from pyspark.ml.feature import PCA, VectorAssembler from pyspark.ml.classification import LinearSVC from pyspark.ml.tuning import CrossValidator, ParamGridBuilder from pyspark.ml.evaluation import BinaryClassificationEvaluator from pyspark.sql import Row , SparkSession from pyspark import SparkConf # 1.创建spark对象 spark = SparkSession.builder.config(conf = SparkConf()).getOrCreate() # fnlwgt : final-weight 样本权重 # 2.读取数据集 dataPath = "file:///home/adult.data" data = spark.read.format("csv").option("header", "true").load(dataPath) # continuous_vars = ["age","fnlwgt","education-num","capital-gain","capital-loss","hours-per-week"] # 3.数据集预处理(将六个连续型变量提取出来并转化为特征向量) assembler = VectorAssembler(inputCols=["age", "fnlwgt", "education-num", "capital-gain", "capital-loss", "hours-per-week"], outputCol="features") data = assembler.transform(data) # 4.主成分分析 pca = PCA(k=3, inputCol="features", outputCol="pca_features") model = pca.fit(data) data = model.transform(data) # 5.划分训练集和测试集 train_data, test_data = data.randomSplit([0.8, 0.2], seed=123) # 6.构建 svm 模型 svm = LinearSVC(labelCol="label", featuresCol="pca_features") # 7.参数调优 evaluator = BinaryClassificationEvaluator(rawPredictionCol="rawPrediction", labelCol="label", metricName="areaUnderROC") paramGrid = ParamGridBuilder().addGrid(svm.regParam, [0.1, 0.01]).addGrid(svm.maxIter, [10, 100]).addGrid(pca.k, [2, 3]).build() cv = CrossValidator(estimator=svm, evaluator=evaluator, estimatorParamMaps=paramGrid, numFolds=3) cv_model = cv.fit(train_data)
时间: 2024-04-28 19:26:00 浏览: 130
这段代码是使用PySpark构建了一个支持向量机分类模型,并进行了参数调优。具体步骤如下:
1. 创建SparkSession对象;
2. 读取数据集;
3. 将六个连续型变量提取出来并转化为特征向量;
4. 进行主成分分析,将特征向量转化为PCA_features;
5. 将数据集划分为训练集和测试集;
6. 构建支持向量机分类模型;
7. 进行参数调优,通过交叉验证来选择最佳的模型参数组合。
其中,主成分分析是为了降低数据集的维度,从而减少计算量,提高模型训练和预测的效率。支持向量机是一种常用的分类算法,它通过寻找最优的分类超平面来对数据进行分类。参数调优是为了选择最佳的模型参数组合,从而提高模型的性能。这段代码中使用了交叉验证来选择最佳参数组合,交叉验证是一种常用的模型选择方法,它将数据集分为多个子集,每次使用其中一部分作为验证集,其余部分作为训练集,从而得到多组模型精度评估结果,最终选择平均精度最高的模型参数组合。
相关问题
--------------------------------------------------------------------------- ModuleNotFoundError Traceback (most recent call last) Cell In[1], line 4 2 from pyspark.ml.classification import GBTClassifier 3 from pyspark.ml.tuning import TrainValidationSplit ----> 4 from imblearn.over_sampling import SMOTE # 需要安装imbalanced-learn库 6 # 数据预处理 - 增加缺失值填充 7 imputer = Imputer(inputCols=numeric_features, outputCols=[f"{c}_imputed" for c in numeric_features]) ModuleNotFoundError: No module named 'imblearn'
`ModuleNotFoundError: No module named 'imblearn'` 错误表明你的Python环境中没有安装 `imbalanced-learn` 库。`imbalanced-learn` 是一个用于处理类别不平衡问题的第三方库,提供了诸如SMOTE(Synthetic Minority Over-sampling Technique)等算法。
以下是解决此问题的方法:
### 解决方法
1. **安装 `imbalanced-learn` 库**:
使用 `pip` 或 `conda` 安装该库即可。
```python
# 使用pip安装
!pip install imbalanced-learn
# 或者使用conda安装
!conda install -c conda-forge imbalanced-learn
```
2. **检查安装是否成功**:
安装完成后,可以通过以下代码检查是否成功导入:
```python
import imblearn
print(f"imbalanced-learn version: {imblearn.__version__}")
```
3. **确保环境一致**:
如果你使用的是Jupyter Notebook或类似环境,请确保安装的库与运行环境一致。例如,如果你在虚拟环境中运行代码,请激活对应的虚拟环境后再安装库。
---
### 改进后的代码示例
以下是改进后的完整代码,确保 `imbalanced-learn` 已正确安装:
```python
from pyspark.ml.feature import Imputer
from pyspark.ml.classification import GBTClassifier
from pyspark.ml.tuning import TrainValidationSplit
from imblearn.over_sampling import SMOTE # 需要安装imbalanced-learn库
# 数据预处理 - 增加缺失值填充
imputer = Imputer(inputCols=numeric_features, outputCols=[f"{c}_imputed" for c in numeric_features])
# 特征组装 - 包含缺失值填充后的数值特征
assembler = VectorAssembler(
inputCols=[c+"_enc" for c in categorical_features] + [f"{c}_imputed" for c in numeric_features],
outputCol="raw_features"
)
# PCA降维 - 调整k值为5
pca = PCA(k=5, inputCol="scaled_features", outputCol="pca_features")
# 梯度提升树分类器
gbt = GBTClassifier(featuresCol="scaled_features", labelCol="label")
# 参数网格 - 更精细的参数搜索
paramGrid = (ParamGridBuilder()
.addGrid(gbt.maxIter, [10, 20]) # 最大迭代次数
.addGrid(gbt.maxDepth, [5, 7]) # 树深度
.addGrid(gbt.stepSize, [0.1, 0.05]) # 学习率
.build())
# 训练验证分离
train_val_split = TrainValidationSplit(estimator=gbt,
estimatorParamMaps=paramGrid,
evaluator=evaluator_auc,
trainRatio=0.8) # 80%训练集
# 构建完整Pipeline
preprocessing_pipeline = Pipeline(stages=string_indexers + one_hot_encoders +
[imputer, assembler, scaler, pca])
# 数据分割与转换
train, test = data.randomSplit([0.7, 0.3], seed=42)
preprocessor = preprocessing_pipeline.fit(train)
train_processed = preprocessor.transform(train)
test_processed = preprocessor.transform(test)
# 处理类别不平衡 - 使用SMOTE
smote = SMOTE(random_state=42)
train_pd = train_processed.toPandas() # 转换为Pandas DataFrame
X_resampled, y_resampled = smote.fit_resample(train_pd.drop("label", axis=1), train_pd["label"])
train_resampled = spark.createDataFrame(X_resampled.join(y_resampled)) # 转回Spark DataFrame
# 模型训练与评估
print("=== 梯度提升树 ===")
cv_model = train_val_split.fit(train_resampled)
cv_predictions = cv_model.transform(test_processed)
print(f"最佳模型AUC: {evaluator_auc.evaluate(cv_predictions):.4f}")
print(f"准确率: {evaluator_acc.evaluate(cv_predictions):.4f}")
spark.stop()
```
---
### 解释
1. **错误原因**:`imbalanced-learn` 库未安装,导致无法导入 `SMOTE` 模块。
2. **解决方法**:通过 `pip` 或 `conda` 安装 `imbalanced-learn` 库,并确保安装成功。
3. **代码改进**:在数据预处理阶段增加了 `Imputer` 和 `SMOTE`,以处理缺失值和类别不平衡问题。
---
读取UCI的adult数据集,用pyspark转化为DataFrame,对其中六个连续型变量进行PCA主成分分析,通过setK()方法将主成分数量设为3,把连续型的特征向量转化成一个3维的主成分,在此基础上采用支持向量机(SVM)模型预测居民收入是否超过50K并对Test数据集进行验证,最后利用CrossValidator确定最优的参数,包括最优主成分PCA的维数、分类器自身的参数等,给出上述过程所有python代码并详细解释每步作用
首先需要下载UCI的adult数据集并安装pyspark库,然后可以按照以下步骤进行操作:
1. 导入必要的库
```python
from pyspark.ml.feature import PCA, VectorAssembler
from pyspark.ml.classification import LinearSVC
from pyspark.ml.tuning import CrossValidator, ParamGridBuilder
from pyspark.ml.evaluation import BinaryClassificationEvaluator
```
2. 读取数据集
```python
data = spark.read.format("csv").option("header", "true").load("path/to/adult.csv")
```
3. 数据预处理
将六个连续型变量提取出来并转化为特征向量:
```python
assembler = VectorAssembler(inputCols=["age", "fnlwgt", "education_num", "capital_gain", "capital_loss", "hours_per_week"], outputCol="features")
data = assembler.transform(data)
```
4. 主成分分析
```python
pca = PCA(k=3, inputCol="features", outputCol="pca_features")
model = pca.fit(data)
data = model.transform(data)
```
5. 划分训练集和测试集
```python
train_data, test_data = data.randomSplit([0.8, 0.2], seed=123)
```
6. 构建SVM模型
```python
svm = LinearSVC(labelCol="label", featuresCol="pca_features")
```
7. 参数调优
```python
evaluator = BinaryClassificationEvaluator(rawPredictionCol="rawPrediction", labelCol="label", metricName="areaUnderROC")
paramGrid = ParamGridBuilder().addGrid(svm.regParam, [0.1, 0.01]).addGrid(svm.maxIter, [10, 100]).addGrid(pca.k, [2, 3]).build()
cv = CrossValidator(estimator=svm, evaluator=evaluator, estimatorParamMaps=paramGrid, numFolds=3)
cv_model = cv.fit(train_data)
```
8. 预测
```python
predictions = cv_model.transform(test_data)
```
9. 评估
```python
print("Area under ROC curve: ", evaluator.evaluate(predictions))
```
阅读全文
相关推荐















