train_ds = load_dataset(read, data_path='formated_train.txt',lazy=False) test_ds = load_dataset(read, data_path='formated_test.txt',lazy=False) dev_ds = load_dataset(read, data_path='formated_test.txt',lazy=False)解读
时间: 2024-03-04 18:48:30 浏览: 155
这段代码使用了 `load_dataset` 函数从文件中加载数据集,将其分别存储为 `train_ds`, `test_ds`, `dev_ds` 三个变量中。其中 `data_path` 参数指定了数据集所在的路径,`lazy` 参数指定是否立即加载数据集。
这里的 `read` 函数是一个自定义的函数,用于读取数据集文件并将其转换为所需的格式。三个数据集的文件路径分别为 `formated_train.txt`、`formated_test.txt`、`formated_test.txt`,这些文件应该是预处理后的文本文件,包含了训练、测试和验证所需的数据。
相关问题
from paddlenlp.datasets import load_dataset def read(data_path): with open(data_path, 'r', encoding='utf-8') as f: # 跳过列名 next(f) for line in f: label, word= line.strip('\n').split('\t') yield {'text': word, 'label': label} # data_path为read()方法的参数 train_ds = load_dataset(read, data_path='formated_train.txt',lazy=False) test_ds = load_dataset(read, data_path='formated_test.txt',lazy=False) dev_ds = load_dataset(read, data_path='formated_test.txt',lazy=False)解读
这段代码使用 PaddleNLP 提供的 `load_dataset` 函数来加载数据集,并且通过实现 `read` 函数来读取数据文件。在 `read` 函数中,首先使用 `open` 函数打开指定的文件,然后通过 `next(f)` 跳过文件的第一行(通常是列名),接着使用 `strip` 和 `split` 函数分别将每一行的文本和标签读取出来,并将它们组合成一个 Python 字典作为数据集的一个样本。最后,通过调用 `load_dataset` 函数,并将 `read` 函数和数据文件的路径传递给它,可以得到训练集、测试集和验证集的 Paddle Dataset 对象。其中,`lazy=False` 表示在加载数据集时立即读取数据并将其缓存到内存中,而不是在访问数据时才逐个读取,这样可以提高数据加载效率。
请在注释处填入代码完成对训练集和测试集的结巴分词from paddlenlp.datasets import load_dataset def read(data_path): data_set = [] with open(data_path, 'r', encoding='utf-8') as f: for line in f: l = line.strip('\n').split('\t') if len(l) != 2: print (len(l), line) words, labels = line.strip('\n').split('\t') data_set.append((words,labels)) return data_set train_ds = read(data_path='train.txt') dev_ds = read(data_path='dev.txt') test_ds = read(data_path='test.txt') for i in range(5): print("sentence %d" % (i), train_ds[i][0]) print("sentence %d" % (i), train_ds[i][1]) print(len(train_ds),len(dev_ds)) import jieba def data_preprocess(corpus): data_set = [] ####填结巴分词代码 for text in corpus: seg_list = jieba.cut(text) data_set.append(" ".join(seg_list)) return data_set train_corpus = data_preprocess(train_ds) test_corpus = data_preprocess(test_ds) print(train_corpus[:2]) print(test_corpus[:2])
from paddlenlp.datasets import load_dataset
def read(data_path):
data_set = []
with open(data_path, 'r', encoding='utf-8') as f:
for line in f:
l = line.strip('\n').split('\t')
if len(l) != 2:
print (len(l), line)
words, labels = line.strip('\n').split('\t')
data_set.append((words,labels))
return data_set
train_ds = read(data_path='train.txt')
dev_ds = read(data_path='dev.txt')
test_ds = read(data_path='test.txt')
for i in range(5):
print("sentence %d" % (i), train_ds[i][0])
print("sentence %d" % (i), train_ds[i][1])
print(len(train_ds),len(dev_ds))
import jieba
def data_preprocess(corpus):
data_set = []
for text in corpus:
seg_list = jieba.cut(text[0])
data_set.append((" ".join(seg_list), text[1]))
return data_set
train_corpus = data_preprocess(train_ds)
test_corpus = data_preprocess(test_ds)
print(train_corpus[:2])
print(test_corpus[:2])
阅读全文
相关推荐











