python nii ssim
时间: 2025-01-07 09:37:20 浏览: 55
### 计算NIfTI文件的结构相似性指数(SSIM)
为了在 Python 中计算 NIfTI 图像之间的 SSIM 值,可以采用 `nibabel` 库来加载 nii 文件,并利用 `skimage.metrics.structural_similarity` 函数来进行 SSIM 的评估。
首先安装所需的库:
```bash
pip install nibabel scikit-image numpy
```
下面是一个完整的代码示例用于读取两个 NIfTI 文件并计算它们之间 SSIM:
```python
import nibabel as nib
from skimage.metrics import structural_similarity as ssim
import numpy as np
def load_nifti_data(file_path):
img = nib.load(file_path)
data = img.get_fdata()
return data
def calculate_ssim_3d(imageA, imageB):
scores = []
for i in range(imageA.shape[-1]):
score, _ = ssim(
imageA[..., i],
imageB[..., i],
win_size=7,
multichannel=False,
gaussian_weights=True,
sigma=1.5,
use_sample_covariance=False,
data_range=imageA.max() - imageA.min())
scores.append(score)
average_score = sum(scores)/len(scores)
return average_score, scores
file_path_A = 'path_to_first_image.nii'
file_path_B = 'path_to_second_image.nii'
img_data_A = load_nifti_data(file_path_A)[^2]
img_data_B = load_nifti_data(file_path_B)[^2]
average_ssim, slice_wise_scores = calculate_ssim_3d(img_data_A, img_data_B)[^3]
print(f'Average SSIM Score: {average_ssim}')
print('Slice-wise Scores:', slice_wise_scores)
```
此脚本定义了一个函数 `calculate_ssim_3d()` 来逐片计算三维体积数据间的 SSIM 并返回平均得分以及每一片的具体分数。注意这里假设输入的是单通道灰度图像;如果处理多模态或多通道的数据,则需调整参数设置[^4]。
阅读全文
相关推荐










