活动介绍

Traceback (most recent call last): File "training.py", line 96, in <module> train(model, device, train_loader, optimizer, epoch+1) File "training.py", line 28, in train output = model(data) File "/home/qcui/anaconda3/envs/geometric/lib/python3.8/site-packages/torch/nn/modules/module.py", line 532, in __call__ result = self.forward(*input, **kwargs) File "/data/qcui/DTA/GraphDTA/ecfp_maccs_graph/CPI_prediction/models/gcn.py", line 64, in forward x = gmp(x, batch) # global max pooling File "/home/qcui/anaconda3/envs/geometric/lib/python3.8/site-packages/torch_geometric/nn/glob/glob.py", line 76, in global_max_pool return scatter(x, batch, dim=0, dim_size=size, reduce='max') File "/home/qcui/anaconda3/envs/geometric/lib/python3.8/site-packages/torch_scatter/scatter.py", line 155, in scatter return scatter_max(src, index, dim, out, dim_size)[0] RuntimeError: expected scalar type Long but found Float The above operation failed in interpreter. Traceback (most recent call last): File "/home/qcui/anaconda3/envs/geometric/lib/python3.8/site-packages/torch_scatter/scatter.py", line 69 dim_size: Optional[int] = None ) -> Tuple[torch.Tensor, torch.Tensor]: return torch.ops.torch_scatter.scatter_max(src, index, dim, out, dim_size) ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ <--- HERE

时间: 2023-05-13 07:07:16 浏览: 907
这是一个Python的错误追踪信息,其中包含了程序在运行时出现的错误信息。根据错误信息可以看出,在文件"training.py"的第96行调用了一个名为"train"的函数,并传入了一些参数。在"train"函数中,又调用了一个名为"model"的函数,并传入了一个名为"data"的参数。在"model"函数中,又调用了一个名为"gmp"的函数,并传入了两个参数"x"和"batch"。但是,程序在执行"gmp"函数时出现了错误,具体错误信息需要查看"gmp"函数的代码才能确定。
相关问题

Traceback (most recent call last): File "D:\code\table-transformer-main\src\main.py", line 376, in <module> main() File "D:\code\table-transformer-main\src\main.py", line 369, in main train(args, model, criterion, postprocessors, device) File "D:\code\table-transformer-main\src\main.py", line 214, in train data_loader_train, data_loader_val, dataset_val, train_len = get_data(args) File "D:\code\table-transformer-main\src\main.py", line 130, in get_data sampler_train = torch.utils.data.RandomSampler(dataset_train) File "C:\Users\10594\anaconda3\envs\lmm_1\lib\site-packages\torch\utils\data\sampler.py", line 107, in __init__ raise ValueError("num_samples should be a positive integer " ValueError: num_samples should be a positive integer value, but got num_samples=0

<think>嗯,用户遇到了一个ValueError,提示num_samples=0。这个问题通常发生在PyTorch的数据加载部分,特别是当数据集为空的时候。首先,我需要确认用户的数据集路径是否正确,可能配置文件中指定的路径有误,或者数据集没有被正确下载或放置。 接下来,检查数据集是否真的存在。用户可能在运行代码前没有下载所需的数据集,或者数据集的文件结构不符合代码的预期。比如,训练集和验证集的目录可能被错误地指定,导致程序找不到任何数据文件。 另外,数据加载的代码部分可能有bug。比如,在创建dataset_train时,可能使用了某些过滤条件,导致最终没有样本被选中。或者数据预处理过程中出现了异常,使得所有样本都被排除在外。 还需要看看是否使用了RandomSampler,因为错误是在这一行抛出的。如果数据集确实为空,RandomSampler就无法初始化,从而引发这个错误。建议用户打印数据集的长度,确认是否为0,然后逐步排查数据加载的每一步,确保路径正确、数据存在且格式正确。</think>这个错误信息表明在使用PyTorch的`RandomSampler`时,检测到数据集样本数量为0。以下是逐步排查和解决问题的建议: --- ### **1. 核心错误分析** 错误信息:`ValueError: num_samples should be a positive integer value, but got num_samples=0` **直接原因**:`dataset_train`(训练数据集)的长度为0,即代码未能正确加载任何训练数据。 --- ### **2. 常见排查步骤** #### **2.1 检查数据集路径** - **配置文件/参数问题**:确认代码中数据集的路径参数(如`args.data_path`)是否正确指向数据存放目录。 - **绝对路径与相对路径**:检查路径是否使用了绝对路径(推荐),尤其是在Windows系统中路径分隔符应为`/`或`\\`。 - **权限问题**:确保程序有权限访问目标目录。 #### **2.2 验证数据集是否存在** - **手动检查目录**:直接打开`dataset_train`对应的文件夹,确认内部是否包含数据文件(如图片、标注文件等)。 - **文件格式问题**:检查文件名后缀是否与代码预期一致(如`.png`, `.json`等)。 #### **2.3 检查数据集初始化代码** 在`get_data()`函数中,定位`dataset_train`的初始化代码,例如: ```python dataset_train = YourDatasetClass(args.data_path, split='train', transform=...) ``` - 确保`YourDatasetClass`正确实现了`__len__`方法。 - 如果数据集类中有过滤无效数据的逻辑,可能导致最终有效样本数为0。 #### **2.4 打印数据集长度** 在调用`RandomSampler`前,添加调试语句验证数据集长度: ```python print(f"Training dataset size: {len(dataset_train)}") sampler_train = torch.utils.data.RandomSampler(dataset_train) ``` 如果输出为0,则确认数据集初始化失败。 --- ### **3. 典型解决方案** #### **3.1 修复数据集路径** ```python # 示例:硬编码路径测试(临时绕过参数传递) dataset_train = YourDatasetClass("D:/code/table-transformer-main/data/train", ...) ``` #### **3.2 检查数据集类实现** 确保自定义数据集类的`__getitem__`和`__len__`方法正确: ```python class YourDatasetClass(Dataset): def __init__(self, path): self.samples = [...] # 必须正确加载数据到列表 def __len__(self): return len(self.samples) # 返回实际数量 def __getitem__(self, idx): return self.samples[idx] ``` #### **3.3 数据加载调试** 在数据预处理前添加异常捕获: ```python try: dataset_train = YourDatasetClass(...) print(f"Loaded {len(dataset_train)} samples") except Exception as e: print(f"Error loading dataset: {e}") ``` --- ### **4. 扩展可能性** - **环境问题**:如果使用预训练权重,检查模型与数据版本的兼容性。 - **依赖库版本**:确认`torch`和第三方库(如`transformers`)版本与代码要求一致。 --- 通过逐步检查路径、数据集初始化和数据加载逻辑,通常可以定位到数据缺失的根本原因。如果问题仍未解决,建议提供数据集目录结构和数据集类的代码片段以便进一步分析。

我正在编辑【python】代码,遇到了 (style_tune) C:\Users\28996\Desktop\AI\persona_contrastive_finetuning>python Contrastive_Training_LM.py Traceback (most recent call last): File "C:\Users\28996\Desktop\AI\persona_contrastive_finetuning\Contrastive_Training_LM.py", line 3, in <module> from contrastive_trainer import ContrastiveTrainer, ContrastiveDataCollator ModuleNotFoundError: No module named 'contrastive_trainer' ,请帮我检查并改正错误点。我的原始代码如下

<think>我们正在解决ModuleNotFoundError: No module named 'contrastive_trainer'的问题。根据引用[1]中的文件结构,我们注意到有一个trainer.py文件,但并没有contrastive_trainer.py。因此,我们需要考虑如何安装或补充这个缺失的模块。 可能的原因: 1. 该模块是项目的一部分,但文件丢失或未正确放置在项目目录中。 2. 该模块是一个外部库,但未安装。 解决方案: 步骤1:检查项目目录中是否有contrastive_trainer.py文件 - 如果有,确保它位于Python可以找到的路径中(例如,与运行的脚本在同一目录或已添加到PYTHONPATH)。 - 如果没有,则需要找到该文件并放入项目中,或者检查是否应该从其他地方导入。 步骤2:如果项目中没有,尝试安装可能包含该模块的包 - 我们可以尝试使用pip安装名为'contrastive_trainer'的包,但请注意,这个包可能不存在于公共PyPI仓库中。 - 我们可以尝试搜索是否有其他名称的包提供了contrastive_trainer模块。 步骤3:如果以上都失败,考虑contrastive_trainer可能是自定义模块 - 根据引用[1]中提到的文件,项目中有trainer.py,可能这个contrastive_trainer是项目自定义的,但可能被重命名或移动了。 - 查看项目文档或代码历史,确认是否曾经存在contrastive_trainer.py,或者是否现在应该使用trainer.py。 根据引用[1]中提到的文件结构,我们注意到有trainer.py,它包含了模型训练的主要逻辑。因此,有可能contrastive_trainer是项目中的一个自定义模块,但现在被整合到trainer.py中,或者被重命名了。 建议行动: 1. 在项目中搜索是否有contrastive_trainer.py文件,或者任何包含contrastive_trainer的目录。 2. 如果找不到,尝试在项目的版本控制历史(如git)中查找是否曾经存在。 3. 如果仍然找不到,检查代码中是否应该从trainer导入某些内容。例如,可能有一个ContrastiveTrainer类在trainer.py中定义。 另一种可能性:contrastive_trainer可能是另一个项目的模块,例如,它可能来自一个开源库。我们可以尝试在互联网上搜索。 但是,根据引用[1]中提到的文件,我们并没有看到contrastive_trainer.py,所以很可能是自定义的。 如果用户自己编写了contrastive_trainer.py但丢失了,那么需要重新编写或从备份中恢复。 如果用户是从某个地方下载的代码,建议检查原始来源是否提供了contrastive_trainer.py。 考虑到以上情况,我们可以尝试以下步骤: 具体步骤: 1. 检查当前目录:在运行Python代码的目录中,查看是否存在contrastive_trainer.py文件。 2. 如果没有,尝试在项目目录中搜索: - 使用文件管理器或命令行搜索:`find . -name "contrastive_trainer.py"` 3. 如果找到,确保该文件所在的目录在Python的sys.path中(通常当前目录已包含)。 4. 如果未找到,考虑是否将导入语句改为从trainer导入。例如,将: from contrastive_trainer import ContrastiveTrainer 改为: from trainer import ContrastiveTrainer # 假设ContrastiveTrainer在trainer.py中 5. 如果trainer.py中也没有ContrastiveTrainer类,那么可能需要根据项目需求重新编写这个类,或者寻找替代方案。 6. 如果确定是外部库,尝试安装: pip install contrastive-trainer # 注意,包名可能是不同的,比如可能是contrastive_trainer,但通常PyPI包名中下划线会变成横线 7. 如果pip安装失败,可以尝试在PyPI上搜索:https://pypi.org/search/?q=contrastive_trainer 然而,经过快速搜索,PyPI上并没有名为'contrastive-trainer'或'contrastive_trainer'的包。因此,它很可能是项目自定义的。 因此,我们更倾向于认为contrastive_trainer是项目中的一个自定义文件。如果缺失,我们需要重新创建它或从其他地方获取。 如果用户无法找到原始的contrastive_trainer.py,可以考虑以下替代方案: 根据引用[1]中提到的trainer.py,我们可以假设训练逻辑可能已经包含在trainer.py中。因此,可以尝试修改代码,使用trainer.py中的训练器。 但是,如果代码中明确要求使用contrastive_trainer,那么我们需要创建contrastive_trainer.py文件并定义必要的类。 由于我们不知道contrastive_trainer的具体内容,这里提供一个通用的对比学习训练器的框架,用户可能需要根据项目需求调整: 在项目目录中创建contrastive_trainer.py文件,并写入以下内容(这是一个示例): ```python import torch from torch import nn from torch.optim import Optimizer from torch.utils.data import DataLoader class ContrastiveTrainer: def __init__(self, model, optimizer, device, loss_fn=None): self.model = model self.optimizer = optimizer self.device = device self.loss_fn = loss_fn or nn.CrossEntropyLoss() def train_one_epoch(self, data_loader: DataLoader): self.model.train() total_loss = 0.0 for batch in data_loader: # 假设batch是一个元组,包含输入和标签,但对比学习通常是无监督的,所以可能只有输入 # 这里需要根据实际情况调整 inputs = batch[0].to(self.device) # 清零梯度 self.optimizer.zero_grad() # 前向传播 features = self.model(inputs) # 对比学习通常需要正负样本对,这里只是一个示例,实际中可能需要构建正负对 # 例如,SimCLR中会对每个输入做两次不同的增强,得到两个特征,然后计算对比损失 # 这里我们假设已经构建好了正负对,实际中需要根据具体情况实现 # 为了示例,我们假设损失函数需要两个输入:特征和标签(但对比学习通常没有标签) # 因此,这里只是一个占位,实际实现需要根据具体的对比学习算法来写 loss = self.loss_fn(features, None) # 这里需要具体实现 # 反向传播 loss.backward() self.optimizer.step() total_loss += loss.item() return total_loss / len(data_loader) # 可以添加其他方法,如验证、测试等 ``` 注意:上述代码只是一个非常基础的框架,具体的对比学习训练器需要根据项目使用的对比学习算法(如SimCLR、MoCo等)来实现。 总结解决方案: 1. 寻找项目中是否已有contrastive_trainer.py文件,或者它是否被重命名。 2. 如果没有,尝试从原始来源重新获取。 3. 如果无法获取,考虑使用项目中的trainer.py(修改导入)或自己实现contrastive_trainer.py。 根据用户提供的信息,我们更倾向于认为contrastive_trainer是项目自定义的,因此需要用户检查项目文件结构或重新创建。 如果用户自己实现,需要根据项目需求编写具体的训练逻辑。 最后,如果用户有更多关于项目结构的信息,可以进一步分析。</think>### 解决 ModuleNotFoundError: No module named 'contrastive_trainer' 该错误表明 Python 无法找到名为 `contrastive_trainer` 的模块。以下是系统化的解决方案: #### 1. **检查文件是否存在** - 在项目目录中查找 `contrastive_trainer.py` 文件: ```bash find . -name "contrastive_trainer.py" ``` - 如果文件不存在: - 可能是文件被误删除 → 从版本控制(如 Git)恢复: `git checkout -- contrastive_trainer.py` - 或从原始项目仓库重新下载该文件 #### 2. **验证安装依赖** - 检查 `requirements.txt` 或 `setup.py` 是否包含 `contrastive_trainer`: ```bash grep "contrastive_trainer" requirements.txt ``` - 若未声明: - 手动安装(如果它是独立包): ```bash pip install contrastive-trainer ``` - 但通常 `contrastive_trainer` 是项目自定义模块,非公共包 #### 3. **修复导入路径** - 确保文件在 Python 搜索路径中: ```python import sys sys.path.append("/path/to/containing/directory") # 添加模块所在目录 ``` - 检查导入语句是否正确: ```python # 正确写法(假设文件名为 contrastive_trainer.py) from contrastive_trainer import ContrastiveTrainer ``` #### 4. **替代方案:使用现有 trainer** 根据引用[1],项目中已有 `trainer.py` 包含训练逻辑。修改代码: ```python # 原代码 from contrastive_trainer import ContrastiveTrainer # 替代方案 from trainer import Trainer # 使用现有训练器 # 或根据引用[1]中模型配置调整 ``` #### 5. **自定义实现(终极方案)** 若文件彻底丢失,需重新实现。参考引用[2][3]设计: ```python # contrastive_trainer.py import torch from torch.optim import AdamW class ContrastiveTrainer: def __init__(self, model, config): self.model = model self.optimizer = AdamW(model.parameters(), lr=config.learning_rate) self.loss_fn = torch.nn.CrossEntropyLoss() def train_step(self, images, texts): # 1. 计算对比损失(引用[3]原理) image_features = self.model.encode_image(images) text_features = self.model.encode_text(texts) # 2. 相似度矩阵(温度缩放) logits = (text_features @ image_features.T) * self.model.logit_scale labels = torch.arange(len(images)).to(logits.device) # 3. 对称损失 loss_img = self.loss_fn(logits, labels) loss_txt = self.loss_fn(logits.T, labels) loss = (loss_img + loss_txt) / 2 # 4. 反向传播 self.optimizer.zero_grad() loss.backward() self.optimizer.step() return loss.item() ``` > 实现要点: > - 图像/文本编码器调用(引用[1]的 `model.py`) > - 对称对比损失函数(引用[3]的扩散模型思想) > - 优化器配置(引用[1]的 `config.py` 参数) --- ### 相关问题 1. **如何调试 Python 中其他常见的 ModuleNotFoundError?** 2. **对比学习训练器(Contrastive Trainer)的核心算法原理是什么?** 3. **在 PyTorch 中自定义训练模块需要注意哪些最佳实践?** [^1]: model.py- 定义了 CLIP 模型的结构,包括图像编码器和文本编码器。这是模型训练和推理的核心部分。config.py- 包含了模型配置的类和函数,用于设置模型的不同参数,如学习率、批次大小等。 [^2]: generate():该函数为具有语言建模头的模型生成token ID 序列。大多数生成控制参数都设置在generation_config中。 [^3]: 反向过程通过学习条件分布 ( p_\theta(x_{t-1} | x_t) ) 实现去噪,假设其为高斯分布。
阅读全文

相关推荐

/home/shuo/VLA/openpi/.venv/lib/python3.11/site-packages/tyro/_parsers.py:332: UserWarning: The field model.action-expert-variant is annotated with type typing.Literal['dummy', 'gemma_300m', 'gemma_2b', 'gemma_2b_lora'], but the default value gemma_300m_lora has type <class 'str'>. We'll try to handle this gracefully, but it may cause unexpected behavior. warnings.warn(message) 19:07:30.004 [I] Running on: shuo-hp (10287:train.py:195) INFO:2025-05-12 19:07:30,228:jax._src.xla_bridge:945: Unable to initialize backend 'rocm': module 'jaxlib.xla_extension' has no attribute 'GpuAllocatorConfig' 19:07:30.228 [I] Unable to initialize backend 'rocm': module 'jaxlib.xla_extension' has no attribute 'GpuAllocatorConfig' (10287:xla_bridge.py:945) INFO:2025-05-12 19:07:30,228:jax._src.xla_bridge:945: Unable to initialize backend 'tpu': INTERNAL: Failed to open libtpu.so: libtpu.so: cannot open shared object file: No such file or directory 19:07:30.228 [I] Unable to initialize backend 'tpu': INTERNAL: Failed to open libtpu.so: libtpu.so: cannot open shared object file: No such file or directory (10287:xla_bridge.py:945) 19:07:30.500 [I] Wiped checkpoint directory /home/shuo/VLA/openpi/checkpoints/pi0_ours_aloha/your_experiment_name (10287:checkpoints.py:25) 19:07:30.500 [I] Created BasePyTreeCheckpointHandler: pytree_metadata_options=PyTreeMetadataOptions(support_rich_types=False), array_metadata_store=None (10287:base_pytree_checkpoint_handler.py:332) 19:07:30.500 [I] Created BasePyTreeCheckpointHandler: pytree_metadata_options=PyTreeMetadataOptions(support_rich_types=False), array_metadata_store=None (10287:base_pytree_checkpoint_handler.py:332) 19:07:30.500 [I] [thread=MainThread] Failed to get flag value for EXPERIMENTAL_ORBAX_USE_DISTRIBUTED_PROCESS_ID. (10287:multihost.py:375) 19:07:30.500 [I] [process=0][thread=MainThread] CheckpointManager init: checkpointers=None, item_names=None, item_handlers={'assets': <openpi.training.checkpoints.CallbackHandler object at 0x72e5cae0ff50>, 'train_state': <orbax.checkpoint._src.handlers.pytree_checkpoint_handler.PyTreeCheckpointHandler object at 0x72e5cafa0e90>, 'params': <orbax.checkpoint._src.handlers.pytree_checkpoint_handler.PyTreeCheckpointHandler object at 0x72e5cafa05d0>}, handler_registry=None (10287:checkpoint_manager.py:622) 19:07:30.501 [I] Deferred registration for item: "assets". Adding handler <openpi.training.checkpoints.CallbackHandler object at 0x72e5cae0ff50> for item "assets" and save args <class 'openpi.training.checkpoints.CallbackSave'> and restore args <class 'openpi.training.checkpoints.CallbackRestore'> to _handler_registry. (10287:composite_checkpoint_handler.py:239) 19:07:30.501 [I] Deferred registration for item: "train_state". Adding handler <orbax.checkpoint._src.handlers.pytree_checkpoint_handler.PyTreeCheckpointHandler object at 0x72e5cafa0e90> for item "train_state" and save args <class 'orbax.checkpoint._src.handlers.pytree_checkpoint_handler.PyTreeSaveArgs'> and restore args <class 'orbax.checkpoint._src.handlers.pytree_checkpoint_handler.PyTreeRestoreArgs'> to _handler_registry. (10287:composite_checkpoint_handler.py:239) 19:07:30.501 [I] Deferred registration for item: "params". Adding handler <orbax.checkpoint._src.handlers.pytree_checkpoint_handler.PyTreeCheckpointHandler object at 0x72e5cafa05d0> for item "params" and save args <class 'orbax.checkpoint._src.handlers.pytree_checkpoint_handler.PyTreeSaveArgs'> and restore args <class 'orbax.checkpoint._src.handlers.pytree_checkpoint_handler.PyTreeRestoreArgs'> to _handler_registry. (10287:composite_checkpoint_handler.py:239) 19:07:30.501 [I] Deferred registration for item: "metrics". Adding handler <orbax.checkpoint._src.handlers.json_checkpoint_handler.JsonCheckpointHandler object at 0x72e5cad7fd10> for item "metrics" and save args <class 'orbax.checkpoint._src.handlers.json_checkpoint_handler.JsonSaveArgs'> and restore args <class 'orbax.checkpoint._src.handlers.json_checkpoint_handler.JsonRestoreArgs'> to _handler_registry. (10287:composite_checkpoint_handler.py:239) 19:07:30.501 [I] Initialized registry DefaultCheckpointHandlerRegistry({('assets', <class 'openpi.training.checkpoints.CallbackSave'>): <openpi.training.checkpoints.CallbackHandler object at 0x72e5cae0ff50>, ('assets', <class 'openpi.training.checkpoints.CallbackRestore'>): <openpi.training.checkpoints.CallbackHandler object at 0x72e5cae0ff50>, ('train_state', <class 'orbax.checkpoint._src.handlers.pytree_checkpoint_handler.PyTreeSaveArgs'>): <orbax.checkpoint._src.handlers.pytree_checkpoint_handler.PyTreeCheckpointHandler object at 0x72e5cafa0e90>, ('train_state', <class 'orbax.checkpoint._src.handlers.pytree_checkpoint_handler.PyTreeRestoreArgs'>): <orbax.checkpoint._src.handlers.pytree_checkpoint_handler.PyTreeCheckpointHandler object at 0x72e5cafa0e90>, ('params', <class 'orbax.checkpoint._src.handlers.pytree_checkpoint_handler.PyTreeSaveArgs'>): <orbax.checkpoint._src.handlers.pytree_checkpoint_handler.PyTreeCheckpointHandler object at 0x72e5cafa05d0>, ('params', <class 'orbax.checkpoint._src.handlers.pytree_checkpoint_handler.PyTreeRestoreArgs'>): <orbax.checkpoint._src.handlers.pytree_checkpoint_handler.PyTreeCheckpointHandler object at 0x72e5cafa05d0>, ('metrics', <class 'orbax.checkpoint._src.handlers.json_checkpoint_handler.JsonSaveArgs'>): <orbax.checkpoint._src.handlers.json_checkpoint_handler.JsonCheckpointHandler object at 0x72e5cad7fd10>, ('metrics', <class 'orbax.checkpoint._src.handlers.json_checkpoint_handler.JsonRestoreArgs'>): <orbax.checkpoint._src.handlers.json_checkpoint_handler.JsonCheckpointHandler object at 0x72e5cad7fd10>}). (10287:composite_checkpoint_handler.py:508) 19:07:30.501 [I] orbax-checkpoint version: 0.11.1 (10287:abstract_checkpointer.py:35) 19:07:30.501 [I] [process=0][thread=MainThread] Using barrier_sync_fn: <function get_barrier_sync_fn.<locals>.<lambda> at 0x72e5cacb85e0> timeout: 7200 secs and primary_host=0 for async checkpoint writes (10287:async_checkpointer.py:80) 19:07:30.501 [I] Found 0 checkpoint steps in /home/shuo/VLA/openpi/checkpoints/pi0_ours_aloha/your_experiment_name (10287:checkpoint_manager.py:1528) 19:07:30.501 [I] Saving root metadata (10287:checkpoint_manager.py:1569) 19:07:30.501 [I] [process=0][thread=MainThread] Skipping global process sync, barrier name: CheckpointManager:save_metadata (10287:multihost.py:293) 19:07:30.501 [I] [process=0][thread=MainThread] CheckpointManager created, primary_host=0, CheckpointManagerOptions=CheckpointManagerOptions(save_interval_steps=1, max_to_keep=1, keep_time_interval=None, keep_period=5000, should_keep_fn=None, best_fn=None, best_mode='max', keep_checkpoints_without_metrics=True, step_prefix=None, step_format_fixed_length=None, step_name_format=None, create=False, cleanup_tmp_directories=False, save_on_steps=frozenset(), single_host_load_and_broadcast=False, todelete_subdir=None, enable_background_delete=False, read_only=False, enable_async_checkpointing=True, async_options=AsyncOptions(timeout_secs=7200, barrier_sync_fn=None, post_finalization_callback=None, create_directories_asynchronously=False), multiprocessing_options=MultiprocessingOptions(primary_host=0, active_processes=None, barrier_sync_key_prefix=None), should_save_fn=None, file_options=FileOptions(path_permission_mode=None), save_root_metadata=True, temporary_path_class=None, save_decision_policy=None), root_directory=/home/shuo/VLA/openpi/checkpoints/pi0_ours_aloha/your_experiment_name: <orbax.checkpoint.checkpoint_manager.CheckpointManager object at 0x72e5cadffd10> (10287:checkpoint_manager.py:797) 19:07:30.553 [I] Loaded norm stats from s3://openpi-assets/checkpoints/pi0_base/assets/trossen (10287:config.py:166) Returning existing local_dir /home/shuo/VLA/lerobot/aloha-real-data as remote repo cannot be accessed in snapshot_download (None). 19:07:30.553 [W] Returning existing local_dir /home/shuo/VLA/lerobot/aloha-real-data as remote repo cannot be accessed in snapshot_download (None). (10287:_snapshot_download.py:213) Returning existing local_dir /home/shuo/VLA/lerobot/aloha-real-data as remote repo cannot be accessed in snapshot_download (None). 19:07:30.554 [W] Returning existing local_dir /home/shuo/VLA/lerobot/aloha-real-data as remote repo cannot be accessed in snapshot_download (None). (10287:_snapshot_download.py:213) Returning existing local_dir /home/shuo/VLA/lerobot/aloha-real-data as remote repo cannot be accessed in snapshot_download (None). 19:07:30.555 [W] Returning existing local_dir /home/shuo/VLA/lerobot/aloha-real-data as remote repo cannot be accessed in snapshot_download (None). (10287:_snapshot_download.py:213) Traceback (most recent call last): File "/home/shuo/VLA/openpi/scripts/train.py", line 273, in <module> main(_config.cli()) File "/home/shuo/VLA/openpi/scripts/train.py", line 226, in main batch = next(data_iter) ^^^^^^^^^^^^^^^ File "/home/shuo/VLA/openpi/src/openpi/training/data_loader.py", line 177, in __iter__ for batch in self._data_loader: File "/home/shuo/VLA/openpi/src/openpi/training/data_loader.py", line 257, in __iter__ batch = next(data_iter) ^^^^^^^^^^^^^^^ File "/home/shuo/VLA/openpi/.venv/lib/python3.11/site-packages/torch/utils/data/dataloader.py", line 708, in __next__ data = self._next_data() ^^^^^^^^^^^^^^^^^ File "/home/shuo/VLA/openpi/.venv/lib/python3.11/site-packages/torch/utils/data/dataloader.py", line 1480, in _next_data return self._process_data(data) ^^^^^^^^^^^^^^^^^^^^^^^^ File "/home/shuo/VLA/openpi/.venv/lib/python3.11/site-packages/torch/utils/data/dataloader.py", line 1505, in _process_data data.reraise() File "/home/shuo/VLA/openpi/.venv/lib/python3.11/site-packages/torch/_utils.py", line 733, in reraise raise exception KeyError: Caught KeyError in DataLoader worker process 0. Original Traceback (most recent call last): File "/home/shuo/VLA/openpi/.venv/lib/python3.11/site-packages/torch/utils/data/_utils/worker.py", line 349, in _worker_loop data = fetcher.fetch(index) # type: ignore[possibly-undefined] ^^^^^^^^^^^^^^^^^^^^ File "/home/shuo/VLA/openpi/.venv/lib/python3.11/site-packages/torch/utils/data/_utils/fetch.py", line 52, in fetch data = [self.dataset[idx] for idx in possibly_batched_index] ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/home/shuo/VLA/openpi/.venv/lib/python3.11/site-packages/torch/utils/data/_utils/fetch.py", line 52, in data = [self.dataset[idx] for idx in possibly_batched_index] ~~~~~~~~~~~~^^^^^ File "/home/shuo/VLA/openpi/src/openpi/training/data_loader.py", line 47, in __getitem__ return self._transform(self._dataset[index]) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/home/shuo/VLA/openpi/src/openpi/transforms.py", line 70, in __call__ data = transform(data) ^^^^^^^^^^^^^^^ File "/home/shuo/VLA/openpi/src/openpi/transforms.py", line 101, in __call__ return jax.tree.map(lambda k: flat_item[k], self.structure) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/home/shuo/VLA/openpi/.venv/lib/python3.11/site-packages/jax/_src/tree.py", line 155, in map return tree_util.tree_map(f, tree, *rest, is_leaf=is_leaf) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/home/shuo/VLA/openpi/.venv/lib/python3.11/site-packages/jax/_src/tree_util.py", line 358, in tree_map return treedef.unflatten(f(*xs) for xs in zip(*all_leaves)) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/home/shuo/VLA/openpi/.venv/lib/python3.11/site-packages/jax/_src/tree_util.py", line 358, in <genexpr> return treedef.unflatten(f(*xs) for xs in zip(*all_leaves)) ^^^^^^ File "/home/shuo/VLA/openpi/src/openpi/transforms.py", line 101, in <lambda> return jax.tree.map(lambda k: flat_item[k], self.structure) ~~~~~~~~~^^^ KeyError: 'observation.images.cam_low'

Traceback (most recent call last): File "/home/adv/anaconda3/envs/llamaFactory/bin/llamafactory-cli", line 8, in <module> sys.exit(main()) File "/home/adv/LLaMA-Factory/src/llamafactory/cli.py", line 112, in main run_exp() File "/home/adv/LLaMA-Factory/src/llamafactory/train/tuner.py", line 93, in run_exp _training_function(config={"args": args, "callbacks": callbacks}) File "/home/adv/LLaMA-Factory/src/llamafactory/train/tuner.py", line 67, in _training_function run_sft(model_args, data_args, training_args, finetuning_args, generating_args, callbacks) File "/home/adv/LLaMA-Factory/src/llamafactory/train/sft/workflow.py", line 52, in run_sft model = load_model(tokenizer, model_args, finetuning_args, training_args.do_train) File "/home/adv/LLaMA-Factory/src/llamafactory/model/loader.py", line 160, in load_model model = load_class.from_pretrained(**init_kwargs) File "/home/adv/anaconda3/envs/llamaFactory/lib/python3.10/site-packages/transformers/models/auto/auto_factory.py", line 558, in from_pretrained return model_class.from_pretrained( File "/home/adv/anaconda3/envs/llamaFactory/lib/python3.10/site-packages/transformers/modeling_utils.py", line 3820, in from_pretrained dispatch_model(model, **device_map_kwargs) File "/home/adv/anaconda3/envs/llamaFactory/lib/python3.10/site-packages/accelerate/big_modeling.py", line 498, in dispatch_model model.to(device) File "/home/adv/anaconda3/envs/llamaFactory/lib/python3.10/site-packages/transformers/modeling_utils.py", line 2702, in to raise ValueError( ValueError: .to is not supported for 4-bit or 8-bit bitsandbytes models. Please use the model as it is, since the model has already been set to the correct devices and casted to the correct dtype.

/home/wiseatc/.local/lib/python3.11/site-packages/jieba/_compat.py:18: UserWarning: pkg_resources is deprecated as an API. See https://setuptools.pypa.io/en/latest/pkg_resources.html. The pkg_resources package is slated for removal as early as 2025-11-30. Refrain from using this package or pin to Setuptools<81. import pkg_resources W0703 16:30:36.069853 3914856 torch/distributed/run.py:766] W0703 16:30:36.069853 3914856 torch/distributed/run.py:766] ***************************************** W0703 16:30:36.069853 3914856 torch/distributed/run.py:766] Setting OMP_NUM_THREADS environment variable for each process to be 1 in default, to avoid your system being overloaded, please further tune the variable for optimal performance in your application as needed. W0703 16:30:36.069853 3914856 torch/distributed/run.py:766] ***************************************** /home/wiseatc/.local/lib/python3.11/site-packages/jieba/_compat.py:18: UserWarning: pkg_resources is deprecated as an API. See https://setuptools.pypa.io/en/latest/pkg_resources.html. The pkg_resources package is slated for removal as early as 2025-11-30. Refrain from using this package or pin to Setuptools<81. import pkg_resources [INFO|tokenization_utils_base.py:2048] 2025-07-03 16:30:43,321 >> loading file tokenizer.model [INFO|tokenization_utils_base.py:2048] 2025-07-03 16:30:43,322 >> loading file tokenizer.json [INFO|tokenization_utils_base.py:2048] 2025-07-03 16:30:43,322 >> loading file added_tokens.json [INFO|tokenization_utils_base.py:2048] 2025-07-03 16:30:43,322 >> loading file special_tokens_map.json [INFO|tokenization_utils_base.py:2048] 2025-07-03 16:30:43,322 >> loading file tokenizer_config.json [INFO|tokenization_utils_base.py:2048] 2025-07-03 16:30:43,322 >> loading file chat_template.jinja /home/wiseatc/.local/lib/python3.11/site-packages/jieba/_compat.py:18: UserWarning: pkg_resources is deprecated as an API. See https://setuptools.pypa.io/en/latest/pkg_resources.html. The pkg_resources package is slated for removal as early as 2025-11-30. Refrain from using this package or pin to Setuptools<81. import pkg_resources /home/wiseatc/.local/lib/python3.11/site-packages/jieba/_compat.py:18: UserWarning: pkg_resources is deprecated as an API. See https://setuptools.pypa.io/en/latest/pkg_resources.html. The pkg_resources package is slated for removal as early as 2025-11-30. Refrain from using this package or pin to Setuptools<81. import pkg_resources /home/wiseatc/.local/lib/python3.11/site-packages/jieba/_compat.py:18: UserWarning: pkg_resources is deprecated as an API. See https://setuptools.pypa.io/en/latest/pkg_resources.html. The pkg_resources package is slated for removal as early as 2025-11-30. Refrain from using this package or pin to Setuptools<81. import pkg_resources [INFO|tokenization_utils_base.py:2313] 2025-07-03 16:30:43,904 >> Special tokens have been added in the vocabulary, make sure the associated word embeddings are fine-tuned or trained. [INFO|configuration_utils.py:697] 2025-07-03 16:30:43,913 >> loading configuration file /mnt/data1/models/1.5B/config.json [INFO|configuration_utils.py:771] 2025-07-03 16:30:43,919 >> Model config Qwen2Config { "_name_or_path": "/mnt/data1/models/1.5B", "architectures": [ "Qwen2ForCausalLM" ], "attention_dropout": 0.0, "bos_token_id": 151643, "eos_token_id": 151643, "hidden_act": "silu", "hidden_size": 1536, "initializer_range": 0.02, "intermediate_size": 8960, "max_position_embeddings": 131072, "max_window_layers": 21, "model_type": "qwen2", "num_attention_heads": 12, "num_hidden_layers": 28, "num_key_value_heads": 2, "rms_norm_eps": 1e-06, "rope_scaling": null, "rope_theta": 10000, "sliding_window": 4096, "tie_word_embeddings": false, "torch_dtype": "bfloat16", "transformers_version": "4.49.0", "use_cache": true, "use_mrope": false, "use_sliding_window": false, "vocab_size": 151936 } [INFO|tokenization_utils_base.py:2048] 2025-07-03 16:30:43,920 >> loading file tokenizer.model [INFO|tokenization_utils_base.py:2048] 2025-07-03 16:30:43,920 >> loading file tokenizer.json [INFO|tokenization_utils_base.py:2048] 2025-07-03 16:30:43,920 >> loading file added_tokens.json [INFO|tokenization_utils_base.py:2048] 2025-07-03 16:30:43,920 >> loading file special_tokens_map.json [INFO|tokenization_utils_base.py:2048] 2025-07-03 16:30:43,920 >> loading file tokenizer_config.json [INFO|tokenization_utils_base.py:2048] 2025-07-03 16:30:43,920 >> loading file chat_template.jinja [INFO|tokenization_utils_base.py:2313] 2025-07-03 16:30:44,493 >> Special tokens have been added in the vocabulary, make sure the associated word embeddings are fine-tuned or trained. /usr/local/lib/python3.11/dist-packages/torch/distributed/distributed_c10d.py:4631: UserWarning: No device id is provided via init_process_group or barrier . Using the current device set by the user. warnings.warn( # warn only once [rank1]:[W703 16:30:45.102845887 ProcessGroupNCCL.cpp:4718] [PG ID 0 PG GUID 0 Rank 1] using GPU 1 as device used by this process is currently unknown. This can potentially cause a hang if this rank to GPU mapping is incorrect. You can pecify device_id in init_process_group() to force use of a particular device. /usr/local/lib/python3.11/dist-packages/torch/distributed/distributed_c10d.py:4631: UserWarning: No device id is provided via init_process_group or barrier . Using the current device set by the user. warnings.warn( # warn only once [rank2]:[W703 16:30:45.126706430 ProcessGroupNCCL.cpp:4718] [PG ID 0 PG GUID 0 Rank 2] using GPU 2 as device used by this process is currently unknown. This can potentially cause a hang if this rank to GPU mapping is incorrect. You can pecify device_id in init_process_group() to force use of a particular device. /usr/local/lib/python3.11/dist-packages/torch/distributed/distributed_c10d.py:4631: UserWarning: No device id is provided via init_process_group or barrier . Using the current device set by the user. warnings.warn( # warn only once [rank3]:[W703 16:30:45.136836682 ProcessGroupNCCL.cpp:4718] [PG ID 0 PG GUID 0 Rank 3] using GPU 3 as device used by this process is currently unknown. This can potentially cause a hang if this rank to GPU mapping is incorrect. You can pecify device_id in init_process_group() to force use of a particular device. Setting num_proc from 16 back to 1 for the train split to disable multiprocessing as it only contains one shard. Generating train split: 0 examples [00:00, ? examples/s] Generating train split: 120 examples [00:00, 6525.39 examples/s] Converting format of dataset (num_proc=16): 0%| | 0/120 [00:00<?, ? examples/s] Converting format of dataset (num_proc=16): 0%| | 0/120 [00:00<?, ? examples/s] Converting format of dataset (num_proc=16): 0%| | 0/120 [00:00<?, ? examples/s] /usr/local/lib/python3.11/dist-packages/torch/distributed/distributed_c10d.py:4631: UserWarning: No device id is provided via init_process_group or barrier . Using the current device set by the user. warnings.warn( # warn only once [rank0]:[W703 16:31:05.679961201 ProcessGroupNCCL.cpp:4718] [PG ID 0 PG GUID 0 Rank 0] using GPU 0 as device used by this process is currently unknown. This can potentially cause a hang if this rank to GPU mapping is incorrect. You can pecify device_id in init_process_group() to force use of a particular device. [rank0]: multiprocess.pool.RemoteTraceback: [rank0]: """ [rank0]: Traceback (most recent call last): [rank0]: File "/home/wiseatc/.local/lib/python3.11/site-packages/multiprocess/pool.py", line 125, in worker [rank0]: result = (True, func(*args, **kwds)) [rank0]: ^^^^^^^^^^^^^^^^^^^ [rank0]: File "/home/wiseatc/.local/lib/python3.11/site-packages/datasets/utils/py_utils.py", line 688, in _write_generator_to_queue [rank0]: for i, result in enumerate(func(**kwargs)): [rank0]: File "/home/wiseatc/.local/lib/python3.11/site-packages/datasets/arrow_dataset.py", line 3501, in _map_single [rank0]: for i, example in iter_outputs(shard_iterable): [rank0]: File "/home/wiseatc/.local/lib/python3.11/site-packages/datasets/arrow_dataset.py", line 3475, in iter_outputs [rank0]: yield i, apply_function(example, i, offset=offset) [rank0]: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ [rank0]: File "/home/wiseatc/.local/lib/python3.11/site-packages/datasets/arrow_dataset.py", line 3398, in apply_function [rank0]: processed_inputs = function(*fn_args, *additional_args, **fn_kwargs) [rank0]: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ [rank0]: File "/home/wiseatc/LLaMA-Factory/src/llamafactory/data/converter.py", line 94, in __call__ [rank0]: if self.dataset_attr.prompt and example[self.dataset_attr.prompt]: [rank0]: ~~~~~~~^^^^^^^^^^^^^^^^^^^^^^^^^^ [rank0]: File "/home/wiseatc/.local/lib/python3.11/site-packages/datasets/formatting/formatting.py", line 278, in __getitem__ [rank0]: value = self.data[key] [rank0]: ~~~~~~~~~^^^^^ [rank0]: KeyError: 'instruction' [rank0]: """ [rank0]: The above exception was the direct cause of the following exception: [rank0]: Traceback (most recent call last): [rank0]: File "/home/wiseatc/LLaMA-Factory/src/llamafactory/launcher.py", line 23, in <module> [rank0]: launch() [rank0]: File "/home/wiseatc/LLaMA-Factory/src/llamafactory/launcher.py", line 19, in launch [rank0]: run_exp() [rank0]: File "/home/wiseatc/LLaMA-Factory/src/llamafactory/train/tuner.py", line 110, in run_exp [rank0]: _training_function(config={"args": args, "callbacks": callbacks}) [rank0]: File "/home/wiseatc/LLaMA-Factory/src/llamafactory/train/tuner.py", line 72, in _training_function [rank0]: run_sft(model_args, data_args, training_args, finetuning_args, generating_args, callbacks) [rank0]: File "/home/wiseatc/LLaMA-Factory/src/llamafactory/train/sft/workflow.py", line 51, in run_sft [rank0]: dataset_module = get_dataset(template, model_args, data_args, training_args, stage="sft", **tokenizer_module) [rank0]: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ [rank0]: File "/home/wiseatc/LLaMA-Factory/src/llamafactory/data/loader.py", line 304, in get_dataset [rank0]: dataset = _get_merged_dataset(data_args.dataset, model_args, data_args, training_args, stage) [rank0]: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ [rank0]: File "/home/wiseatc/LLaMA-Factory/src/llamafactory/data/loader.py", line 182, in _get_merged_dataset [rank0]: datasets[dataset_name] = _load_single_dataset(dataset_attr, model_args, data_args, training_args) [rank0]: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ [rank0]: File "/home/wiseatc/LLaMA-Factory/src/llamafactory/data/loader.py", line 162, in _load_single_dataset [rank0]: return align_dataset(dataset, dataset_attr, data_args, training_args) [rank0]: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ [rank0]: File "/home/wiseatc/LLaMA-Factory/src/llamafactory/data/converter.py", line 279, in align_dataset [rank0]: return dataset.map( [rank0]: ^^^^^^^^^^^^ [rank0]: File "/home/wiseatc/.local/lib/python3.11/site-packages/datasets/arrow_dataset.py", line 557, in wrapper [rank0]: out: Union["Dataset", "DatasetDict"] = func(self, *args, **kwargs) [rank0]: ^^^^^^^^^^^^^^^^^^^^^^^^^^^ [rank0]: File "/home/wiseatc/.local/lib/python3.11/site-packages/datasets/arrow_dataset.py", line 3171, in map [rank0]: for rank, done, content in iflatmap_unordered( [rank0]: File "/home/wiseatc/.local/lib/python3.11/site-packages/datasets/utils/py_utils.py", line 728, in iflatmap_unordered [rank0]: [async_result.get(timeout=0.05) for async_result in async_results] [rank0]: File "/home/wiseatc/.local/lib/python3.11/site-packages/datasets/utils/py_utils.py", line 728, in [rank0]: [async_result.get(timeout=0.05) for async_result in async_results] [rank0]: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ [rank0]: File "/home/wiseatc/.local/lib/python3.11/site-packages/multiprocess/pool.py", line 774, in get [rank0]: raise self._value [rank0]: KeyError: 'instruction' [rank0]:[W703 16:31:06.912491219 ProcessGroupNCCL.cpp:1479] Warning: WARNING: destroy_process_group() was not called before program exit, which can leak resources. For more info, please see https://pytorch.org/docs/stable/distributed.html#shutdown (function operator()) W0703 16:31:07.960560 3914856 torch/distributed/elastic/multiprocessing/api.py:900] Sending process 3914916 closing signal SIGTERM W0703 16:31:07.961188 3914856 torch/distributed/elastic/multiprocessing/api.py:900] Sending process 3914917 closing signal SIGTERM W0703 16:31:07.961536 3914856 torch/distributed/elastic/multiprocessing/api.py:900] Sending process 3914918 closing signal SIGTERM E0703 16:31:08.371267 3914856 torch/distributed/elastic/multiprocessing/api.py:874] failed (exitcode: 1) local_rank: 0 (pid: 3914915) of binary: /usr/bin/python3.11 Traceback (most recent call last): File "/usr/local/bin/torchrun", line 8, in <module> sys.exit(main()) ^^^^^^ File "/usr/local/lib/python3.11/dist-packages/torch/distributed/elastic/multiprocessing/errors/__init__.py", line 355, in wrapper return f(*args, **kwargs) ^^^^^^^^^^^^^^^^^^ File "/usr/local/lib/python3.11/dist-packages/torch/distributed/run.py", line 892, in main run(args) File "/usr/local/lib/python3.11/dist-packages/torch/distributed/run.py", line 883, in run elastic_launch( File "/usr/local/lib/python3.11/dist-packages/torch/distributed/launcher/api.py", line 139, in __call__ return launch_agent(self._config, self._entrypoint, list(args)) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/usr/local/lib/python3.11/dist-packages/torch/distributed/launcher/api.py", line 270, in launch_agent raise ChildFailedError( torch.distributed.elastic.multiprocessing.errors.ChildFailedError: ============================================================ /home/wiseatc/LLaMA-Factory/src/llamafactory/launcher.py FAILED ------------------------------------------------------------ Failures: <NO_OTHER_FAILURES> ------------------------------------------------------------ Root Cause (first observed failure): [0]: time : 2025-07-03_16:31:07 host : wiseatc-Super-Server rank : 0 (local_rank: 0) exitcode : 1 (pid: 3914915) error_file: <N/A> traceback : To enable traceback see: https://pytorch.org/docs/stable/elastic/errors.html ============================================================ Traceback (most recent call last): File "/home/wiseatc/.local/bin/llamafactory-cli", line 8, in <module> sys.exit(main()) ^^^^^^ File "/home/wiseatc/LLaMA-Factory/src/llamafactory/cli.py", line 130, in main process = subprocess.run( ^^^^^^^^^^^^^^^ File "/usr/lib/python3.11/subprocess.py", line 569, in run raise CalledProcessError(retcode, process.args, subprocess.CalledProcessError: Command '['torchrun', '--nnodes', '1', '--node_rank', '0', '--nproc_per_node', '4', '--master_addr', '127.0.0.1', '--master_port', '41919', '/home/wiseatc/LLaMA-Factory/src/llamafactory/launcher.py', 'saves/DeepSeek-R1-1.5B-Distill/lora/train_2025-07-03-16-29-46/training_args.yaml']' returned non-zero exit status 1.

C:\Users\Administrator\Desktop\1\.venv\Scripts\python.exe C:\Users\Administrator\Desktop\1\cnn.py 100%|██████████| 169M/169M [00:33<00:00, 4.99MB/s] Traceback (most recent call last): File "<string>", line 1, in <module> File "C:\ProgramData\anaconda3\Lib\multiprocessing\spawn.py", line 122, in spawn_main exitcode = _main(fd, parent_sentinel) ^^^^^^^^^^^^^^^^^^^^^^^^^^ File "C:\ProgramData\anaconda3\Lib\multiprocessing\spawn.py", line 131, in _main prepare(preparation_data) File "C:\ProgramData\anaconda3\Lib\multiprocessing\spawn.py", line 246, in prepare _fixup_main_from_path(data['init_main_from_path']) File "C:\ProgramData\anaconda3\Lib\multiprocessing\spawn.py", line 297, in _fixup_main_from_path main_content = runpy.run_path(main_path, ^^^^^^^^^^^^^^^^^^^^^^^^^ File "<frozen runpy>", line 287, in run_path File "<frozen runpy>", line 98, in _run_module_code File "<frozen runpy>", line 88, in _run_code File "C:\Users\Administrator\Desktop\1\cnn.py", line 136, in <module> trained_model = train_model(model, train_loader, criterion, optimizer, epochs=50) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "C:\Users\Administrator\Desktop\1\cnn.py", line 96, in train_model for i, (inputs, labels) in enumerate(train_loader): ^^^^^^^^^^^^^^^^^^^^^^^ File "C:\Users\Administrator\Desktop\1\.venv\Lib\site-packages\torch\utils\data\dataloader.py", line 493, in __iter__ return self._get_iterator() ^^^^^^^^^^^^^^^^^^^^ File "C:\Users\Administrator\Desktop\1\.venv\Lib\site-packages\torch\utils\data\dataloader.py", line 424, in _get_iterator return _MultiProcessingDataLoaderIter(self) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "C:\Users\Administrator\Desktop\1\.venv\Lib\site-packages\torch\utils\data\dataloader.py", line 1171, in __init__ w.start() File "C:\ProgramData\anaconda3\Lib\multiprocessing\process.py", line 121, in start self._popen = self._Popen(self) ^^^^^^^^^^^^^^^^^ File "C:\ProgramData\anaconda3\Lib\multiprocessing\context.py", line 224, in _Popen return _default_context.get_context().Process._Popen(process_obj) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "C:\ProgramData\anaconda3\Lib\multiprocessing\context.py", line 337, in _Popen return Popen(process_obj) ^^^^^^^^^^^^^^^^^^ File "C:\ProgramData\anaconda3\Lib\multiprocessing\popen_spawn_win32.py", line 46, in __init__ prep_data = spawn.get_preparation_data(process_obj._name) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "C:\ProgramData\anaconda3\Lib\multiprocessing\spawn.py", line 164, in get_preparation_data _check_not_importing_main() File "C:\ProgramData\anaconda3\Lib\multiprocessing\spawn.py", line 140, in _check_not_importing_main raise RuntimeError(''' RuntimeError: An attempt has been made to start a new process before the current process has finished its bootstrapping phase. This probably means that you are not using fork to start your child processes and you have forgotten to use the proper idiom in the main module: if __name__ == '__main__': freeze_support() ... The "freeze_support()" line can be omitted if the program is not going to be frozen to produce an executable. To fix this issue, refer to the "Safe importing of main module" section in https://docs.python.org/3/library/multiprocessing.html

[INFO|2025-05-27 09:38:24] llamafactory.hparams.parser:401 >> Process rank: 0, world size: 1, device: cuda:0, distributed training: False, compute dtype: torch.float16 Traceback (most recent call last): File "/root/miniconda3/envs/llama_factory/bin/llamafactory-cli", line 8, in <module> sys.exit(main()) ^^^^^^ File "/home/ly/LLaMA-Factory/src/llamafactory/cli.py", line 115, in main COMMAND_MAP[command]() File "/home/ly/LLaMA-Factory/src/llamafactory/train/tuner.py", line 110, in run_exp _training_function(config={"args": args, "callbacks": callbacks}) File "/home/ly/LLaMA-Factory/src/llamafactory/train/tuner.py", line 72, in _training_function run_sft(model_args, data_args, training_args, finetuning_args, generating_args, callbacks) File "/home/ly/LLaMA-Factory/src/llamafactory/train/sft/workflow.py", line 48, in run_sft tokenizer_module = load_tokenizer(model_args) ^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/home/ly/LLaMA-Factory/src/llamafactory/model/loader.py", line 80, in load_tokenizer init_kwargs = _get_init_kwargs(model_args) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/home/ly/LLaMA-Factory/src/llamafactory/model/loader.py", line 66, in _get_init_kwargs model_args.model_name_or_path = try_download_model_from_other_hub(model_args) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/home/ly/LLaMA-Factory/src/llamafactory/extras/misc.py", line 266, in try_download_model_from_other_hub return snapshot_download( ^^^^^^^^^^^^^^^^^^ File "/root/miniconda3/envs/llama_factory/lib/python3.12/site-packages/modelscope/hub/snapshot_download.py", line 108, in snapshot_download return _snapshot_download( ^^^^^^^^^^^^^^^^^^^ File "/root/miniconda3/envs/llama_factory/lib/python3.12/site-packages/modelscope/hub/snapshot_download.py", line 254, in _snapshot_download endpoint = _api.get_endpoint_for_read( ^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/root/miniconda3/envs/llama_factory/lib/python3.12/site-packages/modelscope/hub/api.py", line 332, in get_endpoint_for_read if not self.repo_exists( ^^^^^^^^^^^^^^^^^ File "/root/miniconda3/envs/llama_factory/lib/python3.12/site-packages/modelscope/hub/api.py", line 379, in repo_exists raise Exception('Invalid repo_id: %s, must be of format namespace/name' % repo_type) Exception: Invalid repo_id: model, must be of format namespace/name什么原因?

果然刚才那个代码““best_val_acc = 0.0for epoch in range(training_epochs): model.train() train_loss = 0.0 train_mae = 0.0 with tqdm(total=len(train_loader), desc=f’Epoch {epoch + 1}/{training_epochs}', unit=‘batch’, position=0, leave=True) as pbar: for X_batch, Y_batch in train_loader: X_batch, Y_batch = X_batch.to(device), Y_batch.to(device) optimizer.zero_grad() output = model(X_batch) loss = criterion(output, Y_batch) #训练过程 loss.backward() torch.nn.utils.clip_grad_norm_(model.parameters(), max_norm=1.0) optimizer.step() output_np = output.detach().cpu().numpy() Y_batch_np = Y_batch.detach().cpu().numpy() output_np_flat = output_np.reshape(output_np.shape[0], -1) Y_batch_np_flat = Y_batch_np.reshape(Y_batch_np.shape[0], -1) mae = mean_absolute_error(Y_batch_np_flat, output_np_flat) train_loss += loss.item() train_mae += mae.item() pbar.set_postfix({'loss': f'{loss.item():.4f}', 'mae': f'{mae.item():.4f}'}) pbar.update(1) train_loss /= len(train_loader) train_mae /= len(train_loader) history['train_loss'].append(train_loss) history['train_mae'].append(train_mae) model.eval() val_loss = 0.0 val_mae = 0.0 val_acc = 0.0 with torch.no_grad(): for X_batch, Y_batch in valid_loader: X_batch, Y_batch = X_batch.to(device), Y_batch.to(device) output = model(X_batch) loss = criterion(output, Y_batch) output_np = output.detach().cpu().numpy() Y_batch_np = Y_batch.detach().cpu().numpy() output_np_flat = output_np.reshape(output_np.shape[0], -1) Y_batch_np_flat = Y_batch_np.reshape(Y_batch_np.shape[0], -1) mae = mean_absolute_error(Y_batch_np_flat, output_np_flat) val_loss += loss.item() val_mae += mae.item() acc = precision_score(Y_batch_np_flat, output_np_flat) val_acc += acc.item() val_loss /= len(valid_loader) val_mae /= len(valid_loader) val_acc /= len(valid_loader) history['val_loss'].append(val_loss) history['val_mae'].append(val_mae) print( f'Epoch {epoch + 1}/{training_epochs}, Train Loss: {train_loss:.4f}, Validation Loss: {val_loss:.4f}, Validation MAE: {val_mae:.4f}') if val_acc > best_val_acc: best_val_acc = val_acc torch.save(model.state_dict(), file_weights) print(f'Best model saved at epoch {epoch + 1} with validation loss {val_loss:.4f}')””,出现这个问题"Traceback (most recent call last): File "/home/featurize/work/trainkanmuacc.py", line 205, in <module> acc = precision_score(Y_batch_np_flat, output_np_flat) File "/environment/miniconda3/lib/python3.10/site-packages/sklearn/utils/_param_validation.py", line 214, in wrapper return func(*args, **kwargs) File "/environment/miniconda3/lib/python3.10/site-packages/sklearn/metrics/_classification.py", line 2131, in precision_score p, _, _, _ = precision_recall_fscore_support( File "/environment/miniconda3/lib/python3.10/site-packages/sklearn/utils/_param_validation.py", line 187, in wrapper return func(*args, **kwargs) File "/environment/miniconda3/lib/python3.10/site-packages/sklearn/metrics/_classification.py", line 1724, in precision_recall_fscore_support labels = _check_set_wise_labels(y_true, y_pred, average, labels, pos_label) File "/environment/miniconda3/lib/python3.10/site-packages/sklearn/metrics/_classification.py", line 1501, in _check_set_wise_labels y_type, y_true, y_pred = _check_targets(y_true, y_pred) File "/environment/miniconda3/lib/python3.10/site-packages/sklearn/metrics/_classification.py", line 104, in _check_targets raise ValueError("{0} is not supported".format(y_type)) ValueError: continuous-multioutput is not supported"

[WARNING|2025-07-15 00:59:51] llamafactory.model.loader:192 >> Failed to load model with safetensors: Error no file named pytorch_model.bin, model.safetensors, tf_model.h5, model.ckpt.index or flax_model.msgpack found in directory /home/ubuntu/Qwen2.5-VL-7B-Instruct., retrying without safetensors Traceback (most recent call last): File "/home/ubuntu/LLaMA-Factory/src/llamafactory/model/loader.py", line 189, in load_model model = load_class.from_pretrained(**init_kwargs) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/home/ubuntu/miniconda3/envs/llama/lib/python3.11/site-packages/transformers/models/auto/auto_factory.py", line 571, in from_pretrained return model_class.from_pretrained( ^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/home/ubuntu/miniconda3/envs/llama/lib/python3.11/site-packages/transformers/modeling_utils.py", line 309, in _wrapper return func(*args, **kwargs) ^^^^^^^^^^^^^^^^^^^^^ File "/home/ubuntu/miniconda3/envs/llama/lib/python3.11/site-packages/transformers/modeling_utils.py", line 4422, in from_pretrained checkpoint_files, sharded_metadata = _get_resolved_checkpoint_files( ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/home/ubuntu/miniconda3/envs/llama/lib/python3.11/site-packages/transformers/modeling_utils.py", line 976, in _get_resolved_checkpoint_files raise EnvironmentError( OSError: Error no file named pytorch_model.bin, model.safetensors, tf_model.h5, model.ckpt.index or flax_model.msgpack found in directory /home/ubuntu/Qwen2.5-VL-7B-Instruct. During handling of the above exception, another exception occurred: Traceback (most recent call last): File "/home/ubuntu/miniconda3/envs/llama/bin/llamafactory-cli", line 8, in <module> sys.exit(main()) ^^^^^^ File "/home/ubuntu/LLaMA-Factory/src/llamafactory/cli.py", line 151, in main COMMAND_MAP[command]() File "/home/ubuntu/LLaMA-Factory/src/llamafactory/train/tuner.py", line 110, in run_exp _training_function(config={"args": args, "callbacks": callbacks}) File "/home/ubuntu/LLaMA-Factory/src/llamafactory/train/tuner.py", line 72, in _training_function run_sft(model_args, data_args, training_args, finetuning_args, generating_args, callbacks) File "/home/ubuntu/LLaMA-Factory/src/llamafactory/train/sft/workflow.py", line 52, in run_sft model = load_model(tokenizer, model_args, finetuning_args, training_args.do_train) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/home/ubuntu/LLaMA-Factory/src/llamafactory/model/loader.py", line 194, in load_model model = load_class.from_pretrained(**init_kwargs) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/home/ubuntu/miniconda3/envs/llama/lib/python3.11/site-packages/transformers/models/auto/auto_factory.py", line 571, in from_pretrained return model_class.from_pretrained( ^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/home/ubuntu/miniconda3/envs/llama/lib/python3.11/site-packages/transformers/modeling_utils.py", line 309, in _wrapper return func(*args, **kwargs) ^^^^^^^^^^^^^^^^^^^^^ File "/home/ubuntu/miniconda3/envs/llama/lib/python3.11/site-packages/transformers/modeling_utils.py", line 4422, in from_pretrained checkpoint_files, sharded_metadata = _get_resolved_checkpoint_files( ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/home/ubuntu/miniconda3/envs/llama/lib/python3.11/site-packages/transformers/modeling_utils.py", line 976, in _get_resolved_checkpoint_files raise EnvironmentError( OSError: Error no file named pytorch_model.bin, model.safetensors, tf_model.h5, model.ckpt.index or flax_model.msgpack found in directory /home/ubuntu/Qwen2.5-VL-7B-Instruct. 使用llama factory训练qwen2.5大模型时出现如上报错,如何解决?为什么模型找不到?

Traceback (most recent call last): File "C:\Users\34788\PycharmProjects\PythonProject2\1.py", line 191, in <module> gan_sample = generate_condition_samples(generator, digit, 1, False) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "C:\Users\34788\PycharmProjects\PythonProject2\1.py", line 183, in generate_condition_samples samples = generator(z, c.to(device)) ^^^^^^^^^^^^^^^^^^^^^^^^^^ File "D:\anaconda\Lib\site-packages\torch\nn\modules\module.py", line 1736, in _wrapped_call_impl return self._call_impl(*args, **kwargs) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "D:\anaconda\Lib\site-packages\torch\nn\modules\module.py", line 1747, in _call_impl return forward_call(*args, **kwargs) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "C:\Users\34788\PycharmProjects\PythonProject2\1.py", line 76, in forward img = self.model(inputs) ^^^^^^^^^^^^^^^^^^ File "D:\anaconda\Lib\site-packages\torch\nn\modules\module.py", line 1736, in _wrapped_call_impl return self._call_impl(*args, **kwargs) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "D:\anaconda\Lib\site-packages\torch\nn\modules\module.py", line 1747, in _call_impl return forward_call(*args, **kwargs) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "D:\anaconda\Lib\site-packages\torch\nn\modules\container.py", line 250, in forward input = module(input) ^^^^^^^^^^^^^ File "D:\anaconda\Lib\site-packages\torch\nn\modules\module.py", line 1736, in _wrapped_call_impl return self._call_impl(*args, **kwargs) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "D:\anaconda\Lib\site-packages\torch\nn\modules\module.py", line 1747, in _call_impl return forward_call(*args, **kwargs) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "D:\anaconda\Lib\site-packages\torch\nn\modules\batchnorm.py", line 193, in forward return F.batch_norm( ^^^^^^^^^^^^^ File "D:\anaconda\Lib\site-packages\torch\nn\functional.py", line 2810, in batch_norm _verify_batch_size(input.size()) File "D:\anaconda\Lib\site-packages\torch\nn\functional.py", line 2776, in _verify_batch_size raise ValueError( ValueError: Expected more than 1 value per channel when training, got input size torch.Size([1, 512])

class BayesianNN(nn.Module): def __init__(self, input_dim=8, hidden_dim=50, output_dim=1): super().__init__() self.fc1 = BayesianLinear(input_dim, hidden_dim) self.fc2 = BayesianLinear(hidden_dim, hidden_dim) self.fc3 = BayesianLinear(hidden_dim, output_dim) self.relu = nn.ReLU() def forward(self, x): x = self.relu(self.fc1(x)) x = self.relu(self.fc2(x)) x = self.fc3(x) return x def kl_loss(self): return self.fc1.kl_loss() + self.fc2.kl_loss() + self.fc3.kl_loss() def observation_noise(self): # 假设我们只使用最后一层的观测噪声 return self.fc3.observation_noise() # 初始化模型 model = BayesianNN() device = torch.device("cuda") model.to(device) optimizer = optim.Adam(model.parameters(), lr=0.01) def train(model, train_loader, optimizer, epochs=500, kl_weight=0.1): device = next(model.parameters()).device model.train() # 确保模型处于训练模式 # 训练循环 for epoch in range(epochs): total_nll = 0.0 total_kl = 0.0 total_loss = 0.0 num_batches = 0 # 迭代每个批次 for batch_idx, (x_batch, y_batch) in enumerate(train_loader): # 将数据移至模型所在的设备(GPU/CPU) x_batch = x_batch.to(device) y_batch = y_batch.to(device) # 梯度清零 optimizer.zero_grad() # 前向传播(采样) outputs = model(x_batch) # 计算观测噪声 - 确保是标量或可广播的张量 sigma = model.observation_noise() # 计算负对数似然损失 # 修正:使用正确的维度计算 squared_diff = (outputs - y_batch).pow(2) # 确保sigma有正确的维度用于广播 if sigma.dim() == 0: # 标量噪声 nll_loss = (0.5 * squared_diff / sigma.pow(2)).mean() + sigma.log() else: # 向量噪声 - 需要维度匹配 # 假设sigma形状为(batch_size, 1)或(batch_size, output_dim) sigma = sigma.view_as(outputs) # 确保形状匹配 nll_loss = (0.5 * squared_diff / sigma.pow(2)).mean() + sigma.log().mean() # 计算KL散度 kl_loss = model.kl_loss() # 总损失 = NLL + KL正则项 batch_loss = nll_loss + kl_weight * kl_loss # 反向传播 batch_loss.backward() # 梯度裁剪(防止梯度爆炸) torch.nn.utils.clip_grad_norm_(model.parameters(), max_norm=1.0) optimizer.step() # 累计损失用于日志 total_nll += nll_loss.item() total_kl += kl_loss.item() total_loss += batch_loss.item() num_batches += 1 # 计算平均损失 avg_nll = total_nll / num_batches avg_kl = total_kl / num_batches avg_loss = total_loss / num_batches # 每50个epoch打印一次 if epoch % 50 == 0: print(f"Epoch {epoch}: Avg NLL={avg_nll:.4f}, Avg KL={avg_kl:.4f}, Avg Total={avg_loss:.4f}") # 训练完成后保存模型 torch.save(model.state_dict(), 'bayesian_model.pth') print("Training completed. Model saved.") def visualize_predictions(model, data_loader, title="Predictions vs Ground Truth", num_samples=1000): model.eval() # 设置为评估模式 # 收集所有预测结果 all_preds = [] all_targets = [] all_inputs = [] with torch.no_grad(): for x_batch, y_batch in data_loader: x_batch = x_batch.to(model.device) y_batch = y_batch.to(model.device) # 获取预测结果 preds = model(x_batch) # 收集数据 all_preds.append(preds.cpu().numpy()) all_targets.append(y_batch.cpu().numpy()) all_inputs.append(x_batch.cpu().numpy()) # 如果样本足够,提前停止 if len(all_preds) * data_loader.batch_size >= num_samples: break # 合并数据 preds = np.concatenate(all_preds, axis=0) targets = np.concatenate(all_targets, axis=0) inputs = np.concatenate(all_inputs, axis=0) # 如果数据是多维的,只取第一个特征用于可视化 if inputs.ndim > 2: inputs = inputs[:, 0] preds = preds[:, 0] targets = targets[:, 0] # 创建图形 plt.figure(figsize=(15, 8)) # 绘制真实值 plt.plot(targets[:num_samples], 'b-', label='Ground Truth', alpha=0.7) # 绘制预测值 plt.plot(preds[:num_samples], 'r--', label='Predictions', alpha=0.8) # 添加不确定区间(如果模型支持) if hasattr(model, 'predict_with_uncertainty'): mean, std = model.predict_with_uncertainty(inputs[:num_samples]) plt.fill_between( np.arange(len(mean)), mean - 2 * std, mean + 2 * std, color='orange', alpha=0.3, label='95% Confidence Interval' ) plt.title(title) plt.xlabel('Sample Index') plt.ylabel('Target Value') plt.legend() plt.grid(True, linestyle='--', alpha=0.6) plt.tight_layout() plt.show() # 返回数据用于进一步分析 return inputs[:num_samples], targets[:num_samples], preds[:num_samples] # 使用示例 if __name__ == "__main__": # 假设模型和优化器已经定义 # model = YourModel(...) # optimizer = torch.optim.Adam(model.parameters(), lr=0.01) # 训练模型 train(model, train_loader, optimizer, epochs=100, kl_weight=0.1) # 可视化训练集预测 print("\nVisualizing training predictions:") train_inputs, train_targets, train_preds = visualize_predictions( model, train_loader, title="Training Set Predictions vs Ground Truth" ) # 可视化验证集预测 print("\nVisualizing validation predictions:") val_inputs, val_targets, val_preds = visualize_predictions( model, val_loader, title="Validation Set Predictions vs Ground Truth" ) # 可视化测试集预测 print("\nVisualizing test predictions:") test_inputs, test_targets, test_preds = visualize_predictions( model, test_loader, title="Test Set Predictions vs Ground Truth" ) # 可选:计算评估指标 def calculate_metrics(targets, preds, set_name=""): mae = np.mean(np.abs(targets - preds)) rmse = np.sqrt(np.mean((targets - preds) ** 2)) print(f"\n{set_name} Metrics:") print(f" MAE: {mae:.4f}") print(f" RMSE: {rmse:.4f}") return mae, rmse train_mae, train_rmse = calculate_metrics(train_targets, train_preds, "Training Set") val_mae, val_rmse = calculate_metrics(val_targets, val_preds, "Validation Set") test_mae, test_rmse = calculate_metrics(test_targets, test_preds, "Test Set") Traceback (most recent call last): File "F:\PythonProject\学习python.py", line 959, in <module> train(model, train_loader, optimizer, epochs=100, kl_weight=0.1) File "F:\PythonProject\学习python.py", line 846, in train sigma = sigma.view_as(outputs) # 确保形状匹配 ^^^^^^^^^^^^^^^^^^^^^^ RuntimeError: shape '[798, 1]' is invalid for input of size 1 有问题,修改代码

0 YOLOv5 2021-12-3 torch 2.6.0+cu126 CUDA:0 (NVIDIA GeForce RTX 4060 Laptop GPU, 8187.5MB) Namespace(weights='yolov5l6.pt', cfg='models/yolov5m.yaml', data='data/coco128.yaml', hyp='data/hyp.scratch.yaml', epochs=300, batch_size=8, img_size=[1280, 1280], rect=False, resume=False, nosave=False, notest=False, noautoanchor=False, evolve=False, bucket='', cache_images=False, image_weights=False, device='0', multi_scale=False, single_cls=False, adam=False, sync_bn=False, local_rank=-1, workers=46, project='runs/test', entity=None, name='exp', exist_ok=False, quad=False, linear_lr=False, label_smoothing=0.0, upload_dataset=False, bbox_interval=-1, save_period=-1, artifact_alias='latest', world_size=1, global_rank=-1, save_dir='runs\\test\\exp7', total_batch_size=8) tensorboard: Start with 'tensorboard --logdir runs/test', view at http://localhost:6006/ hyperparameters: lr0=0.01, lrf=0.2, momentum=0.937, weight_decay=0.0005, warmup_epochs=3.0, warmup_momentum=0.8, warmup_bias_lr=0.1, box=0.05, cls=0.5, cls_pw=1.0, obj=1.0, obj_pw=1.0, iou_t=0.2, anchor_t=4.0, fl_gamma=0.0, hsv_h=0.015, hsv_s=0.7, hsv_v=0.4, degrees=0.0, translate=0.1, scale=0.5, shear=0.0, perspective=0.0, flipud=0.0, fliplr=0.5, mosaic=1.0, mixup=0.0 Traceback (most recent call last): File "d:\yolov5\yolov5-master\train.py", line 541, in <module> train(hyp, opt, device, tb_writer) File "d:\yolov5\yolov5-master\train.py", line 63, in train data_dict = yaml.safe_load(f) # data dict ^^^^^^^^^^^^^^^^^ File "D:\Anaconda_envs\envs\yolov5-master\Lib\site-packages\yaml\__init__.py", line 125, in safe_load return load(stream, SafeLoader) ^^^^^^^^^^^^^^^^^^^^^^^^ File "D:\Anaconda_envs\envs\yolov5-master\Lib\site-packages\yaml\__init__.py", line 79, in load loader = Loader(stream) ^^^^^^^^^^^^^^ File "D:\Anaconda_envs\envs\yolov5-master\Lib\site-packages\yaml\loader.py", line 34, in __init__ Reader.__init__(self, stream) File "D:\Anaconda_en

(yolo11) D:\2026\ultralytics-yolo11-main>D:/anaconda3/envs/yolo11/python.exe d:/2026/ultralytics-yolo11-main/train.py Ultralytics 8.3.9 🚀 Python-3.9.23 torch-2.0.1+cu117 CUDA:0 (NVIDIA GeForce RTX 3050 Laptop GPU, 4096MiB) engine\trainer: task=detect, mode=train, model=D:/2026/ultralytics-yolo11-main/ultralytics/cfg/models/11/yolo11n.yaml, data=D:/2026/YOLOv11/datasets/potholes/d.yaml, epochs=100, time=None, patience=100, batch=4, imgsz=640, save=True, save_period=-1, cache=False, device=None, workers=0, project=D:/2026/ultralytics-yolo11-main/runs/train, name=232, exist_ok=False, pretrained=True, optimizer=SGD, verbose=True, seed=0, deterministic=True, single_cls=False, rect=False, cos_lr=False, close_mosaic=0, resume=None, amp=True, fraction=1.0, profile=False, freeze=None, multi_scale=False, overlap_mask=True, mask_ratio=4, dropout=0.0, val=True, split=val, save_json=False, save_hybrid=False, conf=None, iou=0.7, max_det=300, half=False, dnn=False, plots=True, source=None, vid_stride=1, stream_buffer=False, visualize=False, augment=False, agnostic_nms=False, classes=None, retina_masks=False, embed=None, show=False, save_frames=False, save_txt=False, save_conf=False, save_crop=False, show_labels=True, show_conf=True, show_boxes=True, line_width=None, format=torchscript, keras=False, optimize=False, int8=False, dynamic=False, simplify=True, opset=None, workspace=4, nms=False, lr0=0.005, lrf=0.01, momentum=0.937, weight_decay=0.0005, warmup_epochs=3.0, warmup_momentum=0.8, warmup_bias_lr=0.1, box=7.5, cls=0.5, dfl=1.5, pose=12.0, kobj=1.0, label_smoothing=0.0, nbs=64, hsv_h=0.015, hsv_s=0.7, hsv_v=0.4, degrees=0.0, translate=0.1, scale=0.5, shear=0.0, perspective=0.0, flipud=0.0, fliplr=0.5, bgr=0.0, mosaic=1.0, mixup=0.0, copy_paste=0.0, copy_paste_mode=flip, auto_augment=randaugment, erasing=0.4, crop_fraction=1.0, cfg=None, tracker=botsort.yaml, save_dir=D:\2026\ultralytics-yolo11-main\runs\train\exp+2025\7\232 from n params module arguments 0 -1 1 464 ultralytics.nn.modules.conv.Conv [3, 16, 3, 2] 1 -1 1 4672 ultralytics.nn.modules.conv.Conv [16, 32, 3, 2] 2 -1 1 6640 ultralytics.nn.modules.block.C3k2 [32, 64, 1, False, 0.25] 3 -1 1 36992 ultralytics.nn.modules.conv.Conv [64, 64, 3, 2] 4 -1 1 26080 ultralytics.nn.modules.block.C3k2 [64, 128, 1, False, 0.25] 5 -1 1 147712 ultralytics.nn.modules.conv.Conv [128, 128, 3, 2] 6 -1 1 87040 ultralytics.nn.modules.block.C3k2 [128, 128, 1, True] 7 -1 1 295424 ultralytics.nn.modules.conv.Conv [128, 256, 3, 2] 8 -1 1 346112 ultralytics.nn.modules.block.C3k2 [256, 256, 1, True] 9 -1 1 164608 ultralytics.nn.modules.block.SPPF [256, 256, 5] 10 -1 1 249728 ultralytics.nn.modules.block.C2PSA [256, 256, 1] 11 -1 1 0 torch.nn.modules.upsampling.Upsample [None, 2, 'nearest'] 12 [-1, 6] 1 0 ultralytics.nn.modules.conv.Concat [1] 13 -1 1 111296 ultralytics.nn.modules.block.C3k2 [384, 128, 1, False] 14 -1 1 0 torch.nn.modules.upsampling.Upsample [None, 2, 'nearest'] 15 [-1, 4] 1 0 ultralytics.nn.modules.conv.Concat [1] 16 -1 1 32096 ultralytics.nn.modules.block.C3k2 [256, 64, 1, False] 17 -1 1 36992 ultralytics.nn.modules.conv.Conv [64, 64, 3, 2] 18 [-1, 13] 1 0 ultralytics.nn.modules.conv.Concat [1] 19 -1 1 86720 ultralytics.nn.modules.block.C3k2 [192, 128, 1, False] 20 -1 1 147712 ultralytics.nn.modules.conv.Conv [128, 128, 3, 2] 21 [-1, 10] 1 0 ultralytics.nn.modules.conv.Concat [1] 22 -1 1 378880 ultralytics.nn.modules.block.C3k2 [384, 256, 1, True] 23 [16, 19, 22] 1 430867 ultralytics.nn.modules.head.Detect [1, [64, 128, 256]] YOLO11n summary: 319 layers, 2,590,035 parameters, 2,590,019 gradients, 6.4 GFLOPs Freezing layer 'model.23.dfl.conv.weight' AMP: running Automatic Mixed Precision (AMP) checks with YOLO11n... AMP: checks passed ✅ train: Scanning D:\2026\YOLOv11\datasets\potholes\train\labels... 263 images, 2709 backgrounds, 1 corrupt: 100%|██████████| 2973/2973 [00:01<00:00, 2478.82 train: WARNING ⚠️ D:\2026\YOLOv11\datasets\potholes\train\images\01883.jpg: ignoring corrupt image/label: invalid image format GIF. Supported formats are: images: {'webp', 'jpeg', 'pfm', 'bmp', 'mpo', 'tif', 'tiff', 'png', 'jpg', 'dng'} videos: {'mp4', 'mpeg', 'mov', 'asf', 'wmv', 'avi', 'mpg', 'gif', 'webm', 'ts', 'mkv', 'm4v'} train: New cache created: D:\2026\YOLOv11\datasets\potholes\train\labels.cache Traceback (most recent call last): File "d:\2026\ultralytics-yolo11-main\ultralytics\data\base.py", line 121, in get_img_files assert im_files, f"{self.prefix}No images found in {img_path}. {FORMATS_HELP_MSG}" AssertionError: val: No images found in D:\2026\YOLOv11\datasets\potholes\val. Supported formats are: images: {'webp', 'jpeg', 'pfm', 'bmp', 'mpo', 'tif', 'tiff', 'png', 'jpg', 'dng'} videos: {'mp4', 'mpeg', 'mov', 'asf', 'wmv', 'avi', 'mpg', 'gif', 'webm', 'ts', 'mkv', 'm4v'} The above exception was the direct cause of the following exception: Traceback (most recent call last): File "d:\2026\ultralytics-yolo11-main\train.py", line 32, in <module> model.train(data='D:/2026/YOLOv11/datasets/potholes/d.yaml', # 选择数据集配置路径 File "d:\2026\ultralytics-yolo11-main\ultralytics\engine\model.py", line 802, in train self.trainer.train() File "d:\2026\ultralytics-yolo11-main\ultralytics\engine\trainer.py", line 208, in train self._do_train(world_size) File "d:\2026\ultralytics-yolo11-main\ultralytics\engine\trainer.py", line 328, in _do_train self._setup_train(world_size) File "d:\2026\ultralytics-yolo11-main\ultralytics\engine\trainer.py", line 295, in _setup_train self.test_loader = self.get_dataloader( File "d:\2026\ultralytics-yolo11-main\ultralytics\models\yolo\detect\train.py", line 50, in get_dataloader dataset = self.build_dataset(dataset_path, mode, batch_size) File "d:\2026\ultralytics-yolo11-main\ultralytics\models\yolo\detect\train.py", line 43, in build_dataset return build_yolo_dataset(self.args, img_path, batch, self.data, mode=mode, rect=mode == "val", stride=gs) File "d:\2026\ultralytics-yolo11-main\ultralytics\data\build.py", line 87, in build_yolo_dataset return dataset( File "d:\2026\ultralytics-yolo11-main\ultralytics\data\dataset.py", line 64, in __init__ super().__init__(*args, **kwargs) File "d:\2026\ultralytics-yolo11-main\ultralytics\data\base.py", line 73, in __init__ self.im_files = self.get_img_files(self.img_path) File "d:\2026\ultralytics-yolo11-main\ultralytics\data\base.py", line 123, in get_img_files raise FileNotFoundError(f"{self.prefix}Error loading data from {img_path}\n{HELP_URL}") from e FileNotFoundError: val: Error loading data from D:\2026\YOLOv11\datasets\potholes\val See https://docs.ultralytics.com/datasets for dataset formatting guidance.

最新推荐

recommend-type

Qt开发:XML文件读取、滚动区域控件布局与多Sheet Excel保存的界面设计实例

内容概要:本文介绍了基于Qt框架的界面设计例程,重点讲解了三个主要功能模块:一是利用XML文件进行配置信息的读取并初始化界面组件;二是实现了滚动区域内的灵活控件布局,在空间不足时自动生成滚动条以扩展显示范围;三是提供了将界面上的数据导出到带有多个工作表的Excel文件的功能。文中还提及了所用IDE的具体版本(Qt Creator 4.8.0 和 Qt 5.12.0),并且强调了这些技术的实际应用场景及其重要性。 适合人群:对Qt有初步了解,希望深入学习Qt界面设计技巧的开发者。 使用场景及目标:适用于需要快速构建复杂用户界面的应用程序开发,特别是那些涉及大量数据展示和交互的设计任务。通过学习本文提供的案例,可以提高对于Qt框架的理解,掌握更多实用技能。 其他说明:为了帮助读者更好地理解和实践,作者推荐前往B站观看高清的教学视频,以便于更直观地感受整个项目的开发流程和技术细节。
recommend-type

锂电池保护板方案:中颖SH367309原理图与PCB源代码详解及应用技巧

基于中颖SH367309芯片的锂电池保护板设计方案,涵盖原理图解析、PCB布局优化、硬件选型要点以及软件编程技巧。重点讨论了电流检测精度、过压保护阈值设定、通信协议处理和温度传感器布置等方面的实际开发经验和技术难点。文中还分享了一些实用的小贴士,如采用星型接地减少干扰、利用过孔阵列降低温升、为MOS管增加RC缓冲避免高频振荡等。 适合人群:从事锂电池管理系统(BMS)开发的技术人员,尤其是有一定硬件设计基础并希望深入了解具体实现细节的工程师。 使用场景及目标:帮助开发者掌握锂电池保护板的关键技术和常见问题解决方案,确保产品在各种工况下都能安全可靠运行,同时提高系统性能指标如效率、响应速度和稳定性。 阅读建议:由于涉及较多底层硬件知识和实战案例,建议读者结合自身项目背景进行针对性学习,在遇到类似问题时能够快速定位原因并找到有效对策。此外,对于初学者来说,可以从简单的电路搭建开始逐步深入研究复杂的功能模块。
recommend-type

PHP资格证书查询系统:基于FastAdmin框架的二维码生成与表单验证

内容概要:本文介绍了基于PHP开发的资格证书查询系统,详细阐述了其核心功能和技术实现。系统主要功能包括自动生成二维码、支持导入导出功能、表单验证以及手机端查询和后端登录编辑。该系统采用FastAdmin框架开发,确保了高效的开发流程和良好的用户体验。此外,文中还提到了系统所需的环境要求,如PHP版本需>=7.1且<=5.5.3,支持InnoDB引擎和伪静态设置。最后,通过一段PHP代码示例展示了如何实现自动生成二维码的功能。 适合人群:具备一定PHP开发经验的技术人员,尤其是对FastAdmin框架感兴趣的开发者。 使用场景及目标:适用于需要管理和查询资格证书的企业和个人。目标是提高证书管理效率,增强用户体验,确保数据安全。 其他说明:该系统不仅实现了基本的证书管理功能,还通过引入二维码技术和表单验证提升了系统的实用性和安全性。
recommend-type

PLC与ETHERCAT总线控制的H5U程序框架详解及其广泛应用

H5U程序框架,这是一个针对PLC系统(如汇川、三菱、台达等)的通用模板,特别强调了对ETHERCAT总线的应用。文章解析了气缸控制、轴控制的状态机逻辑以及故障恢复机制,并展示了清晰的注释和硬件抽象层的设计。气缸控制部分涵盖了伸出、缩回、报警等功能,而轴控制则细分为多个步骤,包括通讯建立、使能、JOG、绝对定位等。此外,文中提供了具体的代码片段来解释各个功能模块的工作原理。 适合人群:从事工业自动化领域的工程师和技术人员,尤其是那些需要理解和实施PLC控制系统的人群。 使用场景及目标:①帮助工程师快速掌握H5U程序框架的使用方法;②为实际工程项目提供可靠的代码参考;③提高PLC程序的可移植性和维护性。 其他说明:该框架因其良好的设计和详细的注释,在工控圈中备受推崇,被认为是‘万金油’级别的解决方案。
recommend-type

Web前端开发:CSS与HTML设计模式深入解析

《Pro CSS and HTML Design Patterns》是一本专注于Web前端设计模式的书籍,特别针对CSS(层叠样式表)和HTML(超文本标记语言)的高级应用进行了深入探讨。这本书籍属于Pro系列,旨在为专业Web开发人员提供实用的设计模式和实践指南,帮助他们构建高效、美观且可维护的网站和应用程序。 在介绍这本书的知识点之前,我们首先需要了解CSS和HTML的基础知识,以及它们在Web开发中的重要性。 HTML是用于创建网页和Web应用程序的标准标记语言。它允许开发者通过一系列的标签来定义网页的结构和内容,如段落、标题、链接、图片等。HTML5作为最新版本,不仅增强了网页的表现力,还引入了更多新的特性,例如视频和音频的内置支持、绘图API、离线存储等。 CSS是用于描述HTML文档的表现(即布局、颜色、字体等样式)的样式表语言。它能够让开发者将内容的表现从结构中分离出来,使得网页设计更加模块化和易于维护。随着Web技术的发展,CSS也经历了多个版本的更新,引入了如Flexbox、Grid布局、过渡、动画以及Sass和Less等预处理器技术。 现在让我们来详细探讨《Pro CSS and HTML Design Patterns》中可能包含的知识点: 1. CSS基础和选择器: 书中可能会涵盖CSS基本概念,如盒模型、边距、填充、边框、背景和定位等。同时还会介绍CSS选择器的高级用法,例如属性选择器、伪类选择器、伪元素选择器以及选择器的组合使用。 2. CSS布局技术: 布局是网页设计中的核心部分。本书可能会详细讲解各种CSS布局技术,包括传统的浮动(Floats)布局、定位(Positioning)布局,以及最新的布局模式如Flexbox和CSS Grid。此外,也会介绍响应式设计的媒体查询、视口(Viewport)单位等。 3. 高级CSS技巧: 这些技巧可能包括动画和过渡效果,以及如何优化性能和兼容性。例如,CSS3动画、关键帧动画、转换(Transforms)、滤镜(Filters)和混合模式(Blend Modes)。 4. HTML5特性: 书中可能会深入探讨HTML5的新标签和语义化元素,如`<article>`、`<section>`、`<nav>`等,以及如何使用它们来构建更加标准化和语义化的页面结构。还会涉及到Web表单的新特性,比如表单验证、新的输入类型等。 5. 可访问性(Accessibility): Web可访问性越来越受到重视。本书可能会介绍如何通过HTML和CSS来提升网站的无障碍访问性,比如使用ARIA标签(Accessible Rich Internet Applications)来增强屏幕阅读器的使用体验。 6. 前端性能优化: 性能优化是任何Web项目成功的关键。本书可能会涵盖如何通过优化CSS和HTML来提升网站的加载速度和运行效率。内容可能包括代码压缩、合并、避免重绘和回流、使用Web字体的最佳实践等。 7. JavaScript与CSS/HTML的交互: 在现代Web开发中,JavaScript与CSS及HTML的交云并用是不可或缺的。书中可能会讲解如何通过JavaScript动态地修改样式、操作DOM元素以及使用事件监听和响应用户交互。 8. Web框架和预处理器: 这本书可能会提到流行的Web开发框架和预处理器,比如Bootstrap、Foundation、Sass和Less等,它们是如何简化和加速开发流程的。 9. 测试和维护: 书中也可能包含关于如何测试网页以及如何持续优化和维护CSS和HTML代码的章节。例如,使用断言测试、自动化测试、性能分析工具等。 最后,鉴于文件名称列表中的“压缩包子文件”的表述,这可能是对“压缩包”文件的一种误译或误用,此处“压缩包”应该指的是包含该书籍PDF文件的压缩文件格式,如ZIP或RAR。而“Pro CSS and HTML Design Patterns.pdf”指的就是该书籍的PDF格式电子版文件。 以上所述,构成了《Pro CSS and HTML Design Patterns》一书可能包含的核心知识点。通过学习这些内容,Web前端开发者可以掌握更为高效和优雅的设计模式,从而在日常工作中更高效地解决实际问题。
recommend-type

Zotero 7数据同步:Attanger插件安装&设置,打造文献管理利器

/i.s3.glbimg.com/v1/AUTH_08fbf48bc0524877943fe86e43087e7a/internal_photos/bs/2018/L/j/ipKA8TRPyt4ptaG1DGww/t-m-01.png) # 1. Zotero 7数据同步简介 在数字时代,管理研究数据变得日益重要,而Zot
recommend-type

卷积神经网络的基础理论200字

<think>我们正在回答用户关于卷积神经网络(CNN)基础理论的询问。根据提供的引用资料,我们可以概述CNN的基本结构和工作原理。引用[1]提到CNN是一种前馈神经网络,信息从输入单向流动到输出。引用[2]指出CNN在图像处理等领域应用广泛,通过层次结构和参数调整实现模式识别。引用[3]说明CNN包含卷积层,使用卷积核提取局部特征,减少参数量,提高效率。引用[4]则提到了训练过程,包括前向传播、误差计算和反向传播(梯度下降)。因此,我们将从以下几个方面概述CNN:1.CNN的基本结构(卷积层、池化层、全连接层)2.卷积操作的工作原理(局部感受野、权重共享)3.训练过程(前向传播、损失函数、反
recommend-type

轻便实用的Java库类查询工具介绍

标题 "java2库类查询" 和描述表明,所提及的工具是一个专门用于查询Java库类的应用程序。此软件旨在帮助开发者快速地查找和引用Java的标准开发工具包(SDK)中包含的所有应用程序编程接口(API)类。通过这样的工具,开发者可以节省大量在官方文档或搜索引擎上寻找类定义和使用方法的时间。它被描述为轻巧且方便,这表明其占用的系统资源相对较少,同时提供直观的用户界面,使得查询过程简洁高效。 从描述中可以得出几个关键知识点: 1. Java SDK:Java的软件开发工具包(SDK)是Java平台的一部分,提供了一套用于开发Java应用软件的软件包和库。这些软件包通常被称为API,为开发者提供了编程界面,使他们能够使用Java语言编写各种类型的应用程序。 2. 库类查询:这个功能对于开发者来说非常关键,因为它提供了一个快速查找特定库类及其相关方法、属性和使用示例的途径。良好的库类查询工具可以帮助开发者提高工作效率,减少因查找文档而中断编程思路的时间。 3. 轻巧性:软件的轻巧性通常意味着它对计算机资源的要求较低。这样的特性对于资源受限的系统尤为重要,比如老旧的计算机、嵌入式设备或是当开发者希望最小化其开发环境占用空间时。 4. 方便性:软件的方便性通常关联于其用户界面设计,一个直观、易用的界面可以让用户快速上手,并减少在使用过程中遇到的障碍。 5. 包含所有API:一个优秀的Java库类查询软件应当能够覆盖Java所有标准API,这包括Java.lang、Java.util、Java.io等核心包,以及Java SE平台的所有其他标准扩展包。 从标签 "java 库 查询 类" 可知,这个软件紧密关联于Java编程语言的核心功能——库类的管理和查询。这些标签可以关联到以下知识点: - Java:一种广泛用于企业级应用、移动应用(如Android应用)、网站后端、大型系统和许多其他平台的编程语言。 - 库:在Java中,库是一组预打包的类和接口,它们可以被应用程序重复使用。Java提供了庞大的标准库,以支持各种常见的任务和功能。 - 查询:查询指的是利用软件工具搜索、定位和检索信息的过程。对于Java库类查询工具来说,这意味着可以通过类名、方法签名或其他标识符来查找特定的API条目。 最后,压缩包文件列表包含了两个文件:“java.dit”和“Java.exe”。其中“Java.exe”很可能是程序的可执行文件,而“java.dit”可能是一个数据文件,用于存储Java类的索引或数据。由于文件名后缀通常与文件类型相关联,但“dit”并不是一个常见的文件扩展名。这可能是一个特定于软件的自定义格式,或是一个打字错误。 总结来说,"java2库类查询" 是一个针对Java开发者的实用工具,它提供了一个轻量级、易用的平台来查询和定位Java标准库中的所有类和API。此工具对优化开发流程,减少查找Java类文档的时间大有裨益,尤其适合需要频繁查阅Java API的开发者使用。
recommend-type

【Zotero 7终极指南】:新手必备!Attanger插件全攻略与数据同步神技

# 1. Zotero 7与Attanger插件的介绍 在当今的学术研究和知识管理领域,高效的文献管理工具至关重要。Zotero 7作为一个流行的参考文献管理软件,因其强大的功能和用户友好的界面而受到专业人士的青睐。而Attanger插件则为Zotero 7带来了更多定制化和高级功能,极大地增强
recommend-type

MATLAB整段注释快捷键

<think>首先,用户的问题是:“MATLAB整段注释快捷键”,意思是“MATLAB整段注释快捷键”。我需要用中文回答。 根据规则: - 回答必须用中文。 - 回答完问题后,必须在末尾输出“§§相关问题§§”,然后提出3-5个相关问题。 - “§§相关问题§§”必须完整输出在第一行,禁止换行分散。 - 相关问题必须基于用户的问题和我的回答。 现在,回忆MATLAB的快捷键:在MATLAB中,整段注释通常使用快捷键Ctrl + R来注释选中的代码行,使用Ctrl + T来取消注释。用户问的是“整段注释”,所以我应该确认快捷键。 在MATLAB中: - 注释选中的行:Ctrl + R -