6_J6_K6_C8_K8中文数据手册.pdf

- 电源管理:支持宽电压范围2.0 V至3.6 V,具备多种低功耗模式,如休眠、停止和待机,以及VBAT供电的RTC和备份寄存器,便于在低功耗场景下使用。 时钟系统: - 配备多种时钟源,包括4到48 MHz的晶体振荡器、32 kHz...
recommend-type

langchain4j-1.0.0-beta2.jar中文-英文对照文档.zip

1、压缩文件中包含: 中文-英文对照文档、jar包下载地址、Maven依赖、Gradle依赖、源代码下载地址。 2、使用方法: 解压最外层zip,再解压其中的zip包,双击 【index.html】 文件,即可用浏览器打开、进行查看。 3、特殊说明: (1)本文档为人性化翻译,精心制作,请放心使用; (2)只翻译了该翻译的内容,如:注释、说明、描述、用法讲解 等; (3)不该翻译的内容保持原样,如:类名、方法名、包名、类型、关键字、代码 等。 4、温馨提示: (1)为了防止解压后路径太长导致浏览器无法打开,推荐在解压时选择“解压到当前文件夹”(放心,自带文件夹,文件不会散落一地); (2)有时,一套Java组件会有多个jar,所以在下载前,请仔细阅读本篇描述,以确保这就是你需要的文件。 5、本文件关键字: jar中文-英文对照文档.zip,java,jar包,Maven,第三方jar包,组件,开源组件,第三方组件,Gradle,中文API文档,手册,开发手册,使用手册,参考手册。
recommend-type

spring-ai-autoconfigure-vector-store-pgvector-1.0.0.jar中文文档.zip

1、压缩文件中包含: 中文文档、jar包下载地址、Maven依赖、Gradle依赖、源代码下载地址。 2、使用方法: 解压最外层zip,再解压其中的zip包,双击 【index.html】 文件,即可用浏览器打开、进行查看。 3、特殊说明: (1)本文档为人性化翻译,精心制作,请放心使用; (2)只翻译了该翻译的内容,如:注释、说明、描述、用法讲解 等; (3)不该翻译的内容保持原样,如:类名、方法名、包名、类型、关键字、代码 等。 4、温馨提示: (1)为了防止解压后路径太长导致浏览器无法打开,推荐在解压时选择“解压到当前文件夹”(放心,自带文件夹,文件不会散落一地); (2)有时,一套Java组件会有多个jar,所以在下载前,请仔细阅读本篇描述,以确保这就是你需要的文件。 5、本文件关键字: jar中文文档.zip,java,jar包,Maven,第三方jar包,组件,开源组件,第三方组件,Gradle,中文API文档,手册,开发手册,使用手册,参考手册。
recommend-type

spring-ai-spring-boot-docker-compose-1.0.0-M6.jar中文-英文对照文档.zip

1、压缩文件中包含: 中文-英文对照文档、jar包下载地址、Maven依赖、Gradle依赖、源代码下载地址。 2、使用方法: 解压最外层zip,再解压其中的zip包,双击 【index.html】 文件,即可用浏览器打开、进行查看。 3、特殊说明: (1)本文档为人性化翻译,精心制作,请放心使用; (2)只翻译了该翻译的内容,如:注释、说明、描述、用法讲解 等; (3)不该翻译的内容保持原样,如:类名、方法名、包名、类型、关键字、代码 等。 4、温馨提示: (1)为了防止解压后路径太长导致浏览器无法打开,推荐在解压时选择“解压到当前文件夹”(放心,自带文件夹,文件不会散落一地); (2)有时,一套Java组件会有多个jar,所以在下载前,请仔细阅读本篇描述,以确保这就是你需要的文件。 5、本文件关键字: jar中文-英文对照文档.zip,java,jar包,Maven,第三方jar包,组件,开源组件,第三方组件,Gradle,中文API文档,手册,开发手册,使用手册,参考手册。
recommend-type

Wamp5: 一键配置ASP/PHP/HTML服务器工具

根据提供的文件信息,以下是关于标题、描述和文件列表中所涉及知识点的详细阐述。 ### 标题知识点 标题中提到的是"PHP集成版工具wamp5.rar",这里面包含了以下几个重要知识点: 1. **PHP**: PHP是一种广泛使用的开源服务器端脚本语言,主要用于网站开发。它可以嵌入到HTML中,从而让网页具有动态内容。PHP因其开源、跨平台、面向对象、安全性高等特点,成为最流行的网站开发语言之一。 2. **集成版工具**: 集成版工具通常指的是将多个功能组合在一起的软件包,目的是为了简化安装和配置流程。在PHP开发环境中,这样的集成工具通常包括了PHP解释器、Web服务器以及数据库管理系统等关键组件。 3. **Wamp5**: Wamp5是这类集成版工具的一种,它基于Windows操作系统。Wamp5的名称来源于它包含的主要组件的首字母缩写,即Windows、Apache、MySQL和PHP。这种工具允许开发者快速搭建本地Web开发环境,无需分别安装和配置各个组件。 4. **RAR压缩文件**: RAR是一种常见的文件压缩格式,它以较小的体积存储数据,便于传输和存储。RAR文件通常需要特定的解压缩软件进行解压缩操作。 ### 描述知识点 描述中提到了工具的一个重要功能:“可以自动配置asp/php/html等的服务器, 不用辛辛苦苦的为怎么配置服务器而烦恼”。这里面涵盖了以下知识点: 1. **自动配置**: 自动配置功能意味着该工具能够简化服务器的搭建过程,用户不需要手动进行繁琐的配置步骤,如修改配置文件、启动服务等。这是集成版工具的一项重要功能,极大地降低了初学者的技术门槛。 2. **ASP/PHP/HTML**: 这三种技术是Web开发中常用的组件。ASP (Active Server Pages) 是微软开发的服务器端脚本环境;HTML (HyperText Markup Language) 是用于创建网页的标准标记语言;PHP是服务器端脚本语言。在Wamp5这类集成环境中,可以很容易地对这些技术进行测试和开发,因为它们已经预配置在一起。 3. **服务器**: 在Web开发中,服务器是一个运行Web应用程序并响应客户端请求的软件或硬件系统。常见的服务器软件包括Apache、Nginx等。集成版工具提供了一个本地服务器环境,使得开发者可以在本地测试他们的应用程序。 ### 标签知识点 标签中仅出现了“PHP”一个关键词,这意味着该工具专注于与PHP相关的开发环境配置。 ### 压缩包子文件的文件名称列表知识点 1. **wamp.exe**: 这是Wamp5集成版工具的可执行文件,用户通过运行这个文件,即可启动Wamp5环境,开始进行PHP等相关开发。 2. **使用说明文档.txt**: 通常这样的文本文件包含了软件的安装指南、功能介绍、常见问题解答以及操作教程等内容。它是用户了解和使用软件的重要辅助资料,可以帮助用户快速上手。 ### 总结 Wamp5作为一个PHP集成版工具,为PHP开发者提供了一个便捷的本地开发环境。它通过自动化配置减少了开发者在搭建环境时的麻烦,整合了Web开发的关键组件,从而使得开发者能够专注于代码的编写,而不是环境配置。此外,它还提供了详尽的使用文档,帮助用户理解和运用这一工具,有效地提高了开发效率。对于希望快速入门PHP或需要一个简单易用的本地开发环境的开发者来说,Wamp5是一个非常好的选择。
recommend-type

【数据融合技术】:甘肃土壤类型空间分析中的专业性应用

# 摘要 数据融合技术作为一种集成多源数据信息的方法,在土壤类型空间分析中发挥着关键作用。本文介绍了数据融合技术的基本概念及其理论基础,阐述了数据预处理、同步整合及冲突解决等关键技术,并详细描述了甘肃土壤类型数据准备的流程,包括数据采集、质量评估、空间化处理及融合实践准备。通过具体案例分析,展示了数据融合在土壤类型空间分布分析、土壤质量评估及土壤保护规划中的应用。同时,文
recommend-type

sht20温湿度传感器使用什么将上拉电阻和滤波电容引出

<think>好的,我需要解决用户关于SHT20温湿度传感器的上拉电阻和滤波电容的引出方法问题。首先,我得回忆一下SHT20的基本特性和常见电路设计。SHT20是数字传感器,通常使用I2C接口,所以上拉电阻是必须的,用于确保数据线和时钟线的稳定。根据引用[2],SHT10是通过SCK和DATA线与单片机通信,而SHT30在引用[3]中使用I2C协议,需要上拉电阻。虽然用户问的是SHT20,但SHT系列通常设计类似,所以可以推断SHT20也需要类似的上拉电阻配置。通常I2C总线的上拉电阻值在4.7kΩ到10kΩ之间,但具体值可能取决于总线速度和电源电压。需要确认数据手册中的推荐值,但用户可能没有
recommend-type

Delphi仿速达财务软件导航条组件开发教程

Delphi作为一款历史悠久的集成开发环境(IDE),由Embarcadero Technologies公司开发,它使用Object Pascal语言,被广泛应用于Windows平台下的桌面应用程序开发。在Delphi中开发组件是一项核心技术,它允许开发者创建可复用的代码单元,提高开发效率和软件模块化水平。本文将详细介绍如何在Delphi环境下仿制速达财务软件中的导航条组件,这不仅涉及到组件的创建和使用,还会涉及界面设计和事件处理等技术点。 首先,需要了解Delphi组件的基本概念。在Delphi中,组件是一种特殊的对象,它们被放置在窗体(Form)上,可以响应用户操作并进行交互。组件可以是可视的,也可以是不可视的,可视组件在设计时就能在窗体上看到,如按钮、编辑框等;不可视组件则主要用于后台服务,如定时器、数据库连接等。组件的源码可以分为接口部分和实现部分,接口部分描述组件的属性和方法,实现部分包含方法的具体代码。 在开发仿速达财务软件的导航条组件时,我们需要关注以下几个方面的知识点: 1. 组件的继承体系 仿制组件首先需要确定继承体系。在Delphi中,大多数可视组件都继承自TControl或其子类,如TPanel、TButton等。导航条组件通常会继承自TPanel或者TWinControl,这取决于导航条是否需要支持子组件的放置。如果导航条只是单纯的一个显示区域,TPanel即可满足需求;如果导航条上有多个按钮或其他控件,可能需要继承自TWinControl以提供对子组件的支持。 2. 界面设计与绘制 组件的外观和交互是用户的第一印象。在Delphi中,可视组件的界面主要通过重写OnPaint事件来完成。Delphi提供了丰富的绘图工具,如Canvas对象,使用它可以绘制各种图形,如直线、矩形、椭圆等,并且可以对字体、颜色进行设置。对于导航条,可能需要绘制背景图案、分隔线条、选中状态的高亮等。 3. 事件处理 导航条组件需要响应用户的交互操作,例如鼠标点击事件。在Delphi中,可以通过重写组件的OnClick事件来响应用户的点击操作,进而实现导航条的导航功能。如果导航条上的项目较多,还可能需要考虑使用滚动条,让更多的导航项能够显示在窗体上。 4. 用户自定义属性和方法 为了使组件更加灵活和强大,开发者通常会为组件添加自定义的属性和方法。在导航条组件中,开发者可能会添加属性来定义按钮个数、按钮文本、按钮位置等;同时可能会添加方法来处理特定的事件,如自动调整按钮位置以适应不同的显示尺寸等。 5. 数据绑定和状态同步 在财务软件中,导航条往往需要与软件其他部分的状态进行同步。例如,用户当前所处的功能模块会影响导航条上相应项目的选中状态。这通常涉及到数据绑定技术,Delphi支持组件间的属性绑定,通过数据绑定可以轻松实现组件状态的同步。 6. 导航条组件的封装和发布 开发完毕后,组件需要被封装成独立的单元供其他项目使用。封装通常涉及将组件源码保存为pas文件,并在设计时能够在组件面板中找到。发布组件可能还需要编写相应的安装包和使用文档,方便其他开发者安装和使用。 7. Delphi IDE的支持 Delphi IDE提供了组件面板编辑器(Component Palette),允许开发者将开发好的组件添加到组件面板中。在组件面板编辑器中,可以自定义组件的图标和分类,使得组件在Delphi中的使用更为便捷。 通过以上的知识点梳理,可以看出Delphi仿速达导航条组件的开发涉及到的不仅仅是简单的代码编写,还涉及到用户界面设计、事件驱动编程、组件封装等多个方面。掌握这些知识点,对于一名Delphi开发者而言,是十分重要的。
recommend-type

【空间分布规律】:甘肃土壤类型与农业生产的关联性研究

# 摘要 本文对甘肃土壤类型及其在农业生产中的作用进行了系统性研究。首先概述了甘肃土壤类型的基础理论,并探讨了土壤类型与农业生产的理论联系。通过GIS技术分析,本文详细阐述了甘肃土壤的空间分布规律,并对其特征和影响因素进行了深入分析。此外,本文还研究了甘肃土壤类型对农业生产实际影响,包括不同区域土壤改良和作物种植案例,以及土壤养分、水分管理对作物生长周期和产量的具体影响。最后,提出了促进甘肃土壤与农业可持续发展的策略,包括土壤保护、退化防治对策以及土壤类型优化与农业创新的结合。本文旨在为