扩散模型生成图像代码实现
时间: 2025-01-10 21:18:45 浏览: 69
### 使用扩散模型生成图像的代码实现
为了展示如何利用扩散模型生成图像,下面提供了一个基于Python和PyTorch框架的基础示例。此实例展示了简单的去噪扩散概率模型(DDPM),这是一种广泛应用于图像合成的技术[^2]。
```python
import torch
from torch import nn
import torchvision.transforms.functional as TF
from PIL import Image
import numpy as np
class DiffusionModel(nn.Module):
def __init__(self, timesteps=1000, img_size=(64, 64), channels=3):
super(DiffusionModel, self).__init__()
self.timesteps = timesteps
self.img_size = img_size
self.channels = channels
# 定义网络结构
self.model = nn.Sequential(
nn.Conv2d(channels, 64, kernel_size=3, padding=1),
nn.ReLU(),
nn.Conv2d(64, 128, kernel_size=3, stride=2, padding=1),
nn.ReLU(),
nn.ConvTranspose2d(128, 64, kernel_size=4, stride=2, padding=1),
nn.ReLU(),
nn.Conv2d(64, channels, kernel_size=3, padding=1),
nn.Tanh()
)
def forward(self, x, t):
return self.model(x)
def linear_beta_schedule(timesteps):
beta_start = 0.0001
beta_end = 0.02
return torch.linspace(beta_start, beta_end, timesteps)
device = "cuda" if torch.cuda.is_available() else "cpu"
model = DiffusionModel().to(device)
betas = linear_beta_schedule(model.timesteps).to(device)
alphas = 1. - betas
alphas_cumprod = torch.cumprod(alphas, axis=0)
sqrt_alphas_cumprod = torch.sqrt(alphas_cumprod)
sqrt_one_minus_alphas_cumprod = torch.sqrt(1. - alphas_cumprod)
@torch.no_grad()
def sample_timestep(x, t):
"""
对给定的时间步t执行采样操作.
参数:
x (Tensor): 输入张量.
t (int): 时间步数.
返回:
Tensor: 更新后的张量表示.
"""
betat = extract(betas, t, x.shape)
sqrt_one_minus_alphat = extract(sqrt_one_minus_alphas_cumprod, t, x.shape)
sqrt_recip_at = extract(torch.rsqrt(alphas_cumprod), t, x.shape)
# 预测噪声成分并移除部分噪声
e_theta = model(x, t)
mean_theta = sqrt_recip_at * (x - betat * e_theta / sqrt_one_minus_alphat)
posterior_variance_t = extract((1 - alphas) * betas / (1 - alphas_cumprod), t, x.shape)
noise = torch.randn_like(x) if t > 0 else torch.zeros_like(x)
return mean_theta + torch.sqrt(posterior_variance_t) * noise
def p_sample_loop(shape):
cur_x = torch.randn(shape).to(device)
xs = []
for i in reversed(range(0, model.timesteps)):
t = torch.full((shape[0], ), i, device=device, dtype=torch.long)
cur_x = sample_timestep(cur_x, t)
xs.append(cur_x.cpu())
return xs[-1]
img_shape = (1, 3, *model.img_size)
sample_img = p_sample_loop(img_shape)[0]
TF.to_pil_image(sample_img.add(1).div(2)).save('output.png')
```
上述代码片段定义了一个简化版的扩散模型类`DiffusionModel`以及辅助函数用于前向传播过程中的时间步骤处理。通过调用`sampling loop`方法可以从随机噪声逐步恢复出清晰图片。
阅读全文
相关推荐




















