用pycharm,opencv4.7.0将以上实验完成,必须有界面设计
时间: 2024-12-13 10:22:21 浏览: 70
要在PyCharm中使用OpenCV 4.7.0完成上述人脸检测与识别实验,并且包括界面设计,你可以按照以下步骤进行:
### 实验环境与工具
- **操作系统**: Windows 10
- **开发环境**: PyCharm
- **编程语言**: Python
- **库**: OpenCV 4.7.0, tkinter (用于界面设计)
### 实验步骤
#### 1. 安装必要的库
首先,确保你已经安装了OpenCV和tkinter。可以在PyCharm的终端中运行以下命令:
```bash
pip install opencv-python
```
#### 2. 数据收集
##### 2.1 下载标准人脸数据集
下载并解压ORL人脸数据库:
- URL: https://www.cl.cam.ac.uk/research/dtg/attarchive/facedatabase.html
- 解压后的文件结构应为每个人一个文件夹,每个文件夹下有10张PGM格式的图片。
##### 2.2 建立自己的人脸数据集
编写代码调用摄像头捕获图像,并保存人脸样本。以下是示例代码:
```python
import cv2
import os
def collect_faces():
face_cascade = cv2.CascadeClassifier('haarcascade_frontalface_default.xml')
cap = cv2.VideoCapture(0)
if not cap.isOpened():
raise IOError("Cannot open webcam")
if not os.path.exists("my_faces"):
os.makedirs("my_faces")
count = 0
while True:
ret, frame = cap.read()
gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
faces = face_cascade.detectMultiScale(gray, scaleFactor=1.1, minNeighbors=5, minSize=(30, 30))
for (x, y, w, h) in faces:
cv2.rectangle(frame, (x, y), (x+w, y+h), (255, 0, 0), 2)
face_image = gray[y:y+h, x:x+w]
face_resized = cv2.resize(face_image, (92, 112))
cv2.imwrite(f"my_faces/{count}.jpg", face_resized)
count += 1
cv2.imshow('Video', frame)
if cv2.waitKey(1) & 0xFF == ord('q'):
break
cap.release()
cv2.destroyAllWindows()
collect_faces()
```
#### 3. 训练模型
生成CSV文件并训练模型。以下是示例代码:
```python
import os
import cv2
import numpy as np
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score
from sklearn.decomposition import PCA
from sklearn.discriminant_analysis import LinearDiscriminantAnalysis
from sklearn.neighbors import KNeighborsClassifier
def generate_csv(base_path, output_file):
with open(output_file, 'w') as f:
for root, dirs, files in os.walk(base_path):
for file in files:
if file.endswith('.pgm') or file.endswith('.jpg'):
path = os.path.join(root, file)
label = os.path.basename(os.path.dirname(path))
f.write(f"{path};{label}\n")
generate_csv("path_to_dataset", "dataset.csv")
def load_data(csv_file):
images = []
labels = []
with open(csv_file, 'r') as f:
for line in f:
parts = line.strip().split(';')
image_path = parts[0]
label = int(parts[1])
image = cv2.imread(image_path, 0)
images.append(image.flatten())
labels.append(label)
return np.array(images), np.array(labels)
images, labels = load_data("dataset.csv")
X_train, X_test, y_train, y_test = train_test_split(images, labels, test_size=0.2, random_state=42)
# Train models
pca = PCA(n_components=100)
lda = LinearDiscriminantAnalysis(n_components=100)
knn = KNeighborsClassifier(n_neighbors=3)
X_train_pca = pca.fit_transform(X_train)
X_test_pca = pca.transform(X_test)
knn.fit(X_train_pca, y_train)
y_pred_pca = knn.predict(X_test_pca)
print(f"PCA Accuracy: {accuracy_score(y_test, y_pred_pca)}")
X_train_lda = lda.fit_transform(X_train, y_train)
X_test_lda = lda.transform(X_test)
knn.fit(X_train_lda, y_train)
y_pred_lda = knn.predict(X_test_lda)
print(f"LDA Accuracy: {accuracy_score(y_test, y_pred_lda)}")
# Save models
joblib.dump(pca, 'pca_model.pkl')
joblib.dump(lda, 'lda_model.pkl')
joblib.dump(knn, 'knn_model.pkl')
```
#### 4. 测试模型
创建一个简单的GUI界面来测试模型。以下是示例代码:
```python
import tkinter as tk
from tkinter import filedialog
import joblib
import cv2
import numpy as np
class FaceRecognitionApp:
def __init__(self, master):
self.master = master
self.master.title("Face Recognition App")
self.image_label = tk.Label(master)
self.image_label.pack()
self.result_label = tk.Label(master, text="")
self.result_label.pack()
self.upload_button = tk.Button(master, text="Upload Image", command=self.upload_image)
self.upload_button.pack()
self.capture_button = tk.Button(master, text="Capture Image", command=self.capture_image)
self.capture_button.pack()
self.recognize_button = tk.Button(master, text="Recognize", command=self.recognize_face)
self.recognize_button.pack()
self.image_path = None
self.face_cascade = cv2.CascadeClassifier('haarcascade_frontalface_default.xml')
self.pca = joblib.load('pca_model.pkl')
self.knn = joblib.load('knn_model.pkl')
def upload_image(self):
self.image_path = filedialog.askopenfilename()
self.display_image()
def capture_image(self):
cap = cv2.VideoCapture(0)
ret, frame = cap.read()
cv2.imwrite("captured_image.jpg", frame)
cap.release()
self.image_path = "captured_image.jpg"
self.display_image()
def display_image(self):
if self.image_path:
img = cv2.imread(self.image_path)
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
img = cv2.resize(img, (300, 300))
img_tk = ImageTk.PhotoImage(image=Image.fromarray(img))
self.image_label.configure(image=img_tk)
self.image_label.image = img_tk
def recognize_face(self):
if self.image_path:
img = cv2.imread(self.image_path, 0)
faces = self.face_cascade.detectMultiScale(img, scaleFactor=1.1, minNeighbors=5, minSize=(30, 30))
if len(faces) > 0:
(x, y, w, h) = faces[0]
face_image = img[y:y+h, x:x+w]
face_resized = cv2.resize(face_image, (92, 112)).flatten()
face_pca = self.pca.transform([face_resized])
prediction = self.knn.predict(face_pca)[0]
self.result_label.config(text=f"Predicted Label: {prediction}")
else:
self.result_label.config(text="No face detected")
root = tk.Tk()
app = FaceRecognitionApp(root)
root.mainloop()
```
### 总结
1. **数据收集**:下载标准人脸数据集,调用摄像头捕获并保存人脸样本。
2. **训练模型**:生成CSV文件,加载数据,训练PCA和KNN模型,并保存模型。
3. **测试模型**:创建一个简单的GUI界面,允许用户上传或捕获图像,并进行人脸识别。
希望这些步骤能帮助你在PyCharm中完成人脸检测与识别实验。如果有任何问题,请随时提问。
阅读全文
相关推荐















