stable diffusion3微调脚本
时间: 2025-02-14 08:17:31 浏览: 74
### Stable Diffusion 3 微调脚本
对于希望对Stable Diffusion 3进行微调以适应特定数据集或改进某些方面性能的研究者来说,编写一个有效的微调脚本至关重要。下面提供了一个简化版的Python脚本用于执行此操作[^2]。
```python
import torch
from diffusers import UNet2DConditionModel, DDPMScheduler, DDIMScheduler
from transformers import CLIPTextModel
from datasets import load_dataset
from torchvision.transforms import Compose, Resize, CenterCrop, ToTensor, Normalize
from torch.utils.data import DataLoader
from tqdm.auto import tqdm
def create_preprocessing_pipeline(resize_to=(512, 512)):
"""创建预处理流水线"""
transforms = Compose([
Resize(resize_to),
CenterCrop(resize_to),
ToTensor(),
Normalize([0.5], [0.5])
])
return transforms
def main():
device = "cuda" if torch.cuda.is_available() else "cpu"
# 加载预训练模型组件
unet = UNet2DConditionModel.from_pretrained(
"runwayml/stable-diffusion-v1-5", subfolder="unet"
).to(device)
text_encoder = CLIPTextModel.from_pretrained(
"openai/clip-vit-large-patch14"
).to(device)
noise_scheduler = DDPMScheduler.from_config("runwayml/stable-diffusion-v1-5/scheduler")
optimizer = torch.optim.AdamW(unet.parameters(), lr=5e-6)
dataset = load_dataset('your_custom_dataset_name', split='train')
preprocess = create_preprocessing_pipeline()
def collate_fn(examples):
pixel_values = torch.stack([preprocess(example["image"]) for example in examples])
input_ids = tokenizer(
examples['text'], padding=True, truncation=True,
max_length=77, return_tensors="pt").input_ids.to(device)
return {"pixel_values": pixel_values, 'input_ids': input_ids}
dataloader = DataLoader(dataset, batch_size=8, shuffle=True, collate_fn=collate_fn)
num_epochs = 10
steps_per_epoch = len(dataloader)
progress_bar = tqdm(range(num_epochs * steps_per_epoch))
for epoch in range(num_epochs):
unet.train()
for step, batch in enumerate(dataloader):
with torch.no_grad():
encoder_hidden_states = text_encoder(batch['input_ids'])[0]
noisy_latents = noise_scheduler.add_noise(latents=batch['pixel_values'].to(device), timesteps=torch.randint(999,(batch['pixel_values'].shape[0],)).to(device))
optimizer.zero_grad()
model_pred = unet(noisy_latents, timestep=timestep, encoder_hidden_states=encoder_hidden_states).sample
loss = F.mse_loss(model_pred.float(), target=noise.float())
loss.backward(loss)
optimizer.step()
progress_bar.update(1)
if __name__ == "__main__":
main()
```
上述代码展示了如何加载必要的库并定义函数来设置图像转换管道、准备自定义数据集以及配置优化器和学习率调度程序。注意,在实际应用中可能还需要调整超参数和其他细节以获得最佳效果。
阅读全文
相关推荐


















