self.entity_vec.weight.data = normalize_emb(self.entity_vec.weight.data) self.relation_vec.weight.data = normalize_emb(self.relation_vec.weight.data) self.concept_vec.weight.data[:, :-1] = normalize_emb(self.concept_vec.weight.data[:, :-1]) self.concept_vec.weight.data[:, -1] = normalize_radius(self.concept_vec.weight.data[:, -1]) self.optimizer.zero_grad() for k in range(batchSize): i = random.randint(0, self.D.trainSize - 1) if i < len(self.D.fb_r): cut = 1 - epoch * self.args.hrt_cut / nepoch pairs[0].append(self.trainHLR(i, cut)) elif i < len(self.D.fb_r) + len(self.D.instanceOf): cut = 1 - epoch * self.args.ins_cut / nepoch pairs[1].append(self.trainInstanceOf(i, cut)) else: cut = 1 - epoch * self.args.sub_cut / nepoch pairs[2].append(self.trainSubClassOf(i, cut))
时间: 2023-06-16 20:02:03 浏览: 173
这段代码看起来像是在进行一些实体关系的训练,其中包括对实体向量、关系向量和概念向量进行归一化操作,然后进行随机选择训练数据并根据不同的类型进行训练。具体来说,如果选择的数据是三元组(头实体、关系、尾实体),那么就会调用 `trainHLR` 函数进行训练;如果选择的数据是实例关系(实例、类别),那么就会调用 `trainInstanceOf` 函数进行训练;如果选择的数据是子类关系(子类、父类),那么就会调用 `trainSubClassOf` 函数进行训练。训练过程中会根据当前的 epoch 和参数设置动态调整不同类型数据的采样比例。
相关问题
class Train(nn.Module): def __init__(self,args,dataset): super(Train, self).__init__() self.args = args self.D = dataset self.entity_vec = nn.Embedding(self.D.entity_num,args.emb_dim) self.concept_vec = nn.Embedding(self.D.concept_num,args.emb_dim+1) self.relation_vec = nn.Embedding(self.D.relation_num,args.emb_dim) self.optimizer = torch.optim.SGD(self.parameters(),lr=args.lr) nn.init.normal_(self.entity_vec.weight.data, 0.0, 1.0 / args.emb_dim) nn.init.normal_(self.relation_vec.weight.data, 0.0, 1.0 / args.emb_dim) nn.init.normal_(self.concept_vec.weight.data[:, :-1], 0.0, 1.0 / args.emb_dim) nn.init.uniform_(self.concept_vec.weight.data[:, -1], 0.0, 1.0)
这是一个使用 PyTorch 实现的知识图谱嵌入模型,包含三个嵌入层:entity_vec、concept_vec 和 relation_vec。使用 nn.Embedding 可以将实体、概念和关系映射到低维空间中的向量表示。其中,entity_vec 和 relation_vec 的权重矩阵使用正态分布进行初始化,而 concept_vec 的权重矩阵的前 n-1 列也使用正态分布进行初始化,最后一列使用均匀分布进行初始化。该模型还定义了一个 SGD 优化器用于训练模型。此外,该模型还包含一个 self.D 参数,用于传入数据集。
class RotatE_AutoNeg(nn.Module): def __init__(self, nentity, nrelation, hidden_dim, gamma): super(RotatE_AutoNeg, self).__init__() self.nentity = nentity self.nrelation = nrelation self.hidden_dim = hidden_dim self.gamma = gamma self.embedding_range = nn.Parameter( torch.Tensor([(self.gamma + 2.0) / (self.hidden_dim * 2)]), requires_grad=False) # 计算初始化范围 self.entity_emb = nn.Embedding(self.nentity, self.hidden_dim) # 设置维度 self.relation_emb = nn.Parameter(torch.Tensor(self.nrelation, self.hidden_dim)) # 实体初始化,服从(a,b)的均匀分布 nn.init.uniform_( tensor=self.entity_emb.weight.data, a=-self.embedding_range.item(), b=self.embedding_range.item() ) # 关系初始化,服从(a,b)的均匀分布 nn.init.uniform_( tensor=self.relation_emb.data, a=-self.embedding_range.item(), b=self.embedding_range.item() )解释
这是一个基于PyTorch的RotatE_AutoNeg模型的定义。具体来说,这个模型包含以下几个部分:
- nentity:知识图谱中实体的数量
- nrelation:知识图谱中关系的数量
- hidden_dim:实体和关系向量的维度
- gamma:损失函数中的超参数
- embedding_range:初始化向量的范围
- entity_emb:实体嵌入矩阵,用于将实体映射到向量空间
- relation_emb:关系嵌入矩阵,用于将关系映射到向量空间
具体地,这个模型使用了PyTorch中的Embedding层来初始化实体向量,使用了Tensor对象来初始化关系向量。在初始化时,实体向量服从(a,b)的均匀分布,其中a和b分别为负的embedding_range.item()和正的embedding_range.item()。关系向量同理。通过这种初始化方式,可以将实体和关系向量随机初始化在一个较小的范围内,从而可以更容易地收敛到最优解。
阅读全文
相关推荐















