rostopic pub -r 2 /robot0/cmd_vel geometry_msgs/Twist'{linear:{x:0,y:0,z:0},angular:{x:0,y:0,z:0.5}}' ERROR: invalid message type: geometry_msgs/Twist{linear:{x:0,y:0,z:0},angular:{x:0,y:0,z:0.5}}. If this is a valid message type, perhaps you need to type 'rosmake geometry_msgs'

时间: 2025-03-28 09:10:44 浏览: 85
<think>好的,我现在需要帮助用户解决在使用rostopic pub发布geometry_msgs/Twist类型消息时出现的“invalid message type”错误。首先,我得回忆一下ROS中消息类型的结构以及rostopic命令的正确使用方法。 用户提到了引用的资料,其中引用[1]和[3]详细说明了geometry_msgs/Twist的消息结构,包含linear和angular两个Vector3字段。每个Vector3又有x、y、z三个浮点数。所以,正确的消息格式应该同时指定linear和angular的这三个分量,即使不使用某些分量,也要显式设置为0.0。 接下来,用户可能在发布消息时没有正确遵循消息的结构。根据引用[5],常见错误之一是话题名称不匹配。比如,用户可能尝试发布到/cmd_vel,但实际机器人订阅的话题可能是/cmd_vel_mux/input/teleop或者其他名称。这时候需要先用rostopic list确认正确的话题名,再用rostopic info检查消息类型是否正确。 另外,消息内容的格式也很重要。rostopic pub的命令行参数需要严格按照消息定义填写。例如,正确的命令应该是: rostopic pub /话题名 geometry_msgs/Twist "{linear: {x: 1.0, y: 0.0, z: 0.0}, angular: {x: 0.0, y: 0.0, z: 0.0}}" 用户可能在输入时遗漏了某些字段,或者结构不正确,比如没有正确嵌套linear和angular,或者使用了错误的括号。引用[5]中的示例显示,用户可能需要使用单引号和花括号来正确组织消息内容,避免shell解释的问题。例如,使用--选项来分隔参数,或者用引号包裹整个消息内容。 此外,节点未正确运行或话题未被订阅也是一个可能的原因。需要确保接收消息的节点(如机器人控制器)正在运行,并且rostopic echo可以接收到发布的消息,以确认消息是否正确发送。 总结可能的解决方案步骤: 1. 检查话题名称是否正确,使用rostopic list和rostopic info确认。 2. 验证消息结构,确保包含linear和angular的每个分量,即使为0。 3. 正确使用命令行参数格式,可能需要引号和结构嵌套。 4. 确保接收节点正在运行,并且话题匹配。 5. 使用rosmsg show检查消息定义,确保与命令中的结构一致。 还需要考虑用户可能遇到的常见错误,例如字段顺序错误、数据类型错误(如使用整数而非浮点数),或者shell特殊字符的问题。建议用户使用YAML语法格式来输入消息,这样更清晰,避免语法错误。例如: rostopic pub /cmd_vel geometry_msgs/Twist -1 "linear: x: 0.5 y: 0.0 z: 0.0 angular: x: 0.0 y: 0.0 z: 0.1" 如果用户仍然遇到问题,可能需要检查ROS网络配置,例如节点是否在同一台机器,或者是否有防火墙阻止了消息传递。此外,查看rostopic pub的输出是否有错误提示,例如无法解析消息,这有助于定位问题所在。</think>### 解决`rostopic pub`发布`geometry_msgs/Twist`消息时的错误 #### 错误原因分析 1. **消息格式不匹配** `geometry_msgs/Twist` 消息包含两个字段:`linear` 和 `angular`,均为 `geometry_msgs/Vector3` 类型,每个字段需指定 `x, y, z` 分量[^1][^3]。若未按此结构填写,会触发 `invalid message type` 错误。 2. **话题名称错误** 实际订阅的话题可能并非 `/cmd_vel`,而是 `/cmd_vel_mux/input/teleop` 等衍生名称[^5]。需确认目标话题的真实名称。 3. **命令语法错误** `rostopic pub` 参数格式需严格遵循 `消息类型` 和 `字段值` 的嵌套结构,且需使用引号避免 Shell 解析错误。 --- #### 分步解决方案 ##### 步骤 1:确认话题名称和消息类型 ```bash # 列出所有活跃话题 rostopic list # 查看目标话题的消息类型 rostopic type /目标话题名称 ``` - 若输出为 `geometry_msgs/Twist`,则消息类型正确。 ##### 步骤 2:验证消息结构 ```bash # 查看消息详细定义 rosmsg show geometry_msgs/Twist ``` 输出应为: ``` geometry_msgs/Vector3 linear float64 x float64 y float64 z geometry_msgs/Vector3 angular float64 x float64 y float64 z ``` ##### 步骤 3:正确发布消息 使用 **YAML 语法** 结构化输入: ```bash rostopic pub /目标话题名 geometry_msgs/Twist -1 \ "linear: x: 0.5 y: 0.0 z: 0.0 angular: x: 0.0 y: 0.0 z: 0.1" ``` - `-1` 表示发布一次后退出,持续发布可替换为 `-r 10`(10Hz 频率); - 必须包含所有字段,未使用的分量设为 `0.0`。 --- #### 常见错误场景 1. **未指定 `linear` 或 `angular` 字段** ```bash # 错误示例(缺少字段) rostopic pub /cmd_vel geometry_msgs/Twist -- '[0.5]' '[0.1]' ``` **修正**:明确字段层级: ```bash rostopic pub /cmd_vel geometry_msgs/Twist -- '{linear: {x: 0.5}, angular: {z: 0.1}}' ``` 2. **话题未订阅或节点未运行** 使用 `rostopic echo /目标话题名` 检查是否能接收到消息。若无输出,需启动订阅该话题的节点(如机器人控制器)。 --- #### 验证方法 ```bash # 监听话题内容,确认消息已正确发送 rostopic echo /目标话题名 ``` ---
阅读全文

相关推荐

ros2中晃动imu,但是我的机器人模型不跟着晃动,而且里程计一开,里程计跑走,但是imu和机器人模型还在原地,以下是我的各个文件代码,情分析一下为什么:wheeltec_robot.cpp文件代码为: #include "turn_on_wheeltec_robot/wheeltec_robot.h" #include "turn_on_wheeltec_robot/Quaternion_Solution.h" #include "wheeltec_robot_msg/msg/data.hpp" sensor_msgs::msg::Imu Mpu6050;//Instantiate an IMU object //实例化IMU对象 using std::placeholders::_1; using namespace std; rclcpp::Node::SharedPtr node_handle = nullptr; //自动回充使用相关变量 bool check_AutoCharge_data = false; bool charge_set_state = false; /************************************** Date: January 28, 2021 Function: The main function, ROS initialization, creates the Robot_control object through the Turn_on_robot class and automatically calls the constructor initialization 功能: 主函数,ROS初始化,通过turn_on_robot类创建Robot_control对象并自动调用构造函数初始化 ***************************************/ int main(int argc, char** argv) { rclcpp::init(argc, argv); //ROS initializes and sets the node name //ROS初始化 并设置节点名称 turn_on_robot Robot_Control;//Instantiate an object //实例化一个对象 Robot_Control.Control();//Loop through data collection and publish the topic //循环执行数据采集和发布话题等操作 return 0; } /************************************** Date: January 28, 2021 Function: Data conversion function 功能: 数据转换函数 ***************************************/ short turn_on_robot::IMU_Trans(uint8_t Data_High,uint8_t Data_Low) { short transition_16; transition_16 = 0; transition_16 |= Data_High<<8; transition_16 |= Data_Low; return transition_16; } float turn_on_robot::Odom_Trans(uint8_t Data_High,uint8_t Data_Low) { float data_return; short transition_16; transition_16 = 0; transition_16 |= Data_High<<8; //Get the high 8 bits of data //获取数据的高8位 transition_16 |= Data_Low; //Get the lowest 8 bits of data //获取数据的低8位 data_return = (transition_16 / 1000)+(transition_16 % 1000)*0.001; // The speed unit is changed from mm/s to m/s //速度单位从mm/s转换为m/s return data_return; } /************************************** Date: January 28, 2021 Function: The speed topic subscription Callback function, according to the subscribed instructions through the serial port command control of the lower computer 功能: 速度话题订阅回调函数Callback,根据订阅的指令通过串口发指令控制下位机 ***************************************/ void turn_on_robot::Cmd_Vel_Callback(const geometry_msgs::msg::Twist::SharedPtr twist_aux) { short transition; //intermediate variable //中间变量 Send_Data.tx[0]= 0x06; //frame head 0x7B //帧头0X7B //Send_Data.tx[1] = AutoRecharge; //set aside //预留位 Send_Data.tx[1] = FRAME_HEADER; Send_Data.tx[2] = 0; //set aside //预留位 //The target velocity of the X-axis of the robot //机器人x轴的目标线速度 transition=0; transition = twist_aux->linear.x*1000; //将浮点数放大一千倍,简化传输 (mm/s) Send_Data.tx[4] = transition; //取数据的低8位 Send_Data.tx[3] = transition>>8; //取数据的高8位 //The target velocity of the Y-axis of the robot //机器人y轴的目标线速度 transition=0; transition = twist_aux->linear.y*1000; Send_Data.tx[6] = transition; Send_Data.tx[5] = transition>>8; //The target angular velocity of the robot's Z axis //机器人z轴的目标角速度 transition=0; transition = twist_aux->angular.z*1000; //(1000*rad/s) Send_Data.tx[8] = transition; Send_Data.tx[7] = transition>>8; Send_Data.tx[9]=Check_Sum(9,SEND_DATA_CHECK); //For the BCC check bits, see the Check_Sum function //BCC校验位,规则参见Check_Sum函数 Send_Data.tx[10]=0x0d; //frame tail 0x7D //帧尾0X7D Send_Data.tx[11]=0x0a; try { Stm32_Serial.write(Send_Data.tx,sizeof (Send_Data.tx)); //Sends data to the downloader via serial port //通过串口向下位机发送数据 } catch (serial::IOException& e) { RCLCPP_ERROR(this->get_logger(),("Unable to send data through serial port")); //If sending data fails, an error message is printed //如果发送数据失败,打印错误信息 } } /************************************** Date: January 28, 2021 Function: Publish the IMU data topic 功能: 发布IMU数据话题 ***************************************/ void turn_on_robot::Publish_ImuSensor() { sensor_msgs::msg::Imu Imu_Data_Pub; //Instantiate IMU topic data //实例化IMU话题数据 Imu_Data_Pub.header.stamp = rclcpp::Node::now(); Imu_Data_Pub.header.frame_id = gyro_frame_id; //IMU corresponds to TF coordinates, which is required to use the robot_pose_ekf feature pack //IMU对应TF坐标,使用robot_pose_ekf功能包需要设置此项 Imu_Data_Pub.orientation.x = Mpu6050.orientation.x; //A quaternion represents a three-axis attitude //四元数表达三轴姿态 Imu_Data_Pub.orientation.y = Mpu6050.orientation.y; Imu_Data_Pub.orientation.z = Mpu6050.orientation.z; Imu_Data_Pub.orientation.w = Mpu6050.orientation.w; Imu_Data_Pub.orientation_covariance[0] = 1e6; //Three-axis attitude covariance matrix //三轴姿态协方差矩阵 Imu_Data_Pub.orientation_covariance[4] = 1e6; Imu_Data_Pub.orientation_covariance[8] = 1e-6; Imu_Data_Pub.angular_velocity.x = Mpu6050.angular_velocity.x; //Triaxial angular velocity //三轴角速度 Imu_Data_Pub.angular_velocity.y = Mpu6050.angular_velocity.y; Imu_Data_Pub.angular_velocity.z = Mpu6050.angular_velocity.z; Imu_Data_Pub.angular_velocity_covariance[0] = 1e6; //Triaxial angular velocity covariance matrix //三轴角速度协方差矩阵 Imu_Data_Pub.angular_velocity_covariance[4] = 1e6; Imu_Data_Pub.angular_velocity_covariance[8] = 1e-6; Imu_Data_Pub.linear_acceleration.x = Mpu6050.linear_acceleration.x; //Triaxial acceleration //三轴线性加速度 Imu_Data_Pub.linear_acceleration.y = Mpu6050.linear_acceleration.y; Imu_Data_Pub.linear_acceleration.z = Mpu6050.linear_acceleration.z; imu_publisher->publish(Imu_Data_Pub); //Pub IMU topic //发布IMU话题 } /************************************** Date: January 28, 2021 Function: Publish the odometer topic, Contains position, attitude, triaxial velocity, angular velocity about triaxial, TF parent-child coordinates, and covariance matrix 功能: 发布里程计话题,包含位置、姿态、三轴速度、绕三轴角速度、TF父子坐标、协方差矩阵 ***************************************/ void turn_on_robot::Publish_Odom() { //Convert the Z-axis rotation Angle into a quaternion for expression //把Z轴转角转换为四元数进行表达 tf2::Quaternion q; q.setRPY(0,0,Mpu6050_Data.imu_yaw); geometry_msgs::msg::Quaternion odom_quat=tf2::toMsg(q); nav_msgs::msg::Odometry odom; //Instance the odometer topic data //实例化里程计话题数据 odom.header.stamp = rclcpp::Node::now(); ; odom.header.frame_id = odom_frame_id; // Odometer TF parent coordinates //里程计TF父坐标 odom.pose.pose.position.x = Robot_Pos.X; //Position //位置 odom.pose.pose.position.y = Robot_Pos.Y; //odom.pose.pose.position.z = Robot_Pos.Z; odom.pose.pose.orientation = odom_quat; //Posture, Quaternion converted by Z-axis rotation //姿态,通过Z轴转角转换的四元数 odom.child_frame_id = robot_frame_id; // Odometer TF subcoordinates //里程计TF子坐标 odom.twist.twist.linear.x = Robot_Vel.X; //Speed in the X direction //X方向速度 //odom.twist.twist.linear.y = Robot_Vel.Y; //Speed in the Y direction //Y方向速度 odom.twist.twist.angular.z = Mpu6050.angular_velocity.z; //Angular velocity around the Z axis //绕Z轴角速度 //There are two types of this matrix, which are used when the robot is at rest and when it is moving.Extended Kalman Filtering officially provides 2 matrices for the robot_pose_ekf feature pack //这个矩阵有两种,分别在机器人静止和运动的时候使用。扩展卡尔曼滤波官方提供的2个矩阵,用于robot_pose_ekf功能包 //if(Robot_Vel.X== 0&&Robot_Vel.Y== 0&&Robot_Vel.Z== 0) if(Robot_Vel.X== 0) //If the velocity is zero, it means that the error of the encoder will be relatively small, and the data of the encoder will be considered more reliable //如果velocity是零,说明编码器的误差会比较小,认为编码器数据更可靠 memcpy(&odom.pose.covariance, odom_pose_covariance2, sizeof(odom_pose_covariance2)), memcpy(&odom.twist.covariance, odom_twist_covariance2, sizeof(odom_twist_covariance2)); else //If the velocity of the trolley is non-zero, considering the sliding error that may be brought by the encoder in motion, the data of IMU is considered to be more reliable //如果小车velocity非零,考虑到运动中编码器可能带来的滑动误差,认为imu的数据更可靠 memcpy(&odom.pose.covariance, odom_pose_covariance, sizeof(odom_pose_covariance)), memcpy(&odom.twist.covariance, odom_twist_covariance, sizeof(odom_twist_covariance)); odom_publisher->publish(odom); //Pub odometer topic //发布里程计话题 } /************************************** Date: January 28, 2021 Function: Publish voltage-related information 功能: 发布电压相关信息 ***************************************/ void turn_on_robot::Publish_Voltage() { std_msgs::msg::Float32 voltage_msgs; //Define the data type of the power supply voltage publishing topic //定义电源电压发布话题的数据类型 static float Count_Voltage_Pub=0; if(Count_Voltage_Pub++>10) { Count_Voltage_Pub=0; voltage_msgs.data = Power_voltage; //The power supply voltage is obtained //电源供电的电压获取 voltage_publisher->publish(voltage_msgs); //Post the power supply voltage topic unit: V, volt //发布电源电压话题单位:V、伏特 } } ////////// 回充发布与回调 //////// /************************************** Date: January 17, 2022 Function: Pub the topic whether the robot finds the infrared signal (charging station) 功能: 发布机器人是否寻找到红外信号(充电桩)的话题 ***************************************/ void turn_on_robot::Publish_RED() { std_msgs::msg::UInt8 msg; msg.data=Red; RED_publisher->publish(msg); } /************************************** Date: January 14, 2022 Function: Publish a topic about whether the robot is charging 功能: 发布机器人是否在充电的话题 ***************************************/ void turn_on_robot::Publish_Charging() { static bool last_charging; std_msgs::msg::Bool msg; msg.data=Charging; Charging_publisher->publish(msg); if(last_charging==false && Charging==true)cout<<GREEN<<"Robot is charging."<<endl<<RESET; if(last_charging==true && Charging==false)cout<<RED <<"Robot charging has disconnected."<<endl<<RESET; last_charging=Charging; } /************************************** Date: January 28, 2021 Function: Publish charging current information 功能: 发布充电电流信息 ***************************************/ void turn_on_robot::Publish_ChargingCurrent() { std_msgs::msg::Float32 msg; msg.data=Charging_Current; Charging_current_publisher->publish(msg); } /************************************** Date: March 1, 2022 Function: Infrared connection speed topic subscription Callback function, according to the subscription command through the serial port to set the infrared connection speed 功能: 红外对接速度话题订阅回调函数Callback,根据订阅的指令通过串口发指令设置红外对接速度 ***************************************/ void turn_on_robot::Red_Vel_Callback(const geometry_msgs::msg::Twist::SharedPtr twist_aux) { short transition; //intermediate variable //中间变量 Send_Data.tx[0]=FRAME_HEADER; //frame head 0x7B //帧头0X7B Send_Data.tx[1] = 3; //Infrared docking speed setting flag bit = 3 //红外对接速度设置标志位=3 Send_Data.tx[2] = 0; //set aside //预留位 //The target velocity of the X-axis of the robot //机器人x轴的目标线速度 transition=0; transition = twist_aux->linear.x*1000; //将浮点数放大一千倍,简化传输 Send_Data.tx[4] = transition; //取数据的低8位 Send_Data.tx[3] = transition>>8; //取数据的高8位 //The target velocity of the Y-axis of the robot //机器人y轴的目标线速度 transition=0; transition = twist_aux->linear.y*1000; Send_Data.tx[6] = transition; Send_Data.tx[5] = transition>>8; //The target angular velocity of the robot's Z axis //机器人z轴的目标角速度 transition=0; transition = twist_aux->angular.z*1000; Send_Data.tx[8] = transition; Send_Data.tx[7] = transition>>8; Send_Data.tx[9]=Check_Sum(9,SEND_DATA_CHECK); //BCC check //BCC校验 Send_Data.tx[10]=FRAME_TAIL; //frame tail 0x7D //帧尾0X7D try { Stm32_Serial.write(Send_Data.tx,sizeof (Send_Data.tx)); //Sends data to the downloader via serial port //通过串口向下位机发送数据 } catch (serial::IOException& e) { RCLCPP_ERROR(this->get_logger(),("Unable to send data through serial port")); //If sending data fails, an error message is printed //如果发送数据失败,打印错误信息 } } /************************************** Date: January 14, 2022 Function: Subscription robot recharge flag bit topic, used to tell the lower machine speed command is normal command or recharge command 功能: 订阅机器人是否回充标志位话题,用于告诉下位机速度命令是正常命令还是回充命令 ***************************************/ void turn_on_robot::Recharge_Flag_Callback(const std_msgs::msg::Int8::SharedPtr Recharge_Flag) { AutoRecharge=Recharge_Flag->data; } //服务 void turn_on_robot::Set_Charge_Callback(const shared_ptr<turtlesim::srv::Spawn::Request> req,shared_ptr<turtlesim::srv::Spawn::Response> res) { Send_Data.tx[0]=FRAME_HEADER; //frame head 0x7B //֡ͷ0X7B if(round(req->x)==1) Send_Data.tx[1] = 1; else if(round(req->x)==2) Send_Data.tx[1] = 2; else if(round(req->x)==0) Send_Data.tx[1] = 0,AutoRecharge=0; Send_Data.tx[2] = 0; Send_Data.tx[3] = 0; Send_Data.tx[4] = 0; Send_Data.tx[5] = 0; Send_Data.tx[6] = 0; Send_Data.tx[7] = 0; Send_Data.tx[8] = 0; Send_Data.tx[9]=Check_Sum(9,SEND_DATA_CHECK); //For the BCC check bits, see the Check_Sum function //BCCУ��λ������μ�Check_Sum���� Send_Data.tx[10]=FRAME_TAIL; //frame tail 0x7D //֡β0X7D try { Stm32_Serial.write(Send_Data.tx,sizeof (Send_Data.tx)); //Sends data to the downloader via serial port //ͨ����������λ���������� } catch (serial::IOException& e) { res->name = "false"; } if( Send_Data.tx[1]==0 ) { if(charge_set_state==0) AutoRecharge=0,res->name = "true"; else res->name = "false"; } else { if(charge_set_state==1) res->name = "true"; else res->name = "false"; } return; } ////////// 回充发布与回调 //////// /************************************** Date: January 28, 2021 Function: Serial port communication check function, packet n has a byte, the NTH -1 byte is the check bit, the NTH byte bit frame end.Bit XOR results from byte 1 to byte n-2 are compared with byte n-1, which is a BCC check Input parameter: Count_Number: Check the first few bytes of the packet 功能: 串口通讯校验函数,数据包n有个字节,第n-1个字节为校验位,第n个字节位帧尾。第1个字节到第n-2个字节数据按位异或的结果与第n-1个字节对比,即为BCC校验 输入参数: Count_Number:数据包前几个字节加入校验 mode:对发送数据还是接收数据进行校验 ***************************************/ unsigned char turn_on_robot::Check_Sum(unsigned char Count_Number,unsigned char mode) { unsigned char check_sum=0,k; if(mode==0) //Receive data mode //接收数据模式 { for(k=0;k<Count_Number;k++) { check_sum=check_sum^Receive_Data.rx[k]; //By bit or by bit //按位异或 } } if(mode==1) //Send data mode //发送数据模式 { for(k=1;k<Count_Number;k++) { check_sum=check_sum^Send_Data.tx[k]; //By bit or by bit //按位异或 } } return check_sum; //Returns the bitwise XOR result //返回按位异或结果 } //自动回充专用校验位 unsigned char turn_on_robot::Check_Sum_AutoCharge(unsigned char Count_Number,unsigned char mode) { unsigned char check_sum=0,k; if(mode==0) //Receive data mode //接收数据模式 { for(k=0;k<Count_Number;k++) { check_sum=check_sum^Receive_AutoCharge_Data.rx[k]; //By bit or by bit //按位异或 } } return check_sum; } /************************************** Date: November 18, 2021 Function: Read and verify the data sent by the lower computer frame by frame through the serial port, and then convert the data into international units 功能: 通过串口读取并逐帧校验下位机发送过来的数据,然后数据转换为国际单位 ***************************************/ bool turn_on_robot::Get_Sensor_Data_New() { short transition_16=0; //Intermediate variable //中间变量 //uint8_t i=0; uint8_t check=0,check2=0, error=1,error2=1,Receive_Data_Pr[1]; //Temporary variable to save the data of the lower machine //临时变量,保存下位机数据 static int count,count2; //Static variable for counting //静态变量,用于计数 Stm32_Serial.read(Receive_Data_Pr,sizeof(Receive_Data_Pr)); //Read the data sent by the lower computer through the serial port //通过串口读取下位机发送过来的数据 /*//View the received raw data directly and debug it for use//直接查看接收到的原始数据,调试使用 ROS_INFO("%x-%x-%x-%x-%x-%x-%x-%x-%x-%x-%x-%x-%x-%x-%x-%x-%x-%x-%x-%x-%x-%x-%x-%x", Receive_Data_Pr[0],Receive_Data_Pr[1],Receive_Data_Pr[2],Receive_Data_Pr[3],Receive_Data_Pr[4],Receive_Data_Pr[5],Receive_Data_Pr[6],Receive_Data_Pr[7], Receive_Data_Pr[8],Receive_Data_Pr[9],Receive_Data_Pr[10],Receive_Data_Pr[11],Receive_Data_Pr[12],Receive_Data_Pr[13],Receive_Data_Pr[14],Receive_Data_Pr[15], Receive_Data_Pr[16],Receive_Data_Pr[17],Receive_Data_Pr[18],Receive_Data_Pr[19],Receive_Data_Pr[20],Receive_Data_Pr[21],Receive_Data_Pr[22],Receive_Data_Pr[23]); */ Receive_Data.rx[count] = Receive_Data_Pr[0]; //Fill the array with serial data //串口数据填入数组 Receive_AutoCharge_Data.rx[count2] = Receive_Data_Pr[0]; Receive_Data.Frame_Header = Receive_Data.rx[0]; //The first part of the data is the frame header 0X7B //数据的第一位是帧头0X7B Receive_Data.Frame_Tail = Receive_Data.rx[23]; //The last bit of data is frame tail 0X7D //数据的最后一位是帧尾0X7D //接收到自动回充数据的帧头、上一个数据是24字节的帧尾,表明自动回充数据开始到来 if((Receive_Data_Pr[0] == AutoCharge_HEADER )||count2>0) count2++; else count2=0; if(Receive_Data_Pr[0] == FRAME_HEADER || count>0) //Ensure that the first data in the array is FRAME_HEADER //确保数组第一个数据为FRAME_HEADER count++; else count=0; //自动回充数据处理 if(count2 == AutoCharge_DATA_SIZE) { count2=0; if(Receive_AutoCharge_Data.rx[AutoCharge_DATA_SIZE-1]==AutoCharge_TAIL) //确认帧尾 { check2 = Check_Sum_AutoCharge(6,0);//校验位计算 if(check2 == Receive_AutoCharge_Data.rx[AutoCharge_DATA_SIZE-2]) //校验正确 { error2=0; } if(error2 == 0) //校验正确开始赋值 { transition_16 = 0; transition_16 |= Receive_AutoCharge_Data.rx[1]<<8; transition_16 |= Receive_AutoCharge_Data.rx[2]; Charging_Current = transition_16/1000+(transition_16 % 1000)*0.001; //充电电流 Red = Receive_AutoCharge_Data.rx[3]; //红外接受状态 Charging = Receive_AutoCharge_Data.rx[4];//小车充电状态 charge_set_state = Receive_AutoCharge_Data.rx[5]; check_AutoCharge_data = true; //数据成功接收标志位 } } } if(count == 24) //Verify the length of the packet //验证数据包的长度 { count=0; //Prepare for the serial port data to be refill into the array //为串口数据重新填入数组做准备 if(Receive_Data.Frame_Tail == FRAME_TAIL) //Verify the frame tail of the packet //验证数据包的帧尾 { check=Check_Sum(22,READ_DATA_CHECK); //BCC check passes or two packets are interlaced //BCC校验通过或者两组数据包交错 if(check == Receive_Data.rx[22]) { error=0; //XOR bit check successful //异或位校验成功 } if(error == 0) { /*//Check receive_data.rx for debugging use //查看Receive_Data.rx,调试使用 ROS_INFO("%x-%x-%x-%x-%x-%x-%x-%x-%x-%x-%x-%x-%x-%x-%x-%x-%x-%x-%x-%x-%x-%x-%x-%x", Receive_Data.rx[0],Receive_Data.rx[1],Receive_Data.rx[2],Receive_Data.rx[3],Receive_Data.rx[4],Receive_Data.rx[5],Receive_Data.rx[6],Receive_Data.rx[7], Receive_Data.rx[8],Receive_Data.rx[9],Receive_Data.rx[10],Receive_Data.rx[11],Receive_Data.rx[12],Receive_Data.rx[13],Receive_Data.rx[14],Receive_Data.rx[15], Receive_Data.rx[16],Receive_Data.rx[17],Receive_Data.rx[18],Receive_Data.rx[19],Receive_Data.rx[20],Receive_Data.rx[21],Receive_Data.rx[22],Receive_Data.rx[23]); */ Receive_Data.Flag_Stop=Receive_Data.rx[1]; //set aside //预留位 Robot_Vel.X = Odom_Trans(Receive_Data.rx[2],Receive_Data.rx[3]); //Get the speed of the moving chassis in the X direction //获取运动底盘X方向速度 //Robot_Vel.Y = Odom_Trans(Receive_Data.rx[4],Receive_Data.rx[5]); //Get the speed of the moving chassis in the Y direction, The Y speed is only valid in the omnidirectional mobile robot chassis //获取运动底盘Y方向速度,Y速度仅在全向移动机器人底盘有效 //Robot_Vel.Z = Odom_Trans(Receive_Data.rx[6],Receive_Data.rx[7]); //Get the speed of the moving chassis in the Z direction //获取运动底盘Z方向速度 //MPU6050 stands for IMU only and does not refer to a specific model. It can be either MPU6050 or MPU9250 //Mpu6050仅代表IMU,不指代特定型号,既可以是MPU6050也可以是MPU9250 Mpu6050_Data.imu_rol = IMU_Trans(Receive_Data.rx[4],Receive_Data.rx[5]) * 0.01 * 3.14159/180; Mpu6050_Data.imu_yaw = IMU_Trans(Receive_Data.rx[6],Receive_Data.rx[7]) * 0.01 * 3.14159/180; Mpu6050_Data.accele_x_data = IMU_Trans(Receive_Data.rx[8],Receive_Data.rx[9]); //Get the X-axis acceleration of the IMU //获取IMU的X轴加速度 Mpu6050_Data.accele_y_data = IMU_Trans(Receive_Data.rx[10],Receive_Data.rx[11]); //Get the Y-axis acceleration of the IMU //获取IMU的Y轴加速度 Mpu6050_Data.accele_z_data = IMU_Trans(Receive_Data.rx[12],Receive_Data.rx[13]); //Get the Z-axis acceleration of the IMU //获取IMU的Z轴加速度 Mpu6050_Data.gyros_x_data = IMU_Trans(Receive_Data.rx[14],Receive_Data.rx[15]); //Get the X-axis angular velocity of the IMU //获取IMU的X轴角速度 Mpu6050_Data.gyros_y_data = IMU_Trans(Receive_Data.rx[16],Receive_Data.rx[17]); //Get the Y-axis angular velocity of the IMU //获取IMU的Y轴角速度 Mpu6050_Data.gyros_z_data = IMU_Trans(Receive_Data.rx[18],Receive_Data.rx[19]); //Get the Z-axis angular velocity of the IMU //获取IMU的Z轴角速度 //Linear acceleration unit conversion is related to the range of IMU initialization of STM32, where the range is ±2g=19.6m/s^2 //线性加速度单位转化,和STM32的IMU初始化的时候的量程有关,这里量程±2g=19.6m/s^2 Mpu6050.linear_acceleration.x = Mpu6050_Data.accele_x_data * 0.01 * 9.8; Mpu6050.linear_acceleration.y = Mpu6050_Data.accele_y_data * 0.01 * 9.8; Mpu6050.linear_acceleration.z = Mpu6050_Data.accele_z_data * 0.01 * 9.8; //The gyroscope unit conversion is related to the range of STM32's IMU when initialized. Here, the range of IMU's gyroscope is ±500°/s //Because the robot generally has a slow Z-axis speed, reducing the range can improve the accuracy //陀螺仪单位转化,和STM32的IMU初始化的时候的量程有关,这里IMU的陀螺仪的量程是±500°/s //因为机器人一般Z轴速度不快,降低量程可以提高精度 Mpu6050.angular_velocity.x = Mpu6050_Data.gyros_x_data * 0.01 *3.14159/180; Mpu6050.angular_velocity.y = Mpu6050_Data.gyros_y_data * 0.01 *3.14159/180; Mpu6050.angular_velocity.z = Mpu6050_Data.gyros_z_data * 0.01 *3.14159/180; //Get the battery voltage //获取电池电压 transition_16 = 0; transition_16 |= Receive_Data.rx[20]<<8; transition_16 |= Receive_Data.rx[21]; Power_voltage = transition_16/1000+(transition_16 % 1000)*0.001; //Unit conversion millivolt(mv)->volt(v) //单位转换毫伏(mv)->伏(v) return true; } } } return false; } /************************************** Date: January 28, 2021 Function: Loop access to the lower computer data and issue topics 功能: 循环获取下位机数据与发布话题 ***************************************/ void turn_on_robot::Control() { //_Last_Time = ros::Time::now(); _Last_Time = rclcpp::Node::now(); while(rclcpp::ok()) { try { //_Now = ros::Time::now(); _Now = rclcpp::Node::now(); Sampling_Time = (_Now - _Last_Time).seconds(); //Retrieves time interval, which is used to integrate velocity to obtain displacement (mileage) //获取时间间隔,用于积分速度获得位移(里程) if (true == Get_Sensor_Data_New()) //The serial port reads and verifies the data sent by the lower computer, and then the data is converted to international units //通过串口读取并校验下位机发送过来的数据,然后数据转换为国际单位 { //Robot_Pos.X+=(Robot_Vel.X * cos(Robot_Pos.Z) - Robot_Vel.Y * sin(Robot_Pos.Z)) * Sampling_Time; //Calculate the displacement in the X direction, unit: m //计算X方向的位移,单位:m //Robot_Pos.Y+=(Robot_Vel.X * sin(Robot_Pos.Z) + Robot_Vel.Y * cos(Robot_Pos.Z)) * Sampling_Time; //Calculate the displacement in the Y direction, unit: m //计算Y方向的位移,单位:m //Robot_Pos.Z+=Robot_Vel.Z * Sampling_Time; //The angular displacement about the Z axis, in rad //绕Z轴的角位移,单位:rad Robot_Pos.X+=(Robot_Vel.X * cos(Mpu6050_Data.imu_yaw)) * Sampling_Time; //Calculate the displacement in the X direction, unit: m //计算X方向的位移,单位:m Robot_Pos.Y+=(Robot_Vel.X * sin(Mpu6050_Data.imu_yaw)) * Sampling_Time; //Calculate the displacement in the Y direction, unit: m //计算Y方向的位移,单位:m //Robot_Pos.Z = 0 ; //Calculate the three-axis attitude from the IMU with the angular velocity around the three-axis and the three-axis acceleration //通过IMU绕三轴角速度与三轴加速度计算三轴姿态 Quaternion_Solution(Mpu6050.angular_velocity.x, Mpu6050.angular_velocity.y, Mpu6050.angular_velocity.z,\ Mpu6050.linear_acceleration.x, Mpu6050.linear_acceleration.y, Mpu6050.linear_acceleration.z); Publish_Odom(); //Pub the speedometer topic //发布里程计话题 Publish_ImuSensor(); //Pub the IMU topic //发布IMU话题 Publish_Voltage(); //Pub the topic of power supply voltage //发布电源电压话题 _Last_Time = _Now; //Record the time and use it to calculate the time interval //记录时间,用于计算时间间隔 } //自动回充数据话题 if(check_AutoCharge_data) { Publish_Charging(); //Pub a topic about whether the robot is charging //发布机器人是否在充电的话题 Publish_RED(); //Pub the topic whether the robot finds the infrared signal (charging station) //发布机器人是否寻找到红外信号(充电桩)的话题 Publish_ChargingCurrent(); //Pub the charging current topic //发布充电电流话题 check_AutoCharge_data = false; } rclcpp::spin_some(this->get_node_base_interface()); //The loop waits for the callback function //循环等待回调函数 } catch (const rclcpp::exceptions::RCLError & e ) { RCLCPP_ERROR(this->get_logger(),"unexpectedly failed whith %s",e.what()); } } } /************************************** Date: January 28, 2021 Function: Constructor, executed only once, for initialization 功能: 构造函数, 只执行一次,用于初始化 ***************************************/ turn_on_robot::turn_on_robot():rclcpp::Node ("wheeltec_robot") { Sampling_Time=0; Power_voltage=0; //Clear the data //清空数据 memset(&Robot_Pos, 0, sizeof(Robot_Pos)); memset(&Robot_Vel, 0, sizeof(Robot_Vel)); memset(&Receive_Data, 0, sizeof(Receive_Data)); memset(&Send_Data, 0, sizeof(Send_Data)); memset(&Mpu6050_Data, 0, sizeof(Mpu6050_Data)); //ros::NodeHandle private_nh("~"); //Create a node handle //创建节点句柄 //The private_nh.param() entry parameter corresponds to the initial value of the name of the parameter variable on the parameter server //private_nh.param()入口参数分别对应:参数服务器上的名称 参数变量名 初始值 this->declare_parameter<int>("serial_baud_rate",115200); this->declare_parameter<std::string>("usart_port_name", "/dev/ttyACM0"); this->declare_parameter<std::string>("odom_frame_id", "odom_combined"); this->declare_parameter<std::string>("robot_frame_id", "base_footprint"); this->declare_parameter<std::string>("gyro_frame_id", "gyro_link"); this->get_parameter("serial_baud_rate", serial_baud_rate);//Communicate baud rate 115200 to the lower machine //和下位机通信波特率115200 this->get_parameter("usart_port_name", usart_port_name);//Fixed serial port number //固定串口号 this->get_parameter("odom_frame_id", odom_frame_id);//The odometer topic corresponds to the parent TF coordinate //里程计话题对应父TF坐标 this->get_parameter("robot_frame_id", robot_frame_id);//The odometer topic corresponds to sub-TF coordinates //里程计话题对应子TF坐标 this->get_parameter("gyro_frame_id", gyro_frame_id);//IMU topics correspond to TF coordinates //IMU话题对应TF坐标 odom_publisher = create_publisher("odom", 2);//Create the odometer topic publisher //创建里程计话题发布者 imu_publisher = create_publisher<sensor_msgs::msg::Imu>("imu/data_raw", 2); //Create an IMU topic publisher //创建IMU话题发布者 voltage_publisher = create_publisher<std_msgs::msg::Float32>("PowerVoltage", 1);//Create a battery-voltage topic publisher //创建电池电压话题发布者 //回充发布者 Charging_publisher = create_publisher<std_msgs::msg::Bool>("robot_charging_flag", 10); Charging_current_publisher = create_publisher<std_msgs::msg::Float32>("robot_charging_current", 10); RED_publisher = create_publisher<std_msgs::msg::UInt8>("robot_red_flag", 10); //回充订阅者 Red_Vel_Sub = create_subscription<geometry_msgs::msg::Twist>( "red_vel", 10, std::bind(&turn_on_robot::Red_Vel_Callback, this, std::placeholders::_1)); Recharge_Flag_Sub = create_subscription<std_msgs::msg::Int8>( "robot_recharge_flag", 10, std::bind(&turn_on_robot::Recharge_Flag_Callback, this,std::placeholders::_1)); //回充服务提供 SetCharge_Service=this->create_service<turtlesim::srv::Spawn>\ ("/set_charge",std::bind(&turn_on_robot::Set_Charge_Callback,this, std::placeholders::_1 ,std::placeholders::_2)); //Set the velocity control command callback function //速度控制命令订阅回调函数设置 Cmd_Vel_Sub = create_subscription<geometry_msgs::msg::Twist>( "cmd_vel", 2, std::bind(&turn_on_robot::Cmd_Vel_Callback, this, _1)); RCLCPP_INFO(this->get_logger(),"wheeltec_robot Data ready"); //Prompt message //提示信息 try { //Attempts to initialize and open the serial port //尝试初始化与开启串口 Stm32_Serial.setPort(usart_port_name); //Select the serial port number to enable //选择要开启的串口号 Stm32_Serial.setBaudrate(serial_baud_rate); //Set the baud rate //设置波特率 serial::Timeout _time = serial::Timeout::simpleTimeout(2000); //Timeout //超时等待 Stm32_Serial.setTimeout(_time); Stm32_Serial.open(); //Open the serial port //开启串口 } catch (serial::IOException& e) { RCLCPP_ERROR(this->get_logger(),"wheeltec_robot can not open serial port,Please check the serial port cable! "); //If opening the serial port fails, an error message is printed //如果开启串口失败,打印错误信息 } if(Stm32_Serial.isOpen()) { RCLCPP_INFO(this->get_logger(),"wheeltec_robot serial port opened"); //Serial port opened successfully //串口开启成功提示 } } /************************************** Date: January 28, 2021 Function: Destructor, executed only once and called by the system when an object ends its life cycle 功能: 析构函数,只执行一次,当对象结束其生命周期时系统会调用这个函数 ***************************************/ turn_on_robot::~turn_on_robot() { //Sends the stop motion command to the lower machine before the turn_on_robot object ends //对象turn_on_robot结束前向下位机发送停止运动命令 Send_Data.tx[0]=0x06; Send_Data.tx[1] = FRAME_HEADER; Send_Data.tx[2] = 0; //The target velocity of the X-axis of the robot //机器人X轴的目标线速度 Send_Data.tx[4] = 0; Send_Data.tx[3] = 0; //The target velocity of the Y-axis of the robot //机器人Y轴的目标线速度 Send_Data.tx[6] = 0; Send_Data.tx[5] = 0; //The target velocity of the Z-axis of the robot //机器人Z轴的目标角速度 Send_Data.tx[8] = 0; Send_Data.tx[7] = 0; Send_Data.tx[9]=Check_Sum(9,SEND_DATA_CHECK); //Check the bits for the Check_Sum function //校验位,规则参见Check_Sum函数 Send_Data.tx[10]=0x0d; Send_Data.tx[11]=0x0a; try { Stm32_Serial.write(Send_Data.tx,sizeof (Send_Data.tx)); //Send data to the serial port //向串口发数据 } catch (serial::IOException& e) { RCLCPP_ERROR(this->get_logger(),"Unable to send data through serial port"); //If sending data fails, an error message is printed //如果发送数据失败,打印错误信息 } Stm32_Serial.close(); //Close the serial port //关闭串口 RCLCPP_INFO(this->get_logger(),"Shutting down"); //Prompt message //提示信息 } turn_on_wheeltec_robot.launch.py文件代码为: import os from pathlib import Path import launch from launch.actions import SetEnvironmentVariable from ament_index_python.packages import get_package_share_directory from launch import LaunchDescription from launch.actions import (DeclareLaunchArgument, GroupAction, IncludeLaunchDescription, SetEnvironmentVariable) from launch.launch_description_sources import PythonLaunchDescriptionSource from launch.substitutions import LaunchConfiguration, PythonExpression from launch_ros.actions import PushRosNamespace import launch_ros.actions from launch.conditions import IfCondition from launch.conditions import UnlessCondition def generate_launch_description(): # Get the launch directory bringup_dir = get_package_share_directory('turn_on_wheeltec_robot') launch_dir = os.path.join(bringup_dir, 'launch') ekf_config = Path(get_package_share_directory('turn_on_wheeltec_robot'), 'config', 'ekf.yaml') ekf_carto_config = Path(get_package_share_directory('turn_on_wheeltec_robot'), 'config', 'ekf_carto.yaml') imu_config = Path(get_package_share_directory('turn_on_wheeltec_robot'), 'config', 'imu.yaml') carto_slam = LaunchConfiguration('carto_slam', default='false') carto_slam_dec = DeclareLaunchArgument('carto_slam',default_value='false') wheeltec_robot = IncludeLaunchDescription( PythonLaunchDescriptionSource(os.path.join(launch_dir, 'base_serial.launch.py')), ) robot_ekf = IncludeLaunchDescription( PythonLaunchDescriptionSource(os.path.join(launch_dir, 'wheeltec_ekf.launch.py')), launch_arguments={'carto_slam':carto_slam}.items(), ) base_to_link = launch_ros.actions.Node( package='tf2_ros', executable='static_transform_publisher', name='base_to_link', arguments=['0', '0', '0','0', '0','0','base_footprint','base_link'], ) base_to_gyro = launch_ros.actions.Node( package='tf2_ros', executable='static_transform_publisher', name='base_to_gyro', arguments=['0', '0', '0','0', '0','0','base_link','gyro_link'], ) imu_filter_node = launch_ros.actions.Node( package='imu_filter_madgwick', executable='imu_filter_madgwick_node', parameters=[imu_config] ) # joint_state_publisher_node = launch_ros.actions.Node( # package='joint_state_publisher', # executable='joint_state_publisher', # name='joint_state_publisher', # ) #select a robot model,the default model is mini_mec #minibot.launch.py contains commonly used robot models #launch_arguments choices:mini_mec/mini_akm/mini_tank/mini_4wd/mini_diff/mini_omni/brushless_senior_diff #!!!At the same time, you need to modify ld.add_action(minibot_type) and #ld.add_action(flagship_type) minibot_type = IncludeLaunchDescription( PythonLaunchDescriptionSource(os.path.join(launch_dir, 'robot_mode_description_minibot.launch.py')), launch_arguments={'bike_robot': 'true'}.items(), ) #robot_mode_description.launch.py contains flagship products, usually larger chassis robots #launch_arguments choices: #senior_akm/top_akm_bs/top_akm_dl #senior_mec_bs/senior_mec_dl/top_mec_bs/top_mec_dl/ mec_EightDrive_robot/flagship_mec_bs_robot/flagship_mec_dl_robot�� #senior_omni/top_omni #senior_4wd_bs_robot/senior_4wd_dl_robot/flagship_4wd_bs_robot/flagship_4wd_dl_robot/top_4wd_bs_robot/top_4wd_dl_robot #senior_diff_robot/four_wheel_diff_bs/four_wheel_diff_dl/flagship_four_wheel_diff_bs_robot/flagship_four_wheel_diff_dl_robot #!!!At the same time, you need to modify ld.add_action(flagship_type) and #ld.add_action(minibot_type) flagship_type = IncludeLaunchDescription( PythonLaunchDescriptionSource(os.path.join(launch_dir, 'robot_mode_description.launch.py')), launch_arguments={'senior_akm': 'true'}.items(), ) ld = LaunchDescription() ld.add_action(minibot_type) #ld.add_action(flagship_type) ld.add_action(carto_slam_dec) ld.add_action(wheeltec_robot) ld.add_action(base_to_link) ld.add_action(base_to_gyro) # ld.add_action(joint_state_publisher_node) ld.add_action(imu_filter_node) ld.add_action(robot_ekf) return ld base_serial.launch.py文件代码为: from launch import LaunchDescription from launch.actions import DeclareLaunchArgument from launch.substitutions import LaunchConfiguration from launch.conditions import IfCondition from launch.conditions import UnlessCondition import launch_ros.actions #def launch(launch_descriptor, argv): def generate_launch_description(): return LaunchDescription([ launch_ros.actions.Node( package='turn_on_wheeltec_robot', executable='wheeltec_robot_node', output='screen', parameters=[{'usart_port_name': '/dev/ttyACM0', 'serial_baud_rate':115200, 'robot_frame_id': 'base_footprint', 'odom_frame_id': 'odom_combined', 'cmd_vel': 'cmd_vel',}], ) ]) robot_mode_description_minibot.launch.py文件代码为: import os from ament_index_python.packages import get_package_share_directory import launch_ros.actions from launch import LaunchDescription from launch.actions import DeclareLaunchArgument, GroupAction, SetEnvironmentVariable from launch.conditions import IfCondition from launch.substitutions import LaunchConfiguration, PythonExpression from launch_ros.actions import LoadComposableNodes from launch_ros.actions import Node from launch_ros.descriptions import ComposableNode from nav2_common.launch import RewrittenYaml def generate_robot_node(robot_urdf,child): return launch_ros.actions.Node( package='robot_state_publisher', executable='robot_state_publisher', name=f'robot_state_publisher_{child}', arguments=[os.path.join(get_package_share_directory('wheeltec_robot_urdf'), 'urdf', robot_urdf)], ) def generate_static_transform_publisher_node(translation, rotation, parent, child): return launch_ros.actions.Node( package='tf2_ros', executable='static_transform_publisher', name=f'base_to_{child}', arguments=[translation[0], translation[1], translation[2], rotation[0], rotation[1], rotation[2], parent, child], ) def generate_launch_description(): bike_robot = LaunchConfiguration('bike_robot', default='false') bike_robot_ = GroupAction( condition=IfCondition(bike_robot), actions=[ generate_robot_node('xuan_bike_robot.urdf','bike_robot'), generate_static_transform_publisher_node(['0.048', '0', '0.18'], ['0', '0', '0'], 'base_link', 'laser'), generate_static_transform_publisher_node(['0.048', '0', '0.18'], ['0', '0', '0'], 'base_link', 'camera_link'), ]) # Create the launch description and populate ld = LaunchDescription() # Set environment variables # Declare the launch options #ld.add_action(declare_use_composition_cmd) # Add the actions to launch all of the localiztion nodes ld.add_action(mini_mec_) ld.add_action(mini_akm_) ld.add_action(mini_tank_) ld.add_action(mini_4wd_) ld.add_action(mini_diff_) ld.add_action(brushless_senior_diff_) ld.add_action(bike_robot_) return ld xuan_bike_robot.urdf文件代码为: <?xml version="1.0"?> <robot name="wheeltec_robot"> <visual> <geometry> <mesh filename="file:///home/deepbot/ros-relate/wheeltec_ros2/src/wheeltec_robot_urdf/wheeltec_robot_urdf/meshes/Xuan-release.stl"scale="0.001 0.001 0.001"/> </geometry> <origin xyz="0 0 0" rpy="0 0 0"/> <material name="blue"> <color rgba="0 0 0.8 0.5"/> </material> </visual> </robot>

#include <memory> #include <string> #include <chrono> #include <thread> #include <rclcpp/rclcpp.hpp> #include <geometry_msgs/msg/twist.hpp> #include #include <tf2/LinearMath/Quaternion.h> #include <tf2_geometry_msgs/tf2_geometry_msgs.hpp> #include <tf2/utils.h> #include <cmath> using namespace std::chrono_literals; class MyRobotNode : public rclcpp::Node { public: MyRobotNode() : Node("my_robot_node"), status_(1), task1_running_(false), target_reached_(false), linear_velocity_(0.1), angular_velocity_(0.5) { subscription_ = this->create_subscription<geometry_msgs::msg::Twist>( "used_cmd_vel", 10, std::bind(&MyRobotNode::topic_callback, this, std::placeholders::_1)); this->declare_parameter<int>("status", 1); timer_ = this->create_wall_timer( 1s, std::bind(&MyRobotNode::timer_callback, this)); publisher_ = this->create_publisher<geometry_msgs::msg::Twist>("vel", 10); odom_subscription_ = this->create_subscription( "/odometry/filtered", 10, std::bind(&MyRobotNode::odomCallback, this, std::placeholders::_1)); } private: void topic_callback(const geometry_msgs::msg::Twist::SharedPtr msg) { if (status_ == 0 && !task1_running_) { RCLCPP_INFO(this->get_logger(), "Publishing cmd_vel to vel"); publisher_->publish(*msg); } } void timer_callback() { int current_status = this->get_parameter("status").as_int(); if (current_status != status_) { status_ = current_status; if (status_ == 0 && task1_running_) { task1_running_ = false; RCLCPP_INFO(this->get_logger(), "Status changed to 0, starting to publish cmd_vel"); } else if (status_ == 1 && !task1_running_) { t

分析下列程序的运行namespace nav_core { /** * @class BaseLocalPlanner * @brief Provides an interface for local planners used in navigation. All local planners written as plugins for the navigation stack must adhere to this interface. / class BaseLocalPlanner{ public: /* * @brief Given the current position, orientation, and velocity of the robot, compute velocity commands to send to the base * @param cmd_vel Will be filled with the velocity command to be passed to the robot base * @return True if a valid velocity command was found, false otherwise / virtual bool computeVelocityCommands(geometry_msgs::Twist& cmd_vel) = 0; /* * @brief Check if the goal pose has been achieved by the local planner * @return True if achieved, false otherwise / virtual bool isGoalReached() = 0; /* * @brief Set the plan that the local planner is following * @param plan The plan to pass to the local planner * @return True if the plan was updated successfully, false otherwise / virtual bool setPlan(const std::vector<geometry_msgs::PoseStamped>& plan) = 0; /* * @brief Constructs the local planner * @param name The name to give this instance of the local planner * @param tf A pointer to a transform listener * @param costmap_ros The cost map to use for assigning costs to local plans / virtual void initialize(std::string name, tf2_ros::Buffer tf, costmap_2d::Costmap2DROS* costmap_ros) = 0; /** * @brief Virtual destructor for the interface */ virtual ~BaseLocalPlanner(){} protected: BaseLocalPlanner(){} }; }; // namespace nav_core #endif // NAV_CORE_BASE_LOCAL_PLANNER_H

/** * @brief 传感器外参标定库 * @author ZhengfengGu. any question please send mail to *[email protected] * @date 2025-5-22 * @version V1.0.0 * @copyright Copyright (c) 2003-无固定期限 杭州士腾科技有限公司 ********************************************************************* * @attention * 重要信息: * @par 修改日志: * * Date Version Author Description * 2025/5/22 1.0.0 ZhengfengGu 创建初始版本 * * ********************************************************************** */ #pragma once #include <common/sys_logger.h> #include #include <rclcpp/rclcpp.hpp> #include <sensor_msgs/msg/imu.hpp> #include <sensor_msgs/msg/laser_scan.hpp> #include <string> #include "calib_cfg/calib_cfg.h" #include "calib_common/time.h" #include "calibration_component/calibration_def.h" #include "geometry_msgs/msg/twist.hpp" #include "sensor/sensor_dispatch.h" // #include "mrp_interfaces/msg/motor_data.hpp" #include "mrp_interfaces/msg/motor_status_data.hpp" #include "mrp_interfaces/msg/motor_control_data.hpp" namespace mrp { namespace calib { // template <typename NodeT = rclcpp::Node::SharedPtr> class CalibrationComponent { public: /** * @brief 传感器外参标定库. * @param[in] i_lg [mrp::common::LoggerPtr] 日志库指针 * @param[in] i_init_param [InitExternalParam] * i_init_param.laser: 激光初始外参 * i_init_param.laser.x: 激光x轴偏移 * ... * i_init_param.imu: IMU初始外参 * i_init_param.imu.x: IMU x轴偏移 * ... * 初始外参(机械安装值),不标定的传感器初始外参可以不赋值 * @param[in] i_robot_param 机器人参数 * i_robot_param.model 0:差速, 1:阿克曼, 2:单舵轮 * i_robot_param.l:轴距, * i_robot_param.d:舵轮距离中心偏移, * i_robot_param.steer_offset:舵轮零偏(一般给0) */ CalibrationComponent( mrp::common::LoggerPtr i_lg, mrp_interfaces::calibration_component::InitExternalParam i_init_param, mrp_interfaces::calibration_component::RobotParam i_robot_param); ~CalibrationComponent(); /* * @brief * 单舵轮模型添加里程计数据,在标定雷达和里程计时,需要实时添加车辆控制信息, * 时间戳必须准确添加 * @param[in] header [std_msgs::msg::Header] * @param[in] msg [mrp_interfaces::calibration_component::SingleSteerControl] * 里程计数据 * @return void */ void AddSensorData( const std_msgs::msg::Header& header, const std::vector<mrp_interfaces::msg::MotorStatusData>& motor_datas); /* * @brief * 添加雷达数据 * @param[in] msg [sensor_msgs::msg::LaserScan::SharedPt] 雷达数据 * @return void */ void AddSensorData(const sensor_msgs::msg::LaserScan::SharedPtr msg); /* * @brief * 添加IMU数据 * @param[in] msg [sensor_msgs::msg::Imu::SharedPtr msg] IMU数据 * @return void */ void AddSensorData(const sensor_msgs::msg::Imu::SharedPtr msg); /** * @breif 复位状态,开始标定 * @param[in] i_calib_mode [CalibMode] * i_calib_mode.mode:标定模式,0:激光+里程计+IMU, * 1:激光+里程计,2:IMU * i_calib_mode.move_dist:移动距离 (单位m) * @return error_code [int] -1:模式错误 -2:机器人模型错误 * @retval int. */ int StartCalibration( mrp_interfaces::calibration_component::CalibMode i_calib_mode); /** * @brief 停止标定 */ void StopCalibration(); /* * @brief 获取单舵轮模型标定运动指令 * @param[out] cmd_vel * [mrp_interfaces::calibration_component::SingleSteerControl] 标定运动指令 * @retval void */ void GetCalibrationMoveCommand( std::vector<mrp_interfaces::msg::MotorControlData>& motor_datas); /** * @brief 获取标定状态和结果 * @param[out] calib_result [std::map<std::string, * mrp_interfaces::calibration_component::ExternalParam>] 标定结果   * first: 外设类型(可选值: "lidar", "odom", "imu", "camera")     * second: 外参结构体(其中舵角零偏在second.yaw中) * @return calib_status [int] 0:未开始 3:进行中 5:完成 6:失败 * 状态为 NONE = 0, * WAITING, * INITIALIZING, * RUNNING, * PAUSED, * FINISHED, * FAILED * @retval int */ int GetCalibrationStatusAndResult( std::map<std::string, mrp_interfaces::calibration_component::ExternalParam>& calib_result); void DebugPrint(); private: void CalcuteOdom(const sensor::MotorData& msg); enum class ActionStatus { NONE = 0, WAITING, INITIALIZING, RUNNING, PAUSED, FINISHED, FAILED }; std::shared_ptr<CalibCfg> config_; mrp::common::LoggerPtr logger_; std::shared_ptr<sensor::SensorDispatch> sensor_dispatch_; std::deque<sensor::MotorData> odom_buffer_; struct { double x = 0.0; double y = 0.0; double yaw = 0.0; } current_odom_; bool is_forward_phase_ = true, is_left_phase_ = true; double origin_x = 0, origin_y = 0, origin_yaw = 0; bool move_initialized_ = false; std::deque<common::Time> control_times_; }; } // namespace calib } // namespace mrp 逐行翻译

最新推荐

recommend-type

高分子与计算机模拟.doc

高分子与计算机模拟.doc
recommend-type

模块化多无人机配送系统的设计和控制.zip

Matlab领域上传的视频是由对应的完整代码运行得来的,完整代码皆可运行,亲测可用,适合小白; 1、从视频里可见完整代码的内容 主函数:main.m; 调用函数:其他m文件;无需运行 运行结果效果图; 2、代码运行版本 Matlab 2019b;若运行有误,根据提示修改;若不会,私信博主; 3、运行操作步骤 步骤一:将所有文件放到Matlab的当前文件夹中; 步骤二:双击打开main.m文件; 步骤三:点击运行,等程序运行完得到结果; 4、仿真咨询 如需其他服务,可私信博主; 4.1 博客或资源的完整代码提供 4.2 期刊或参考文献复现 4.3 Matlab程序定制 4.4 科研合作
recommend-type

iBatisNet基础教程:入门级示例程序解析

iBatisNet是一个流行的.NET持久层框架,它提供了数据持久化层的解决方案。这个框架允许开发者通过配置文件或XML映射文件来操作数据库,从而将数据操作与业务逻辑分离,提高了代码的可维护性和扩展性。由于它具备与Java领域广泛使用的MyBatis类似的特性,对于Java开发者来说,iBatisNet易于上手。 ### iBatisNet入门关键知识点 1. **框架概述**: iBatisNet作为一个持久层框架,其核心功能是减少数据库操作代码。它通过映射文件实现对象与数据库表之间的映射,使得开发者在处理数据库操作时更加直观。其提供了一种简单的方式,让开发者能够通过配置文件来管理SQL语句和对象之间的映射关系,从而实现对数据库的CRUD操作(创建、读取、更新和删除)。 2. **配置与初始化**: - **配置文件**:iBatisNet使用配置文件(通常为`SqlMapConfig.xml`)来配置数据库连接和SQL映射文件。 - **环境设置**:包括数据库驱动、连接池配置、事务管理等。 - **映射文件**:定义SQL语句和结果集映射到对象的规则。 3. **核心组件**: - **SqlSessionFactory**:用于创建SqlSession对象,它类似于一个数据库连接池。 - **SqlSession**:代表一个与数据库之间的会话,可以执行SQL命令,获取映射对象等。 - **Mapper接口**:定义与数据库操作相关的接口,通过注解或XML文件实现具体方法与SQL语句的映射。 4. **基本操作**: - **查询(SELECT)**:使用`SqlSession`的`SelectList`或`SelectOne`方法从数据库查询数据。 - **插入(INSERT)**:使用`Insert`方法向数据库添加数据。 - **更新(UPDATE)**:使用`Update`方法更新数据库中的数据。 - **删除(DELETE)**:使用`Delete`方法从数据库中删除数据。 5. **数据映射**: - **一对一**:单个记录与另一个表中的单个记录之间的关系。 - **一对多**:单个记录与另一个表中多条记录之间的关系。 - **多对多**:多个记录与另一个表中多个记录之间的关系。 6. **事务处理**: iBatisNet不会自动处理事务,需要开发者手动开始事务、提交事务或回滚事务。开发者可以通过`SqlSession`的`BeginTransaction`、`Commit`和`Rollback`方法来控制事务。 ### 具体示例分析 从文件名称列表可以看出,示例程序中包含了完整的解决方案文件`IBatisNetDemo.sln`,这表明它可能是一个可视化的Visual Studio解决方案,其中可能包含多个项目文件和资源文件。示例项目可能包括了数据库访问层、业务逻辑层和表示层等。而`51aspx源码必读.txt`文件可能包含关键的源码解释和配置说明,帮助开发者理解示例程序的代码结构和操作数据库的方式。`DB_51aspx`可能指的是数据库脚本或者数据库备份文件,用于初始化或者恢复数据库环境。 通过这些文件,我们可以学习到如何配置iBatisNet的环境、如何定义SQL映射文件、如何创建和使用Mapper接口、如何实现基本的CRUD操作,以及如何正确地处理事务。 ### 学习步骤 为了有效地学习iBatisNet,推荐按照以下步骤进行: 1. 了解iBatisNet的基本概念和框架结构。 2. 安装.NET开发环境(如Visual Studio)和数据库(如SQL Server)。 3. 熟悉示例项目结构,了解`SqlMapConfig.xml`和其他配置文件的作用。 4. 学习如何定义和使用映射文件,如何通过`SqlSessionFactory`和`SqlSession`进行数据库操作。 5. 逐步实现增删改查操作,理解数据对象到数据库表的映射原理。 6. 理解并实践事务处理机制,确保数据库操作的正确性和数据的一致性。 7. 通过`51aspx源码必读.txt`学习示例项目的代码逻辑,加深理解。 8. 在数据库中尝试运行示例程序的SQL脚本,观察操作结果。 9. 最后,尝试根据实际需求调整和扩展示例程序,加深对iBatisNet的掌握。 ### 总结 iBatisNet是一个为.NET环境量身定制的持久层框架,它使数据库操作变得更加高效和安全。通过学习iBatisNet的入门示例程序,可以掌握.NET中数据持久化的高级技巧,为后续的复杂数据处理和企业级应用开发打下坚实的基础。
recommend-type

【Dify工作流应用搭建指南】:一站式掌握文档图片上传系统的构建与优化

# 1. Dify工作流应用概述 在现代IT行业中,工作流自动化逐渐成为推动效率和减少人为错误的关键因素。本章将介绍Dify工作流应用的基本概念、核心优势以及应用场景,以助于理解其在企业流程中的重要性。 ## 工作流的定义与重要性 工作流是一系列按照既定顺序完成任务的过程,它旨在实现任务分配、管理和监控的自动化。在企业环境中,工作流应用可以提高任务执行效率、降低
recommend-type

Tree-RAG

<think>我们正在讨论Tree-RAG技术,需要结合用户提供的引用和之前对话中的技术背景。用户之前的问题是关于电力行业设备分析报告中Fine-tuned LLM与RAG的结合,现在转向Tree-RAG技术原理、应用场景及与传统RAG的对比。 根据引用[1]和[4]: - 引用[1]提到GraphRAG与传统RAG的7大区别,指出GraphRAG有更好的数据扩展性,但索引创建和查询处理更复杂。 - 引用[4]提到RAPTOR(Recursive Abstractive Processing for Tree-Organized Retrieval),这是一种Tree-RAG的实现,通过层次
recommend-type

VC数据库实现员工培训与仓库管理系统分析

### VC数据库实例:员工培训系统、仓库管理系统知识点详解 #### 员工培训系统 员工培训系统是企业用来管理员工教育和培训活动的平台,它使得企业能够有效地规划和执行员工的培训计划,跟踪培训进程,评估培训效果,并且提升员工的技能水平。以下是员工培训系统的关键知识点: 1. **需求分析**:首先需要了解企业的培训需求,包括员工当前技能水平、岗位要求、职业发展路径等。 2. **课程管理**:系统需要具备创建和管理课程的能力,包括课程内容、培训方式、讲师信息、时间安排等。 3. **用户管理**:包括员工信息管理、培训师信息管理以及管理员账户管理,实现对参与培训活动的不同角色进行有效管理。 4. **培训进度跟踪**:系统能够记录员工的培训情况,包括参加的课程、完成的课时、获得的证书等信息。 5. **评估系统**:提供考核工具,如考试、测验、作业提交等方式,来评估员工的学习效果和知识掌握情况。 6. **报表统计**:能够生成各种统计报表,如培训课程参与度报表、员工培训效果评估报表等,以供管理层决策。 7. **系统集成**:与企业其它信息系统,如人力资源管理系统(HRMS)、企业资源规划(ERP)系统等,进行集成,实现数据共享。 8. **安全性设计**:确保培训资料和员工信息的安全,需要有相应的权限控制和数据加密措施。 #### 仓库管理系统 仓库管理系统用于控制和管理仓库内部的物资流转,确保物资的有效存储和及时供应,以及成本控制。以下是仓库管理系统的关键知识点: 1. **库存管理**:核心功能之一,能够实时监控库存水平、跟踪库存流动,预测库存需求。 2. **入库操作**:系统要支持对物品的接收入库操作,包括物品验收、编码、上架等。 3. **出库操作**:管理物品的出库流程,包括订单处理、拣货、打包、发货等环节。 4. **物料管理**:对物料的分类管理、有效期管理、质量状态管理等。 5. **仓库布局优化**:系统应具备优化仓库布局功能,以提高存储效率和拣选效率。 6. **设备管理**:管理仓库内使用的各种设备,如叉车、货架、输送带等的维护和调度。 7. **数据报表**:生成各类数据报表,如库存报表、周转报表、成本报表等,提供管理决策支持。 8. **条码与RFID技术**:通过条码扫描或RFID技术,实现仓库作业的自动化和快速识别。 9. **系统集成**:与供应链管理系统(SCM)、制造执行系统(MES)、订单管理系统等进行集成,提升整个供应链的效率。 #### 文件名称列表解读 1. **第04章仓库管理系统**:这部分内容很可能是整个培训或教学材料中关于仓库管理系统的核心章节。它可能详细介绍了仓库管理系统的功能模块、操作流程、数据结构、安全性和维护等内容。 2. **第03章员工培训系统**:这一章节专注于讲解员工培训系统的设计和实施。可能包含培训系统的架构设计、用户交互设计、数据库设计、安全性考虑、系统测试及案例分析等。 通过对以上系统的学习和应用,可以理解IT系统在企业管理中所扮演的角色,提升企业管理效率和员工技能水平。同时,掌握这些系统的设计与实现,对于IT专业人员来说具有重要的实践价值。
recommend-type

【IFIX 4.5 MB1 驱动更新深度解析】:专家分享关键步骤,避免更新陷阱

# 摘要 本文全面介绍了IFIX 4.5 MB1驱动更新的各个方面,包括技术基础、更新的必要性、实践步骤、避免更新陷阱的策略和案例分析。首先概述了IFIX 4.5 MB1的驱动更新概览和技术架构,强调了更新对于提升系统性能和安全性的重要性。然后,具体阐述了更新前的准备、具体操作步骤以及更新后的验证和问题处理。为规避风险,文章接着提出风险评估、预防措施以及更新后的监控和维护方法。最后,通过成功和失败的案例分析,提供了实用的专
recommend-type

display: grid;瀑布流

<think>我们正在解决使用CSS Grid实现瀑布流布局时的重排问题。瀑布流布局中,项目通常具有不同的高度,并按列排列,每列项目依次填充,形成类似瀑布的效果。使用Grid布局时,如果不采取特殊措施,项目会严格遵循网格轨道,导致出现空白间隙或破坏视觉顺序的重排问题。 引用[1]提到Grid布局提供了强大的布局能力,但需要平衡功能性和性能。引用[2]和引用[3]都提到了瀑布流布局的动态内容排版问题,以及使用容器查询和JavaScript计算的方法。 解决方案思路: 1. 使用Grid布局创建列结构,但允许项目跨越多个行,从而避免严格网格带来的空白。 2. 结合JavaScript动
recommend-type

C++实现高效文件传输源码解析

根据给定的信息,可以看出我们主要讨论的是“C++文件传输源码”。以下是关于C++文件传输源码的详细知识点: 1. C++基础知识点: - C++是一种静态类型的、编译式的、通用的编程语言。 - 它支持面向对象编程(OOP)的多个概念,比如封装、继承和多态。 - 文件传输功能通常涉及到输入输出流(iostream)和文件系统库(file system)。 - C++标准库提供了用于文件操作的类,如`<fstream>`中的`ifstream`(文件输入流)和`ofstream`(文件输出流)。 2. 文件传输概念: - 文件传输通常指的是在不同系统、网络或存储设备间传递文件的过程。 - 文件传输可以是本地文件系统的操作,也可以是通过网络协议(如TCP/IP)进行的远程传输。 - 在C++中进行文件传输,我们可以编写程序来读取、写入、复制和移动文件。 3. C++文件操作: - 使用`<fstream>`库中的`ifstream`和`ofstream`类可以进行简单的文件读写操作。 - 对于文件的读取,可以创建一个`ifstream`对象,并使用其`open`方法打开文件,然后使用`>>`运算符或`getline`函数读取文件内容。 - 对于文件的写入,可以创建一个`ofstream`对象,并同样使用`open`方法打开文件,然后使用`<<`运算符或`write`方法写入内容。 - 使用`<filesystem>`库可以进行更复杂的文件系统操作,如创建、删除、重命名和移动目录或文件。 4. 网络文件传输: - 在网络中进行文件传输,会涉及到套接字编程(socket programming)。 - C++提供了`<sys/socket.h>`(在Unix-like系统中)和`<winsock2.h>`(在Windows系统中)用于网络编程。 - 基本的网络文件传输流程包括:创建服务器和客户端套接字,绑定和监听端口,连接建立,数据传输,最后关闭连接。 - 在C++中进行网络编程还需要正确处理异常和错误,以及实现协议如TCP/IP或UDP/IP来确保数据传输的可靠性。 5. 实现文件传输的源码解读: - C++文件传输源码可能会包含多个函数或类,用于处理不同的文件传输任务。 - 一个典型的源码文件可能会包含网络监听、数据包处理、文件读写等功能模块。 - 代码中可能会涉及多线程或异步IO,以提高文件传输的效率和响应速度。 - 安全性也是重要的考虑因素,源码中可能会实现加密解密机制以保护传输数据。 6. 实践中的应用: - 在实际应用中,C++文件传输源码可能被用于文件共享服务、分布式系统、网络备份工具等。 - 了解和掌握文件传输的源码,可以为开发者提供定制和优化文件传输服务的机会。 - 考虑到性能和资源限制,进行文件传输的源码优化也是必要的,比如在大数据量传输时实现缓冲机制、流控制、重传机制等。 7. 常见问题与调试技巧: - 编写文件传输代码时,常见的问题包括路径错误、权限问题、网络中断和数据不完整等。 - 调试时可以使用C++的断点调试、日志记录和单元测试来检查和确认代码的正确性。 - 处理网络文件传输时,还可能需要借助网络分析工具来诊断网络问题。 以上知识点涵盖了C++文件传输源码的多个方面,包括基础编程、文件操作、网络编程、安全性以及实践应用等。对于想要深入理解和实现C++文件传输功能的开发者来说,这些知识是必备的。掌握这些知识可以大大提高在C++环境下开发文件传输功能的效率和质量。
recommend-type

【IFIX 4.5 MB1 驱动安装与配置指南】:专业步骤解析,确保一次性成功安装

# 摘要 本文针对IFIX 4.5 MB1驱动进行了全面的探讨,涵盖了系统要求、安装前准备、详细的安装步骤、配置与优化,以及案例分析。首先介绍了IFIX 4.5 MB1驱动的功能与应用环境,然后详细阐述了安装前的系统要求、准备工作以及如何获取并验证驱动资源。第三章详细说明了驱动安装向导的使用、系统检测、实际安装操作步骤及后续的验证和测试。第四章则深入探讨了驱动的配置、性能优化、故障排查与修复。最后,在第五章中,通过不同场景下的应用案例,展示了驱动的实际应用价值和与其他设备驱动协同工作的能力,同时对未来驱动的更新和维护提出了展望。本文旨在为技术人员提供一个全面的指南,以确保IFIX 4.5 MB