活动介绍

HAL_ADC_Start(&hadc1); while(!(ADC1->ISR & (1<<2))){}; ADC_Value[0] =HAL_ADC_GetValue(&hadc1); while(!(ADC1->ISR & (1<<2))){}; ADC_Value[1] =HAL_ADC_GetValue(&hadc1); HAL_ADC_Stop(&hadc1); printf("key:%d light:%d",ADC_Value[0],ADC_Value[1]); setTim(&tim,500); 如何分辨采集的数据属于key的还是light的

时间: 2025-07-13 18:43:44 浏览: 9
<think>嗯,用户的问题是关于如何在使用STM32 HAL库时区分ADC不同通道的数据,特别是按键(key)和光敏传感器(light)的数据。我需要先理清楚他们的应用场景。通常,STM32的ADC模块可以配置为多通道转换,但用户可能需要同时或交替读取这两个通道的数据。 首先,用户可能已经配置了ADC的多通道扫描模式,但不知道如何分别获取各个通道的数据。根据引用1,STM32的ADC有特定的特征,比如转换时间和分辨率,这可能影响多通道配置时的数据读取方式。然后,引用4提到五向键的ADC网络连接到核心板底座,这可能意味着按键和光敏传感器分别连接到不同的ADC通道,比如通道1和通道2。 接下来,用户需要知道如何区分这两个通道的数据。通常有两种方法:单次转换轮流采样和扫描模式+DMA传输。在单次转换模式下,每次切换通道并启动转换,然后读取数据。这种方法适用于不需要高速采样的场景,比如按键检测。而扫描模式配合DMA可以自动存储多个通道的数据,适合需要同时读取多个通道的情况,比如光敏传感器的实时监测。 然后,用户可能需要代码示例。例如,使用HAL_ADC_Start()和HAL_ADC_GetValue()函数,在每次转换前选择通道。或者在扫描模式下使用DMA,数据会按顺序存储在数组中。引用3中的UART传输代码可能用于调试,用户可以将不同通道的数据通过printf输出,帮助区分。 还要考虑用户可能的配置错误,比如没有正确设置ADC的扫描模式或DMA缓冲区大小。需要提醒用户检查ADC的配置,确保每个通道的转换顺序正确,DMA能够正确搬运数据到指定数组位置。 此外,用户可能需要了解如何通过软件逻辑处理数据。比如,在DMA模式下,数组的第一个元素是通道1的数据,第二个是通道2的数据。这样在代码中直接索引即可区分。 最后,生成相关问题时要围绕ADC配置、多通道处理、数据读取方法以及可能的优化和常见错误,帮助用户深入理解。</think>### STM32 HAL_ADC多通道数据区分方法 根据您提到的五向键ADC_KEY和光敏传感器通道需求,区分不同ADC通道数据的关键在于配置方式和数据读取策略。以下是具体实现方法: 1. **硬件连接确认** - 确认KEY和LIGHT分别连接到不同的ADC通道(如ADC1_IN1和ADC1_IN2) - 检查核心板底座连接是否对应ADC_KEY网络[^4] 2. **软件配置方法** ```c /* ADC通道配置示例 */ ADC_ChannelConfTypeDef sConfig = {0}; sConfig.Channel = ADC_CHANNEL_1; // 按键通道 sConfig.Rank = 1; sConfig.SamplingTime = ADC_SAMPLETIME_28CYCLES_5; HAL_ADC_ConfigChannel(&hadc1, &sConfig); sConfig.Channel = ADC_CHANNEL_2; // 光敏通道 sConfig.Rank = 2; HAL_ADC_ConfigChannel(&hadc1, &sConfig); ``` 3. **两种常用数据获取方式** **方式一:单次转换轮流采样** ```c HAL_ADC_Start(&hadc1); HAL_ADC_PollForConversion(&hadc1, 10); uint16_t key_value = HAL_ADC_GetValue(&hadc1); // 获取通道1数据 HAL_ADC_Start(&hadc1); HAL_ADC_PollForConversion(&hadc1, 10); uint16_t light_value = HAL_ADC_GetValue(&hadc1); // 获取通道2数据 ``` **方式二:扫描模式+DMA传输(推荐)** ```c uint16_t adc_values[2]; // 存储两个通道数据 HAL_ADC_Start_DMA(&hadc1, (uint32_t*)adc_values, 2); // 数据会自动更新到数组: // adc_values[0] -> 通道1(KEY) // adc_values[1] -> 通道2(LIGHT) ``` 4. **关键配置注意事项** - 在CubeMX中启用扫描模式(Scan Conversion Mode) - 设置连续转换模式(Continuous Conversion Mode)为Disable - 配置DMA为循环模式(Circular)实现自动更新[^2] - 调整采样时间避免通道间干扰[^1] 5. **数据验证方法** ```c // 通过串口输出验证(使用引用3的重定向方法) printf("Key:%d Light:%d\n", adc_values[0], adc_values[1]); ```
阅读全文

相关推荐

/** ****************************************************************************** * @file usart.c * @brief This file provides code for the configuration * of the USART instances. ****************************************************************************** * @attention * *
© Copyright (c) 2022 CSTX. * All rights reserved.
* * This software component is licensed by ST under BSD 3-Clause license, * the "License"; You may not use this file except in compliance with the * License. You may obtain a copy of the License at: * leigong opensource.org/licenses/BSD-3-Clause * ****************************************************************************** */ /* Includes ------------------------------------------------------------------*/ #include "usart.h" /* USER CODE BEGIN 0 */ #include "stdio.h" #include "string.h" uint8_t rxConut = 0; //数据长度 uint8_t regConut = 0; uint16_t USART_RX_STA=0; //接收状态标记 uint16_t USART2_RX_STA=0; uint8_t USART_RX_BUF[USART_REC_LEN]; //接收缓冲,最大USART_REC_LEN个字节. uint8_t USART2_RX_BUF[USART_REC_LEN]; __align(8) char usart_txBuff[USART_REC_LEN]; //字节对齐缓冲区 #ifdef __GNUC__ /* With GCC/RAISONANCE, small printf (option LD Linker->Libraries->Small printf set to 'Yes') calls __io_putchar() */ #define PUTCHAR_PROTOTYPE int __io_putchar(int ch) #else #define PUTCHAR_PROTOTYPE int fputc(int ch, FILE *f) #endif /* __GNUC__ */ /** * @brief Retargets the C library printf function to the USART. * @param None * @retval None */ PUTCHAR_PROTOTYPE { /* Place your implementation of fputc here */ /* e.g. write a character to the EVAL_COM1 and Loop until the end of transmission */ HAL_UART_Transmit(&huart1, (uint8_t *)&ch, 1, 0xFFFF); return ch; } //usart2的printf() void USART2_printf(char *fmt,...) { uint32_t i,length; va_list ap; va_start(ap,fmt); vsprintf(usart_txBuff,fmt,ap); va_end(ap); length=strlen((const char*)usart_txBuff); while((USART2->ISR&0x40)==0); for(i=0;i<length;i++) { USART2->TDR=usart_txBuff[i]; while((USART2->ISR&0x40)==0); } } /* USER CODE END 0 */ UART_HandleTypeDef huart1; UART_HandleTypeDef huart2; /* USART1 init function */ void MX_USART1_UART_Init(void) { /* USER CODE BEGIN USART1_Init 0 */ /* USER CODE END USART1_Init 0 */ /* USER CODE BEGIN USART1_Init 1 */ /* USER CODE END USART1_Init 1 */ huart1.Instance = USART1; huart1.Init.BaudRate = 115200; huart1.Init.WordLength = UART_WORDLENGTH_8B; huart1.Init.StopBits = UART_STOPBITS_1; huart1.Init.Parity = UART_PARITY_NONE; huart1.Init.Mode = UART_MODE_TX_RX; huart1.Init.HwFlowCtl = UART_HWCONTROL_NONE; huart1.Init.OverSampling = UART_OVERSAMPLING_16; huart1.Init.OneBitSampling = UART_ONE_BIT_SAMPLE_DISABLE; huart1.Init.ClockPrescaler = UART_PRESCALER_DIV1; huart1.AdvancedInit.AdvFeatureInit = UART_ADVFEATURE_NO_INIT; if (HAL_UART_Init(&huart1) != HAL_OK) { Error_Handler(); } if (HAL_UARTEx_SetTxFifoThreshold(&huart1, UART_TXFIFO_THRESHOLD_1_8) != HAL_OK) { Error_Handler(); } if (HAL_UARTEx_SetRxFifoThreshold(&huart1, UART_RXFIFO_THRESHOLD_1_8) != HAL_OK) { Error_Handler(); } if (HAL_UARTEx_DisableFifoMode(&huart1) != HAL_OK) { Error_Handler(); } /* USER CODE BEGIN USART1_Init 2 */ /* USER CODE END USART1_Init 2 */ } /* USART2 init function */ void MX_USART2_UART_Init(void) { /* USER CODE BEGIN USART2_Init 0 */ /* USER CODE END USART2_Init 0 */ /* USER CODE BEGIN USART2_Init 1 */ /* USER CODE END USART2_Init 1 */ huart2.Instance = USART2; huart2.Init.BaudRate = 9600; huart2.Init.WordLength = UART_WORDLENGTH_8B; huart2.Init.StopBits = UART_STOPBITS_1; huart2.Init.Parity = UART_PARITY_NONE; huart2.Init.Mode = UART_MODE_TX_RX; huart2.Init.HwFlowCtl = UART_HWCONTROL_NONE; huart2.Init.OverSampling = UART_OVERSAMPLING_16; huart2.Init.OneBitSampling = UART_ONE_BIT_SAMPLE_DISABLE; huart2.Init.ClockPrescaler = UART_PRESCALER_DIV1; huart2.AdvancedInit.AdvFeatureInit = UART_ADVFEATURE_NO_INIT; if (HAL_UART_Init(&huart2) != HAL_OK) { Error_Handler(); } /* USER CODE BEGIN USART2_Init 2 */ /* USER CODE END USART2_Init 2 */ } void HAL_UART_MspInit(UART_HandleTypeDef* uartHandle) { GPIO_InitTypeDef GPIO_InitStruct = {0}; if(uartHandle->Instance==USART1) { /* USER CODE BEGIN USART1_MspInit 0 */ /* USER CODE END USART1_MspInit 0 */ /* USART1 clock enable */ __HAL_RCC_USART1_CLK_ENABLE(); __HAL_RCC_GPIOB_CLK_ENABLE(); /**USART1 GPIO Configuration PB7 ------> USART1_RX PB6 ------> USART1_TX */ GPIO_InitStruct.Pin = GPIO_PIN_7|GPIO_PIN_6; GPIO_InitStruct.Mode = GPIO_MODE_AF_PP; GPIO_InitStruct.Pull = GPIO_NOPULL; GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW; GPIO_InitStruct.Alternate = GPIO_AF0_USART1; HAL_GPIO_Init(GPIOB, &GPIO_InitStruct); /* USART1 interrupt Init */ HAL_NVIC_SetPriority(USART1_IRQn, 0, 0); HAL_NVIC_EnableIRQ(USART1_IRQn); /* USER CODE BEGIN USART1_MspInit 1 */ /* USER CODE END USART1_MspInit 1 */ } else if(uartHandle->Instance==USART2) { /* USER CODE BEGIN USART2_MspInit 0 */ /* USER CODE END USART2_MspInit 0 */ /* USART2 clock enable */ __HAL_RCC_USART2_CLK_ENABLE(); __HAL_RCC_GPIOA_CLK_ENABLE(); /**USART2 GPIO Configuration PA2 ------> USART2_TX PA3 ------> USART2_RX */ GPIO_InitStruct.Pin = GPIO_PIN_2|GPIO_PIN_3; GPIO_InitStruct.Mode = GPIO_MODE_AF_PP; GPIO_InitStruct.Pull = GPIO_NOPULL; GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW; GPIO_InitStruct.Alternate = GPIO_AF1_USART2; HAL_GPIO_Init(GPIOA, &GPIO_InitStruct); /* USART2 interrupt Init */ HAL_NVIC_SetPriority(USART2_IRQn, 0, 0); HAL_NVIC_EnableIRQ(USART2_IRQn); /* USER CODE BEGIN USART2_MspInit 1 */ /* USER CODE END USART2_MspInit 1 */ } } void HAL_UART_MspDeInit(UART_HandleTypeDef* uartHandle) { if(uartHandle->Instance==USART1) { /* USER CODE BEGIN USART1_MspDeInit 0 */ /* USER CODE END USART1_MspDeInit 0 */ /* Peripheral clock disable */ __HAL_RCC_USART1_CLK_DISABLE(); /**USART1 GPIO Configuration PB7 ------> USART1_RX PB6 ------> USART1_TX */ HAL_GPIO_DeInit(GPIOB, GPIO_PIN_7|GPIO_PIN_6); /* USART1 interrupt Deinit */ HAL_NVIC_DisableIRQ(USART1_IRQn); /* USER CODE BEGIN USART1_MspDeInit 1 */ /* USER CODE END USART1_MspDeInit 1 */ } else if(uartHandle->Instance==USART2) { /* USER CODE BEGIN USART2_MspDeInit 0 */ /* USER CODE END USART2_MspDeInit 0 */ /* Peripheral clock disable */ __HAL_RCC_USART2_CLK_DISABLE(); /**USART2 GPIO Configuration PA2 ------> USART2_TX PA3 ------> USART2_RX */ HAL_GPIO_DeInit(GPIOA, GPIO_PIN_2|GPIO_PIN_3); /* USART2 interrupt Deinit */ HAL_NVIC_DisableIRQ(USART2_IRQn); /* USER CODE BEGIN USART2_MspDeInit 1 */ /* USER CODE END USART2_MspDeInit 1 */ } } /* USER CODE BEGIN 1 */ void USART_Interupt_Enable(void) { __HAL_UART_ENABLE_IT(&huart1,UART_IT_IDLE); //空闲中断使能 __HAL_UART_ENABLE_IT(&huart1,UART_IT_RXNE); //接收中断使能 __HAL_UART_CLEAR_IDLEFLAG(&huart1); __HAL_UART_ENABLE_IT(&huart2,UART_IT_IDLE); //空闲中断使能 __HAL_UART_ENABLE_IT(&huart2,UART_IT_RXNE); //接收中断使能 __HAL_UART_CLEAR_IDLEFLAG(&huart2); } //void USART1_IdleCallback(uint8_t*pData,uint16_t len) //{ // while(__HAL_UART_GET_FLAG(&huart1,UART_FLAG_TC)!=SET); // HAL_UART_Transmit(&huart2,pData,len,1000); //} //void USART2_IdleCallback(uint8_t*pData,uint16_t len) //{ // while(__HAL_UART_GET_FLAG(&huart2,UART_FLAG_TC)!=SET); // HAL_UART_Transmit(&huart1,pData,len,1000); //} /*串口中断处理函数*/ void USER_UartHandler(UART_HandleTypeDef* huart) { uint8_t res = 0; static uint8_t OnPow = 1,OnPow2 = 1; if(huart->Instance == USART1) { //接收中断 if(__HAL_UART_GET_FLAG(&huart1,UART_FLAG_RXNE)!=RESET) { HAL_UART_Receive(&huart1,&res,1,1000); //将数据放入缓冲区 if(rxConut<USART_REC_LEN) { USART_RX_BUF[rxConut]=res; rxConut++; } USART_RX_STA = REC_WAIT ; __HAL_UART_CLEAR_FLAG(&huart1,UART_FLAG_RXNE); } //空闲中断 if(__HAL_UART_GET_FLAG(&huart1,UART_FLAG_IDLE)!=RESET) { //一帧数据接收完成 if(OnPow) { USART_RX_STA = REC_WAIT ; OnPow = 0; }else {USART_RX_STA = REC_OK;} //USART1_IdleCallback(USART_RX_BUF,rxConut); rxConut =0; __HAL_UART_CLEAR_IDLEFLAG(&huart1); } }else if(huart->Instance == USART2) { //接收中断 if(__HAL_UART_GET_FLAG(&huart2,UART_FLAG_RXNE)!=RESET) { HAL_UART_Receive(&huart2,&res,1,1000); //将数据放入缓冲区 if(rxConut<USART_REC_LEN) { USART2_RX_BUF[rxConut]=res; rxConut++; regConut++; } USART2_RX_STA = REC_WAIT ; __HAL_UART_CLEAR_FLAG(&huart2,UART_FLAG_RXNE); } //空闲中断 if(__HAL_UART_GET_FLAG(&huart2,UART_FLAG_IDLE)!=RESET) { //一帧数据接收完成 if(OnPow2) { USART2_RX_STA = REC_WAIT ; OnPow2 = 0; }else {USART2_RX_STA = REC_OK;} //USART2_IdleCallback(USART2_RX_BUF,rx2Conut); rxConut =0; __HAL_UART_CLEAR_IDLEFLAG(&huart2); } } } //发送len个字节. //buf:发送区首地址 //len:发送的字节数(为了和本代码的接收匹配,这里建议不要超过64个字节) void CS_Reg_Send_Data(unsigned char *buf,unsigned char len) { unsigned char t; while((USART2->ISR&0x40)==0); for(t=0;t<len;t++) //循环发送数据 { USART2->TDR=buf[t]; while((USART2->ISR&0x40)==0); } regConut=0; memset(USART2_RX_BUF,0,USART_REC_LEN); } //查询接收到的数据 //buf:接收缓存首地址 //len:读到的数据长度 void cstx_reg_Receive_Data(unsigned char *buf,unsigned char *len) { unsigned char rxlen=regConut; unsigned char i=0; *len=0; //默认为0 if(USART2_RX_BUF[0]==0XC1)//接收到了数据,且接收完成了 { for(i=0;i<rxlen;i++) { buf[i]=USART2_RX_BUF[i]; } *len=regConut; //记录本次数据长度 } // regConut=0; //清零 memset(USART2_RX_BUF,0,USART_REC_LEN); } /* USER CODE END 1 */ /************************ (C) COPYRIGHT CSTX *****END OF FILE****/ 根据uart.c调整你刚才给我的main

/* USER CODE BEGIN Header */ /** ****************************************************************************** * @file : main.c * @brief : Main program body ****************************************************************************** * @attention * * Copyright (c) 2025 STMicroelectronics. * All rights reserved. * * This software is licensed under terms that can be found in the LICENSE file * in the root directory of this software component. * If no LICENSE file comes with this software, it is provided AS-IS. * ****************************************************************************** */ /* USER CODE END Header */ /* Includes ------------------------------------------------------------------*/ #include "main.h" #include "adc.h" #include "dma.h" #include "tim.h" #include "usart.h" #include "gpio.h" #include <string.h> // 用于memcpy函数 /* Private includes ----------------------------------------------------------*/ /* USER CODE BEGIN Includes */ #include <stdio.h> #include "arm_math.h" #include "arm_const_structs.h" // 必须包含这个头文件 /* USER CODE END Includes */ /* Private typedef -----------------------------------------------------------*/ /* USER CODE BEGIN PTD */ #define FFT_LENGTH 1024 __IO uint8_t AdcConvEnd = 0; uint16_t adcBuff[FFT_LENGTH];// float fft_inputbuf[FFT_LENGTH * 2]; // float fft_outputbuf[FFT_LENGTH]; // uint16_t a = 128; // #define LENGTH (FFT_LENGTH/2) // 确保LENGTH等于FFT_LENGTH的一半 float mag[LENGTH]; // 全局数组声明 uint32_t timeout = 0; /* USER CODE END PTD */ /* Private define ------------------------------------------------------------*/ /* USER CODE BEGIN PD */ /* USER CODE END PD */ /* Private macro -------------------------------------------------------------*/ /* USER CODE BEGIN PM */ /* USER CODE END PM */ /* Private variables ---------------------------------------------------------*/ /* USER CODE BEGIN PV */ /* USER CODE END PV */ /* Private function prototypes -----------------------------------------------*/ void SystemClock_Config(void); /* USER CODE BEGIN PFP */ void ProcessFFT(void); // 在函数原型区域提前声明 // 在文件顶部添加函数原型声明 void SendSpectrum(UART_HandleTypeDef *huart); //HAL_StatusTypeDef HAL_ADCEx_Calibration_Start(ADC_HandleTypeDef* hadc);//要先声明ADC校准函数,一直报错是因为没有声明,直接调用了 /* USER CODE END PFP */ /* Private user code ---------------------------------------------------------*/ /* USER CODE BEGIN 0 */ void SendSpectrum(UART_HandleTypeDef *huart) { char buffer[64]; // 数据缓冲区 for (int i = 0; i < FFT_LENGTH / 2; i++) { // 将浮点数转为字符串(保留2位小数) sprintf(buffer, "%.2f,", mag[i]); // 发送到串口(引用[4]) HAL_UART_Transmit(huart, (uint8_t*)buffer, strlen(buffer), HAL_MAX_DELAY); } HAL_UART_Transmit(huart, (uint8_t*)"\n", 1, HAL_MAX_DELAY); // 换行符分隔帧 } /* USER CODE END 0 */ /** * @brief The application entry point. * @retval int */ int main(void) { /* USER CODE BEGIN 1 */ /* USER CODE END 1 */ /* MCU Configuration--------------------------------------------------------*/ /* Reset of all peripherals, Initializes the Flash interface and the Systick. */ HAL_Init(); /* USER CODE BEGIN Init */ /* USER CODE END Init */ /* Configure the system clock */ SystemClock_Config(); /* USER CODE BEGIN SysInit */ /* USER CODE END SysInit */ /* Initialize all configured peripherals */ MX_GPIO_Init(); MX_DMA_Init(); MX_ADC1_Init(); MX_USART1_UART_Init(); MX_TIM2_Init(); /* USER CODE BEGIN 2 */ /* USER CODE BEGIN 2 */ printf ("123456\r\n"); //AdcConvEnd = 0; // 在主循环前初始化标志位 HAL_StatusTypeDef HAL_ADCEx_SamplingTimeCalibration_Start(ADC_HandleTypeDef* hadc);//ADC校准函数 printf ("1234\r\n"); HAL_TIM_Base_Start(&htim2);//开启定时器2 HAL_ADC_Start_DMA(&hadc1, (uint32_t *)adcBuff, FFT_LENGTH);//开启ADC printf ("12\r\n"); //AdcConvEnd = 0; while (!AdcConvEnd) //当前程序会堵塞到这里 ; while(1) { timeout++; if (timeout > 1000000) { // 超时退出(约1秒,根据主频调整) printf("ADC超时!\r\n"); break; } } for (uint16_t i = 0; i <200; i++) { printf("%.3f\n", adcBuff[i] * 3.3 / 4095); //数据打印,查看结果 } while (1) { if (AdcConvEnd) { ProcessFFT(); SendSpectrum(&huart1); // 发送频谱数据 AdcConvEnd = 0; HAL_ADC_Start_DMA(&hadc1, (uint32_t*)adcBuff,FFT_LENGTH); // 重启采样 } } /* USER CODE END 2 */ /* Infinite loop */ /* USER CODE BEGIN WHILE */ while (1) { /* USER CODE END WHILE */ /* USER CODE BEGIN 3 */ } /* USER CODE END 3 */ } /** * @brief System Clock Configuration * @retval None */ void SystemClock_Config(void) { RCC_OscInitTypeDef RCC_OscInitStruct = {0}; RCC_ClkInitTypeDef RCC_ClkInitStruct = {0}; /** Configure the main internal regulator output voltage */ __HAL_RCC_PWR_CLK_ENABLE(); __HAL_PWR_VOLTAGESCALING_CONFIG(PWR_REGULATOR_VOLTAGE_SCALE1); /** Initializes the RCC Oscillators according to the specified parameters * in the RCC_OscInitTypeDef structure. */ RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSE; RCC_OscInitStruct.HSEState = RCC_HSE_ON; RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON; RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSE; RCC_OscInitStruct.PLL.PLLM = 4; RCC_OscInitStruct.PLL.PLLN = 84; RCC_OscInitStruct.PLL.PLLP = RCC_PLLP_DIV2; RCC_OscInitStruct.PLL.PLLQ = 4; if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK) { Error_Handler(); } /** Initializes the CPU, AHB and APB buses clocks */ RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK|RCC_CLOCKTYPE_SYSCLK |RCC_CLOCKTYPE_PCLK1|RCC_CLOCKTYPE_PCLK2; RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK; RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1; RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV2; RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV2; if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_2) != HAL_OK) { Error_Handler(); } } /* USER CODE BEGIN 4 */ //FFT处理过程 void ProcessFFT(void) { // 1. ADC采样过程 for(int i=0; i<FFT_LENGTH; i++) { fft_inputbuf[2*i] = adcBuff[i] * 3.3f / 4095.0f; // ADC输出实部实际电压值 fft_inputbuf[2*i+1] = 0; } //2. 执行 FFT arm_cfft_f32(&arm_cfft_sR_f32_len1024, fft_inputbuf, 0, 1); // 3. 计算幅度 arm_cmplx_mag_f32(fft_inputbuf, fft_outputbuf, FFT_LENGTH); //DSP库提供的取模函数,直接可以算出幅值 // 4. 通过串口发送 FFT 结果 // for(int i=0; i<FFT_LENGTH/2; i++) // { // printf("%.4f\n", fft_outputbuf[i]); // } // 通过串口发送幅值数据 //4.归一化处理 for(int i=0; i<FFT_LENGTH; i++) { fft_outputbuf[i] /= (FFT_LENGTH/2); } // 5. 复制结果到mag(移到这里) memcpy(mag, fft_outputbuf, sizeof(mag)); } //ADC的回调函数 void HAL_ADC_ConvCpltCallback(ADC_HandleTypeDef* hadc) { if (hadc->Instance == ADC1) { printf("666\n");//调试检查回调函数是否正常 AdcConvEnd = 1; } } /* USER CODE END 4 */ /** * @brief This function is executed in case of error occurrence. * @retval None */ void Error_Handler(void) { /* USER CODE BEGIN Error_Handler_Debug */ /* User can add his own implementation to report the HAL error return state */ __disable_irq(); while (1) { } /* USER CODE END Error_Handler_Debug */ } #ifdef USE_FULL_ASSERT /** * @brief Reports the name of the source file and the source line number * where the assert_param error has occurred. * @param file: pointer to the source file name * @param line: assert_param error line source number * @retval None */ void assert_failed(uint8_t *file, uint32_t line) { /* USER CODE BEGIN 6 */ /* User can add his own implementation to report the file name and line number, ex: printf("Wrong parameters value: file %s on line %d\r\n", file, line) */ /* USER CODE END 6 */ } #endif /* USE_FULL_ASSERT */ 我的程序又什么错误,为什么串口助手没有任何数据,硬件连接无误,请给出简单的修改建议

/** ****************************************************************************** * File Name : gpio.c * Description : This file provides code for the configuration * of all used GPIO pins. ****************************************************************************** * @attention * *
© Copyright (c) 2025 STMicroelectronics. * All rights reserved.
* * This software component is licensed by ST under Ultimate Liberty license * SLA0044, the "License"; You may not use this file except in compliance with * the License. You may obtain a copy of the License at: * www.st.com/SLA0044 * ****************************************************************************** */ /* Includes ------------------------------------------------------------------*/ #include "gpio.h" /* USER CODE BEGIN 0 */ #include "main.h" /* USER CODE END 0 */ /*----------------------------------------------------------------------------*/ /* Configure GPIO */ /*----------------------------------------------------------------------------*/ /* USER CODE BEGIN 1 */ uint8_t uckey_down,uckey_up,uckey,uckey_old; extern float target1; extern float target2; extern float vref; extern int temp0; extern int a; /* USER CODE END 1 */ /** Configure pins as * Analog * Input * Output * EVENT_OUT * EXTI */ void MX_GPIO_Init(void) { GPIO_InitTypeDef GPIO_InitStruct = {0}; /* GPIO Ports Clock Enable */ __HAL_RCC_GPIOC_CLK_ENABLE(); __HAL_RCC_GPIOF_CLK_ENABLE(); __HAL_RCC_GPIOA_CLK_ENABLE(); __HAL_RCC_GPIOB_CLK_ENABLE(); /*Configure GPIO pin Output Level */ HAL_GPIO_WritePin(LED2_GPIO_Port, LED2_Pin, GPIO_PIN_RESET); /*Configure GPIO pin Output Level */ HAL_GPIO_WritePin(LED1_GPIO_Port, LED1_Pin, GPIO_PIN_RESET); /*Configure GPIO pin Output Level */ HAL_GPIO_WritePin(ENON_GPIO_Port, ENON_Pin, GPIO_PIN_RESET); /*Configure GPIO pin : PtPin */ GPIO_InitStruct.Pin = LED2_Pin; GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP; GPIO_InitStruct.Pull = GPIO_NOPULL; GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW; HAL_GPIO_Init(LED2_GPIO_Port, &GPIO_InitStruct); /*Configure GPIO pin : PtPin */ GPIO_InitStruct.Pin = LED1_Pin; GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP; GPIO_InitStruct.Pull = GPIO_NOPULL; GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW; HAL_GPIO_Init(LED1_GPIO_Port, &GPIO_InitStruct); /*Configure GPIO pins : PC10 PC11 PC12 */ GPIO_InitStruct.Pin = GPIO_PIN_10|GPIO_PIN_11|GPIO_PIN_12; GPIO_InitStruct.Mode = GPIO_MODE_IT_RISING_FALLING; GPIO_InitStruct.Pull = GPIO_PULLUP; HAL_GPIO_Init(GPIOC, &GPIO_InitStruct); /*Configure GPIO pin : PtPin */ GPIO_InitStruct.Pin = ENON_Pin; GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP; GPIO_InitStruct.Pull = GPIO_NOPULL; GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW; HAL_GPIO_Init(ENON_GPIO_Port, &GPIO_InitStruct); /*Configure GPIO pin : PtPin */ GPIO_InitStruct.Pin = KEY4_Pin; GPIO_InitStruct.Mode = GPIO_MODE_INPUT; GPIO_InitStruct.Pull = GPIO_PULLDOWN; HAL_GPIO_Init(KEY4_GPIO_Port, &GPIO_InitStruct); /* EXTI interrupt init*/ HAL_NVIC_SetPriority(EXTI15_10_IRQn, 0, 0); HAL_NVIC_EnableIRQ(EXTI15_10_IRQn); } /* USER CODE BEGIN 2 */ /*mode 1:长按值变化,松开值变为0 mode 0:按下松开后值变化,并且不变 */ uint8_t key_Scan(uint8_t mode) { if(HAL_GPIO_ReadPin(GPIOA,KEY2_Pin)== 0) uckey=1; if(HAL_GPIO_ReadPin(GPIOA,KEY3_Pin)==0) uckey=2; if(HAL_GPIO_ReadPin(GPIOA,KEY1_Pin)==0) uckey=3; uckey_down=uckey&(uckey^uckey_old); uckey_old=uckey; uint8_t key_val; if(mode==1) { if(HAL_GPIO_ReadPin(GPIOA,KEY2_Pin)== 0) key_val=1; else if(HAL_GPIO_ReadPin(GPIOA,KEY3_Pin)== 0) key_val=2; else if(HAL_GPIO_ReadPin(GPIOA,KEY1_Pin)== 0) key_val=3; else key_val=0; } if(mode==0) key_val=uckey_down; return key_val; } // 按键状态变量 volatile uint32_t key2_press_time = 0; volatile uint32_t key3_press_time = 0; volatile uint32_t key1_press_time = 0; volatile uint8_t key2_flag = 0; volatile uint8_t key3_flag = 0; volatile uint8_t key1_flag = 0; void HAL_GPIO_EXTI_Callback(uint16_t GPIO_Pin) { uint32_t current_time = HAL_GetTick(); switch(GPIO_Pin) { case GPIO_PIN_10: // KEY2 if(HAL_GPIO_ReadPin(GPIOC, GPIO_PIN_10) == 0) { // 按下 key2_press_time = current_time; } else { // 释放 if((current_time - key2_press_time) > 20) { // 消抖 key2_flag = 1; } } break; case GPIO_PIN_11: // KEY3 if(HAL_GPIO_ReadPin(GPIOC, GPIO_PIN_11) == 0) { key3_press_time = current_time; } else { if((current_time - key3_press_time) > 20) { key3_flag = 1; } } break; case GPIO_PIN_12: // KEY1 if(HAL_GPIO_ReadPin(GPIOC, GPIO_PIN_12) == 0) { key1_press_time = current_time; } else { if((current_time - key1_press_time) > 20) { key1_flag = 1; } } break; } } /* USER CODE END 2 */ /************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/ /* USER CODE BEGIN Header */ /** ****************************************************************************** *------完全开源项目------------------------- *------南阳理工学院新能源实验室------------- *------2020年6月30日--V1.0--------------------- ****************************************************************************** */ /* USER CODE END Header */ /* Includes ------------------------------------------------------------------*/ #include "main.h" #include "adc.h" #include "dma.h" #include "hrtim.h" #include "usart.h" #include "tim.h" #include "gpio.h" /* Private includes ----------------------------------------------------------*/ /* USER CODE BEGIN Includes */ #include "mbrtu.h" #include "mbport.h" #include "key.h" #include "dr_pwm.h" #include "f_monit.h" #include "fir.h" #include "pid.h" /* USER CODE END Includes */ /* Private typedef -----------------------------------------------------------*/ /* USER CODE BEGIN PTD */ float adc1_ture=0, adc2_ture=0, adc3_ture=0; float adc1_ture1=0, adc2_ture1=0, adc3_ture1=0; extern float target1; extern float target2; extern float vref; extern int temp0; float y=0; uint16_t ADC_IN[NUM_CHANNELS][BLOCK_SIZE]; float32_t ADC_Ot[NUM_CHANNELS][BLOCK_SIZE]; int a=0; extern volatile uint8_t key2_flag ; extern volatile uint8_t key3_flag ; extern volatile uint8_t key1_flag ; /* USER CODE END PTD */ /* Private define ------------------------------------------------------------*/ /* USER CODE BEGIN PD */ /* USER CODE END PD */ /* Private macro -------------------------------------------------------------*/ /* USER CODE BEGIN PM */ /* USER CODE END PM */ /* Private variables ---------------------------------------------------------*/ /* USER CODE BEGIN PV */ volatile uint32_t gSysTim01msTicks; //定时器SystemTich中断计数 volatile uint32_t ADC_Value[BuffSize];//--ADC采集8路全16位数据--- /* USER CODE END PV */ /* Private function prototypes -----------------------------------------------*/ void SystemClock_Config(void); /* USER CODE BEGIN PFP */ void Task_05ms_A(void); void Task_05ms_B(void); void Task_05ms_C(void); void Task_05ms_D(void); /* USER CODE END PFP */ /* Private user code ---------------------------------------------------------*/ /* USER CODE BEGIN 0 */ void HAL_TIM_PeriodElapsedCallback(TIM_HandleTypeDef *htim) { if(temp0 == 1) { y = PID_system(temp0, adc1_ture); } else { y = PID_system(temp0, adc2_ture); } // if(adc1_ture <= 2.18181) // { //// __HAL_TIM_SET_COMPARE(&htim1,TIM_CHANNEL_1,y); // } // else // { // __HAL_TIM_SET_COMPARE(&htim1,TIM_CHANNEL_1,0); // } } /* USER CODE END 0 */ /** * @brief The application entry point. * @retval int */ int main(void) { /* USER CODE BEGIN 1 */ static uint16_t l_task_id; /* USER CODE END 1 */ /* MCU Configuration--------------------------------------------------------*/ /* Reset of all peripherals, Initializes the Flash interface and the Systick. */ HAL_Init(); /* USER CODE BEGIN Init */ //HAL_SetTickFreq(100U);//--10ms时基---- HAL_SYSTICK_Config(SystemCoreClock / (1000U / uwTickFreq));//--0.1ms时基-- /* USER CODE END Init */ /* Configure the system clock */ SystemClock_Config(); /* USER CODE BEGIN SysInit */ /* USER CODE END SysInit */ /* Initialize all configured peripherals */ MX_GPIO_Init(); MX_DMA_Init(); MX_HRTIM1_Init(); MX_ADC1_Init(); MX_ADC2_Init(); MX_LPUART1_UART_Init(); MX_TIM2_Init(); /* USER CODE BEGIN 2 */ // mb_rtu_init( &mb_port, 0x01, MB_PAR_NONE);//--Modbus初始化,设定从机为1号机,无校验位--- //------------------HRTIM启动PWM输出通道----------------------------------- HAL_NVIC_DisableIRQ(DMA1_Channel1_IRQn);//-----关闭DMA中断----- HAL_ADC_Start(&hadc2);//---先启动ADC2---注意多通道同步Cube必须设置32位字。 HAL_ADCEx_MultiModeStart_DMA(&hadc1, (uint32_t*)&ADC_Value,BuffSize);//--然后启动ADC12---注意读取高低位数据。 HAL_HRTIM_WaveformOutputStart(&hhrtim1, HRTIM_OUTPUT_TB1 | HRTIM_OUTPUT_TB2);//----通道打开--- HAL_HRTIM_WaveformOutputStart(&hhrtim1, HRTIM_OUTPUT_TC1 | HRTIM_OUTPUT_TC2);//----通道打开--- //---开启定时器B和C和D-使用Master完美同步--- HAL_HRTIM_WaveformCountStart_IT(&hhrtim1,HRTIM_TIMERID_MASTER | HRTIM_TIMERID_TIMER_B | HRTIM_TIMERID_TIMER_C | HRTIM_TIMERID_TIMER_D);// HAL_Delay(500); HAL_GPIO_WritePin(ENON_GPIO_Port,ENON_Pin,GPIO_PIN_SET);//--打开后级供电---- gSysTim01msTicks = 0; FreqValue = PWM_Period;//--设置频率初始值--- PhaseValue = PWM_Period/2;//--设置相位初始值-- HAL_TIM_Base_Start_IT(&htim2); // printf("MCU Temperature : %.1f\r\n",((ADC_Value[2]*3300/4096)/2.5+25)); /* USER CODE END 2 */ /* Infinite loop */ /* USER CODE BEGIN WHILE */ while (1) { /* USER CODE END WHILE */ /* USER CODE BEGIN 3 */ // ADC_IN[0][0]=ADC_Value[0] & 0xFFFF; // for(uint8_t ch=0;ch<NUM_CHANNELS;ch++) // { // Fir_Proc(&ADC_IN[ch][0],&ADC_Ot[ch][0],ch); // } // printf("%.3f %.3f %.3f ",ADC_Ot[0][0]/4096.f*3.3f,ADC_Ot[1][0]/4096.f*3.3f,ADC_Ot[2][0]/4096.f*3.3f); // printf("%d",a); // 按键处理 if(key2_flag) { key2_flag = 0; if(temp0 == 1) { target1 = target1 - 0.1f; if(target1 < 1) target1 = 1; } a = 1; printf("KEY2 pressed. Target1: %.1f\n", target1); } if(key3_flag) { key3_flag = 0; if(temp0 == 1) { target1 = target1 + 0.1f; if(target1 > 2) target1 = 2; } a = 2; printf("KEY3 pressed. Target1: %.1f\n", target1); } if(key1_flag) { key1_flag = 0; temp0 = -temp0; a = 3; printf("KEY1 pressed. Mode: %s\n", temp0 == 1 ? "BUCK" : "BOOST"); } // if( gSysTim01msTicks >= 5 ) //每0.5ms运行一次 // { // gSysTim01msTicks = 0; // switch( l_task_id ) // { // case 0x00: //任务A,按键任务 // Task_05ms_A(); // break; // case 0x01: //任务B // Task_05ms_B(); // break; // case 0x02: //任务C // Task_05ms_C(); // break; // case 0x03: //任务D // Task_05ms_D(); // break; // } // l_task_id = l_task_id >= 0x03 ? 0 : l_task_id+1; // } } /* USER CODE END 3 */ } /** * @brief System Clock Configuration * @retval None */ void SystemClock_Config(void) { RCC_OscInitTypeDef RCC_OscInitStruct = {0}; RCC_ClkInitTypeDef RCC_ClkInitStruct = {0}; RCC_PeriphCLKInitTypeDef PeriphClkInit = {0}; /** Configure the main internal regulator output voltage */ HAL_PWREx_ControlVoltageScaling(PWR_REGULATOR_VOLTAGE_SCALE1_BOOST); /** Initializes the RCC Oscillators according to the specified parameters * in the RCC_OscInitTypeDef structure. */ RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSI; RCC_OscInitStruct.HSIState = RCC_HSI_ON; RCC_OscInitStruct.HSICalibrationValue = RCC_HSICALIBRATION_DEFAULT; RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON; RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSI; RCC_OscInitStruct.PLL.PLLM = RCC_PLLM_DIV4; RCC_OscInitStruct.PLL.PLLN = 85; RCC_OscInitStruct.PLL.PLLP = RCC_PLLP_DIV2; RCC_OscInitStruct.PLL.PLLQ = RCC_PLLQ_DIV2; RCC_OscInitStruct.PLL.PLLR = RCC_PLLR_DIV2; if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK) { Error_Handler(); } /** Initializes the CPU, AHB and APB buses clocks */ RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK|RCC_CLOCKTYPE_SYSCLK |RCC_CLOCKTYPE_PCLK1|RCC_CLOCKTYPE_PCLK2; RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK; RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1; RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV1; RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV1; if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_4) != HAL_OK) { Error_Handler(); } /** Initializes the peripherals clocks */ PeriphClkInit.PeriphClockSelection = RCC_PERIPHCLK_LPUART1|RCC_PERIPHCLK_ADC12; PeriphClkInit.Lpuart1ClockSelection = RCC_LPUART1CLKSOURCE_PCLK1; PeriphClkInit.Adc12ClockSelection = RCC_ADC12CLKSOURCE_SYSCLK; if (HAL_RCCEx_PeriphCLKConfig(&PeriphClkInit) != HAL_OK) { Error_Handler(); } } /* USER CODE BEGIN 4 */ /******************************************************************************** * @函数: void Task_05ms_A(void) * @描述: 任务A处理函数 * 0.5ms周期调用 * 2ms中的第一个0.5ms ********************************************************************************/ void Task_05ms_A(void) { } /* ******************************************************************************* * @函数: void Task_05ms_B(void) * @描述: 任务B处理函数 * 0.5ms周期调用 * 2ms中的第二个0.5ms ******************************************************************************* */ void Task_05ms_B(void) { static uint32_t uTaskTimeCount = 0; // mb_rtu_poll( &mb_port ); // modbus协议轮询 uTaskTimeCount++; } /* ******************************************************************************* * @函数: void Task_05ms_C(void) * @描述: 任务C处理函数 * 0.5ms周期调用 * 2ms中的第三个0.5ms *----要特别小心,不要sMasterRegs.MCMP1R超过设定的PWM_Period--- *----要特别小心,尽量不使用timB的reset触发,因为有可能丢脉冲(Master Compare1 变化时,Reset信号可能错过一次)。 ******************************************************************************* */ void Task_05ms_C(void) { static uint32_t uTaskTimeCount = 0; /* 此处添加用户代码,代码执行时间应少于500us */ //--调频:50KHz - 125KHz--调相:0-180度-- gADC_V_IN = (uint16_t)( ADC_Value[0] & 0xFFFF );//---ADC1低16位--- gADC_I_IN = (uint16_t)( ADC_Value[1] & 0xFFFF ); gADC_Freq_HW = (uint16_t)( ADC_Value[2] & 0xFFFF );//---频率调节--- gADC_Chip_Temp = (uint16_t)( ADC_Value[3] & 0xFFFF ); gADC_V_OUT = (uint16_t)( ADC_Value[0] / 0xFFFF );//---ADC2高16位IN2--- gADC_I_OUT = (uint16_t)( ADC_Value[1] / 0xFFFF ); gADC_Phase_HW = (uint16_t)( ADC_Value[2] / 0xFFFF );//---相位调节--- gADC_V_NTC = (uint16_t)( ADC_Value[3] / 0xFFFF ); // FreqValue = PWM_Period + gADC_Freq_HW; dr_pwm_setFreq(FreqValue);//--设置频率 //-----------调相:250KHz----0度-133度---------------- PhaseValue = PWM_Period/2 + 0.6*gADC_Phase_HW; if (PhaseValue < PWM_Period/2) //--确保调相不超出范围 PhaseValue = PWM_Period/2; if (PhaseValue >= FreqValue) PhaseValue = FreqValue; //----------------------------------------------------- dr_pwm_setPhase(PhaseValue); //---设置相位 uTaskTimeCount++; } /* ******************************************************************************* * @函数: void Task_05ms_D(void) * @描述: 任务D处理函数 * 0.5ms周期调用 * 2ms中的第四个0.5ms ******************************************************************************* */ void Task_05ms_D(void) { static uint32_t uTaskTimeCount = 0; f_monit( );//上位机监控 /* 正常输出,闪烁5HZ指示灯 */ if(uTaskTimeCount >= 25) { uTaskTimeCount = 0; HAL_GPIO_TogglePin(LED2_GPIO_Port,LED2_Pin); } uTaskTimeCount++; } /* USER CODE END 4 */ /** * @brief This function is executed in case of error occurrence. * @retval None */ void Error_Handler(void) { /* USER CODE BEGIN Error_Handler_Debug */ /* User can add his own implementation to report the HAL error return state */ /* USER CODE END Error_Handler_Debug */ } #ifdef USE_FULL_ASSERT /** * @brief Reports the name of the source file and the source line number * where the assert_param error has occurred. * @param file: pointer to the source file name * @param line: assert_param error line source number * @retval None */ void assert_failed(uint8_t *file, uint32_t line) { /* USER CODE BEGIN 6 */ /* User can add his own implementation to report the file name and line number, tex: printf("Wrong parameters value: file %s on line %d\r\n", file, line) */ /* USER CODE END 6 */ } #endif /* USE_FULL_ASSERT */ /************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/为什么a的值还是没改变,好像都没有进去while里的变化a的函数

#include "main.h" #include "adc.h" #include "i2c.h" #include "tim.h" #include "usart.h" #include "gpio.h" /* Private includes ----------------------------------------------------------*/ /* USER CODE BEGIN Includes */ #include "oled.h" #include "motor.h" #include "encoder.h" #include "stdio.h" #include "pid.h" #include "jy62.h" #include "sr04.h" #include "No_Mcu_Ganv_Grayscale_Sensor_Config.h" #include "stdio.h" #include "string.h" /* USER CODE END Includes */ /* Private typedef -----------------------------------------------------------*/ /* USER CODE BEGIN PTD */ /* USER CODE END PTD */ /* Private define ------------------------------------------------------------*/ /* USER CODE BEGIN PD */ #define L3 ((Digtal>>0)&0x01) #define L2 ((Digtal>>1)&0x01) #define L1 ((Digtal>>2)&0x01) #define L0 ((Digtal>>3)&0x01) #define R0 ((Digtal>>4)&0x01) #define R1 ((Digtal>>5)&0x01) #define R2 ((Digtal>>6)&0x01) #define R3 ((Digtal>>7)&0x01) int Speed_L = 0; int Speed_R = 0; float display_buf[20]; int count_5ms,count_10ms, count_50ms; extern float fAcc[3], fGyro[3], fAngle[3]; extern float distance; unsigned short Normal[8]; unsigned char Digtal; unsigned char rx_buff[256]={0}; unsigned short Anolog[8]={0}; unsigned short white[8]={2198,2868,2766,2761,2836,2572,2134,2767}; unsigned short black[8]={188,721,410,552,850,260,224,622}; unsigned char gray_flag = 0; No_MCU_Sensor sensor; /* USER CODE END PD */ /* Private macro -------------------------------------------------------------*/ /* USER CODE BEGIN PM */ /* USER CODE END PM */ /* Private variables ---------------------------------------------------------*/ /* USER CODE BEGIN PV */ /* USER CODE END PV */ /* Private function prototypes -----------------------------------------------*/ void SystemClock_Config(void); /* USER CODE BEGIN PFP */ void trace_process(void); void gray_init(void); void gray_sprint(void); /* USER CODE END PFP */ /* Private user code ---------------------------------------------------------*/ /* USER CODE BEGIN 0 */ /* USER CODE END 0 */ /** * @brief The application entry point. * @retval int */ int main(void) { /* USER CODE BEGIN 1 */ /* USER CODE END 1 */ /* MCU Configuration--------------------------------------------------------*/ /* Reset of all peripherals, Initializes the Flash interface and the Systick. */ HAL_Init(); /* USER CODE BEGIN Init */ /* USER CODE END Init */ /* Configure the system clock */ SystemClock_Config(); /* USER CODE BEGIN SysInit */ /* USER CODE END SysInit */ /* Initialize all configured peripherals */ MX_GPIO_Init(); MX_I2C1_Init(); MX_TIM2_Init(); MX_TIM3_Init(); MX_TIM4_Init(); MX_TIM5_Init(); MX_I2C2_Init(); MX_USART2_UART_Init(); MX_TIM9_Init(); MX_ADC1_Init(); MX_USART3_UART_Init(); /* USER CODE BEGIN 2 */ OLED_Init(); jy60_init(); OLED_Clear(); gray_init(); // OLED_ShowString(0, 0, (uint8_t *)"init success", 16); HAL_TIM_PWM_Start(&htim2, TIM_CHANNEL_1); HAL_TIM_PWM_Start(&htim2, TIM_CHANNEL_4); HAL_TIM_Encoder_Start(&htim3, TIM_CHANNEL_ALL); HAL_TIM_Encoder_Start(&htim4, TIM_CHANNEL_ALL); HAL_TIM_Base_Start_IT(&htim5); Load(0, 0); /* USER CODE END 2 */ /* Infinite loop */ /* USER CODE BEGIN WHILE */ while (1) { trace_process(); sprintf((char *)display_buf, "Angle: %.3f ", fAngle[2]); OLED_ShowString(0, 0, (uint8_t *)display_buf, 16); sprintf((char *)display_buf, "Speed_L: %d ", Speed_L); OLED_ShowString(0, 2, (uint8_t *)display_buf, 16); sprintf((char *)display_buf, "Speed_R: %d ", Speed_R); OLED_ShowString(0, 4, (uint8_t *)display_buf, 16); sprintf((char *)display_buf, "Gyro: %.2f ", fGyro[2]); OLED_ShowString(0, 6, (uint8_t *)display_buf, 12); /* USER CODE END WHILE */ gray_sprint(); /* USER CODE BEGIN 3 */ } /* USER CODE END 3 */ } /** * @brief System Clock Configuration * @retval None */ void SystemClock_Config(void) { RCC_OscInitTypeDef RCC_OscInitStruct = {0}; RCC_ClkInitTypeDef RCC_ClkInitStruct = {0}; /** Configure the main internal regulator output voltage */ __HAL_RCC_PWR_CLK_ENABLE(); __HAL_PWR_VOLTAGESCALING_CONFIG(PWR_REGULATOR_VOLTAGE_SCALE1); /** Initializes the RCC Oscillators according to the specified parameters * in the RCC_OscInitTypeDef structure. */ RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSI; RCC_OscInitStruct.HSIState = RCC_HSI_ON; RCC_OscInitStruct.HSICalibrationValue = RCC_HSICALIBRATION_DEFAULT; RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON; RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSI; RCC_OscInitStruct.PLL.PLLM = 8; RCC_OscInitStruct.PLL.PLLN = 72; RCC_OscInitStruct.PLL.PLLP = RCC_PLLP_DIV2; RCC_OscInitStruct.PLL.PLLQ = 4; if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK) { Error_Handler(); } /** Initializes the CPU, AHB and APB buses clocks */ RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK|RCC_CLOCKTYPE_SYSCLK |RCC_CLOCKTYPE_PCLK1|RCC_CLOCKTYPE_PCLK2; RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK; RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1; RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV2; RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV1; if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_2) != HAL_OK) { Error_Handler(); } } /* USER CODE BEGIN 4 */ void HAL_TIM_PeriodElapsedCallback(TIM_HandleTypeDef* htim) { if(htim -> Instance == TIM5) { if(++count_10ms == 10) { // jy60_read(); // if(L3 == 0 && L2 == 1 && L1 == 1 && L0 == 1 && R0 == 1 && R1 == 1 && R2 == 1 && R3 == 1) // { // Control_Velocity(-40, 25); // } // else if(L3 == 0 && L2 == 0 && L1 == 1 && L0 == 1 && R0 == 1 && R1 == 1 && R2 == 1 && R3 == 1) // { // Control_Velocity(-5, 25); // } // else if(L3 == 1 && L2 == 0 && L1 == 1 && L0 == 1 && R0 == 1 && R1 == 1 && R2 == 1 && R3 == 1) // { // Control_Velocity(10, 25); // } // else if(L3 == 1 && L2 == 0 && L1 == 0 && L0 == 1 && R0 == 1 && R1 == 1 && R2 == 1 && R3 == 1) // { // Control_Velocity(15, 25); // } // else if(L3 == 1 && L2 == 1 && L1 == 0 && L0 == 1 && R0 == 1 && R1 == 1 && R2 == 1 && R3 == 1) // { // Control_Velocity(20, 25); // } // else if(L3 == 1 && L2 == 1 && L1 == 0 && L0 == 0 && R0 == 1 && R1 == 1 && R2 == 1 && R3 == 1) // { // Control_Velocity(22, 25); // } // else if(L3 == 1 && L2 == 1 && L1 == 1 && L0 == 0 && R0 == 1 && R1 == 1 && R2 == 1 && R3 == 1) // { // Control_Velocity(24, 25); // } // else if(L3 == 1 && L2 == 1 && L1 == 1 && L0 == 0 && R0 == 0 && R1 == 1 && R2 == 1 && R3 == 1) // { // Control_Velocity(25, 25); // } // else if(L3 == 1 && L2 == 1 && L1 == 1 && L0 == 1 && R0 == 0 && R1 == 1 && R2 == 1 && R3 == 1) // { // Control_Velocity(25, 24); // } // else if(L3 == 1 && L2 == 1 && L1 == 1 && L0 == 1 && R0 == 0 && R1 == 0 && R2 == 1 && R3 == 1) // { // Control_Velocity(25, 22); // } // else if(L3 == 1 && L2 == 1 && L1 == 1 && L0 == 1 && R0 == 1 && R1 == 0 && R2 == 1 && R3 == 1) // { // Control_Velocity(25, 20); // } // else if(L3 == 1 && L2 == 1 && L1 == 1 && L0 == 1 && R0 == 1 && R1 == 0 && R2 == 0 && R3 == 1) // { // Control_Velocity(25, 15); // } // else if(L3 == 1 && L2 == 1 && L1 == 1 && L0 == 1 && R0 == 1 && R1 == 1 && R2 == 0 && R3 == 1) // { // Control_Velocity(25, 10); // } // else if(L3 == 1 && L2 == 1 && L1 == 1 && L0 == 1 && R0 == 1 && R1 == 1 && R2 == 0 && R3 == 0) // { // Control_Velocity(25, -5); // } // else if(L3 == 1 && L2 == 1 && L1 == 1 && L0 == 1 && R0 == 1 && R1 == 1 && R2 == 1 && R3 == 0) // { // Control_Velocity(25, -40); // } // else if(L3 == 1 && L2 == 1 && L1 == 1 && L0 == 1 && R0 == 1 && R1 == 1 && R2 == 1 && R3 == 1) // Control_Velocity(0, 0); // else Control_Velocity(25, 25); gray_flag = 1; count_10ms = 0; } if(++count_50ms == 50) { GET_Distance(); count_50ms = 0; } } } void trace_process(void) { if(gray_flag) { gray_flag = 0; if(L3 == 0 && L2 == 1 && L1 == 1 && L0 == 1 && R0 == 1 && R1 == 1 && R2 == 1 && R3 == 1) { Control_Velocity(-40, 25); } else if(L3 == 0 && L2 == 0 && L1 == 1 && L0 == 1 && R0 == 1 && R1 == 1 && R2 == 1 && R3 == 1) { Control_Velocity(-5, 25); } else if(L3 == 1 && L2 == 0 && L1 == 1 && L0 == 1 && R0 == 1 && R1 == 1 && R2 == 1 && R3 == 1) { Control_Velocity(10, 25); } else if(L3 == 1 && L2 == 0 && L1 == 0 && L0 == 1 && R0 == 1 && R1 == 1 && R2 == 1 && R3 == 1) { Control_Velocity(15, 25); } else if(L3 == 1 && L2 == 1 && L1 == 0 && L0 == 1 && R0 == 1 && R1 == 1 && R2 == 1 && R3 == 1) { Control_Velocity(20, 25); } else if(L3 == 1 && L2 == 1 && L1 == 0 && L0 == 0 && R0 == 1 && R1 == 1 && R2 == 1 && R3 == 1) { Control_Velocity(22, 25); } else if(L3 == 1 && L2 == 1 && L1 == 1 && L0 == 0 && R0 == 1 && R1 == 1 && R2 == 1 && R3 == 1) { Control_Velocity(24, 25); } else if(L3 == 1 && L2 == 1 && L1 == 1 && L0 == 0 && R0 == 0 && R1 == 1 && R2 == 1 && R3 == 1) { Control_Velocity(25, 25); } else if(L3 == 1 && L2 == 1 && L1 == 1 && L0 == 1 && R0 == 0 && R1 == 1 && R2 == 1 && R3 == 1) { Control_Velocity(25, 24); } else if(L3 == 1 && L2 == 1 && L1 == 1 && L0 == 1 && R0 == 0 && R1 == 0 && R2 == 1 && R3 == 1) { Control_Velocity(25, 22); } else if(L3 == 1 && L2 == 1 && L1 == 1 && L0 == 1 && R0 == 1 && R1 == 0 && R2 == 1 && R3 == 1) { Control_Velocity(25, 20); } else if(L3 == 1 && L2 == 1 && L1 == 1 && L0 == 1 && R0 == 1 && R1 == 0 && R2 == 0 && R3 == 1) { Control_Velocity(25, 15); } else if(L3 == 1 && L2 == 1 && L1 == 1 && L0 == 1 && R0 == 1 && R1 == 1 && R2 == 0 && R3 == 1) { Control_Velocity(25, 10); } else if(L3 == 1 && L2 == 1 && L1 == 1 && L0 == 1 && R0 == 1 && R1 == 1 && R2 == 0 && R3 == 0) { Control_Velocity(25, -5); } else if(L3 == 1 && L2 == 1 && L1 == 1 && L0 == 1 && R0 == 1 && R1 == 1 && R2 == 1 && R3 == 0) { Control_Velocity(25, -40); } else if(L3 == 1 && L2 == 1 && L1 == 1 && L0 == 1 && R0 == 1 && R1 == 1 && R2 == 1 && R3 == 1) Control_Velocity(0, 0); else Control_Velocity(25, 25); } } void gray_init(void) { sprintf((char *)rx_buff,"hello_world!\r\n"); uart3_send_string((char *)rx_buff); memset(rx_buff,0,256); //初始化传感器,不带黑白忿 No_MCU_Ganv_Sensor_Init_Frist(&sensor); No_Mcu_Ganv_Sensor_Task_Without_tick(&sensor); Get_Anolog_Value(&sensor,Anolog); //此时打印的ADC的忼,可用通过这个ADC作为黑白值的校准 //也可以自己写按键逻辑完成丿键校准功胿 sprintf((char *)rx_buff,"Anolog %d-%d-%d-%d-%d-%d-%d-%d\r\n",Anolog[0],Anolog[1],Anolog[2],Anolog[3],Anolog[4],Anolog[5],Anolog[6],Anolog[7]); uart3_send_string((char *)rx_buff); HAL_Delay(100); memset(rx_buff,0,256); //得到黑白校准值之后,初始化传感器 No_MCU_Ganv_Sensor_Init(&sensor,white,black); HAL_Delay(100); } void gray_sprint(void) { No_Mcu_Ganv_Sensor_Task_Without_tick(&sensor); Digtal=Get_Digtal_For_User(&sensor); sprintf((char *)rx_buff,"Digtal %d-%d-%d-%d-%d-%d-%d-%d\r\n",(Digtal>>0)&0x01,(Digtal>>1)&0x01,(Digtal>>2)&0x01,(Digtal>>3)&0x01,(Digtal>>4)&0x01,(Digtal>>5)&0x01,(Digtal>>6)&0x01,(Digtal>>7)&0x01); uart3_send_string((char *)rx_buff); memset(rx_buff,0,256); if(Get_Anolog_Value(&sensor,Anolog)){ sprintf((char *)rx_buff,"Anolog %d-%d-%d-%d-%d-%d-%d-%d\r\n",Anolog[0],Anolog[1],Anolog[2],Anolog[3],Anolog[4],Anolog[5],Anolog[6],Anolog[7]); uart3_send_string((char *)rx_buff); memset(rx_buff,0,256); } if(Get_Normalize_For_User(&sensor,Normal)){ sprintf((char *)rx_buff,"Normalize %d-%d-%d-%d-%d-%d-%d-%d\r\n",Normal[0],Normal[1],Normal[2],Normal[3],Normal[4],Normal[5],Normal[6],Normal[7]); uart3_send_string((char *)rx_buff); memset(rx_buff,0,256); } } /* USER CODE END 4 */ /** * @brief This function is executed in case of error occurrence. * @retval None */ void Error_Handler(void) { /* USER CODE BEGIN Error_Handler_Debug */ /* User can add his own implementation to report the HAL error return state */ __disable_irq(); while (1) { } /* USER CODE END Error_Handler_Debug */ } #ifdef USE_FULL_ASSERT /** * @brief Reports the name of the source file and the source line number * where the assert_param error has occurred. * @param file: pointer to the source file name * @param line: assert_param error line source number * @retval None */ void assert_failed(uint8_t *file, uint32_t line) { /* USER CODE BEGIN 6 */ /* User can add his own implementation to report the file name and line number, ex: printf("Wrong parameters value: file %s on line %d\r\n", file, line) */ /* USER CODE END 6 */ } #endif /* USE_FULL_ASSERT */ 这段程序中如果我将trace_process()在10ms中断中直接执行,现象正常,但像这样用标志位处理后现象就异常了,找出原因并优化

MX_GPIO_Init(); MX_DMA_Init(); MX_ADC1_Init(); MX_I2C1_Init(); MX_TIM1_Init(); MX_USART1_UART_Init(); MX_TIM2_Init(); /* 用户代码开始 2 */ OLED_Init(); // 初始化OLED OLED_Display_On(); OLED_Clear(); LED_Init(); LED_On(); HX711_Init();初始化HX711 WaterLevel_Start(); sg90_init(&htim1); HAL_TIM_PWM_Start(&htim1, TIM_CHANNEL_4);// 初始化舵机 L9110_Init(); L9110_Stopshuibeng(); __HAL_TIM_SET_COMPARE(&htim1, TIM_CHANNEL_4, 1500); WaterLevel_Calibrate(4.0, 2045); int32_t OFFSET = calculate_offset(); float SCALE = HX711_CalculateScale(OFFSET, Weights_50, KNOWN_WEIGHT); float Weights = 0; /* 用户代码结束 2 */ /* 无限循环 / / 用户代码开始时间 / while (1) { / 用户代码结束时 */ /* USER CODE BEGIN 3 */ L9110_Stopshuibeng(); int32_t raw_data = HX711_SmoothedRead(); LED_Toggle(); Weights = (float)(raw_data - OFFSET) * SCALE ; DHT11_Task(); OLED_ShowCHinese(0, 0, 0); // 显示“温:” OLED_ShowCHinese(16,0,1) ; // 显示“度:” OLED_ShowNum(36, 0, DHT11_data.temp, 2, 16); OLED_ShowCHinese(0, 2, 2); // 显示“湿: OLED_ShowCHinese(16,2,3) ; // 显示“度: OLED_ShowNum(36, 2, DHT11_data.humidity, 2, 16); if (DHT11_data.temp > 20) { L9110_Startdianji(); } else if (DHT11_data.temp < 20) { L9110_Startdianji(); } else { // 水位在0和目标值之间,不需要操作 } // 显示重量部分 OLED_ShowCHinese(0, 4, 4); // 显示“重:” OLED_ShowCHinese(16, 4, 5); // 显示“量:” OLED_ShowNum(32, 4, Weights, 5, 16); // 显示权重数据,5 位数显示(包括小数点) OLED_ShowChar(80, 4, 'g', 16); // 显示单位"g" // 读取 HX711 数据 if (Weights <= 2000 ) { HAL_Delay(100); __HAL_TIM_SET_COMPARE(&htim1, TIM_CHANNEL_4, 500); } else { __HAL_TIM_SET_COMPARE(&htim1, TIM_CHANNEL_4, 1500); } // 清除 OLED 显示内容(如果需要) OLED_Clear();确保你的 OLED 库中有清屏函数 uint16_t adc_value = Get_Filtered_ADC(); float water_level = Get_WaterLevel(); // 将ADC值转换为电压或其他单位,并进行处理 // 示例:打印水位值 // 在 OLED 上显示字符串\数值 OLED_ShowCHinese(0, 6, 6); // 显示“水:” OLED_ShowCHinese(16, 6, 7); // 显示“位:” OLED_ShowNum(36, 6, water_level, 4, 16); if (water_level <= WATER_LEVEL_LOW_THRESHOLD) { // 当水位低于低阈值时,启动水泵加水 L9110_Startshuibeng(); } else if (water_level >= WATER_LEVEL_HIGH_THRESHOLD) { // 当水位达到或超过高阈值时,停止水泵 L9110_Stopshuibeng(); } else { // 当水位在低阈值和高阈值之间时,保持当前状态 } HAL_Delay(500); } /* 用户代码结束 3 */ } 这是keil的mian函数,帮我对水泵电机舵机的工作进行优化,不占用太多的总线资源

这是你前面回答问题时给出的,和刚才说STM32F0系列有15个中断优先等级互相矛盾的说法: ### STM32F030 中 HAL_NVIC_SetPriority 参数详解 在 STM32F030CCT6 的 HAL 库中,这两个函数调用在功能上是**完全等效**的,它们的区别仅在于数值类型的表示方式: c HAL_NVIC_SetPriority(RTC_IRQn, TickPriority, 0U); // 使用无符号整数表示 HAL_NVIC_SetPriority(RTC_IRQn, TickPriority, 0); // 使用有符号整数表示 #### 关键区别分析 1. **类型表示差异**: - 0U:表示无符号整型 (unsigned int) - 0:表示有符号整型 (signed int) 2. **实际功能等效**: 在 STM32F0 系列中,HAL_NVIC_SetPriority 的第三个参数(子优先级)**被完全忽略**,因为 F0 系列不支持优先级分组。只有第二个参数(主优先级)实际生效。 #### 底层函数实现 查看 HAL 库源代码(stm32f0xx_hal_cortex.c)可以验证: c void HAL_NVIC_SetPriority(IRQn_Type IRQn, uint32_t PreemptPriority, uint32_t SubPriority) { /* 检查参数有效性 */ assert_param(IS_NVIC_PREEMPTION_PRIORITY(PreemptPriority)); assert_param(IS_NVIC_SUB_PRIORITY(SubPriority)); /* 对于STM32F0,子优先级参数被忽略 */ NVIC_SetPriority(IRQn, PreemptPriority); } #### 完整的中断配置示例 c #include "stm32f0xx_hal.h" void Configure_RTC_Interrupt(void) { // 设置RTC中断优先级(0-3,0为最高) uint32_t rtcPriority = 1; // 以下两种调用方式完全等效 HAL_NVIC_SetPriority(RTC_IRQn, rtcPriority, 0U); // 推荐方式 // HAL_NVIC_SetPriority(RTC_IRQn, rtcPriority, 0); // 等效方式 // 启用RTC中断 HAL_NVIC_EnableIRQ(RTC_IRQn); // 配置RTC唤醒中断 HAL_RTCEx_SetWakeUpTimer_IT(&hrtc, 0xFFFF, RTC_WAKEUPCLOCK_RTCCLK_DIV16); } // RTC中断处理函数 void RTC_IRQHandler(void) { HAL_RTCEx_WakeUpTimerIRQHandler(&hrtc); // 清除中断标志 __HAL_RTC_WAKEUPTIMER_EXTI_CLEAR_FLAG(); // 用户自定义处理代码 User_Wakeup_Handler(); } #### STM32F0 中断优先级关键点 1. **优先级范围**: c // 有效的优先级范围:0(最高)到 3(最低) #define HIGHEST_PRIORITY 0 #define LOWEST_PRIORITY 3 2. **实际优先级寄存器**: STM32F0 使用 NVIC_IPRx 寄存器存储优先级,只使用高 2 位: c NVIC->IP[RTC_IRQn] = (priority << 6); // 优先级左移6位 3. **优先级冲突处理**: 当多个中断同时发生时,处理器会: - 首先处理优先级数值更小的中断 - 相同优先级时,按中断号顺序处理 #### 最佳实践建议 1. **推荐使用无符号表示**: c // 推荐使用无符号常量 HAL_NVIC_SetPriority(IRQn, priority, 0U); 2. **优先级配置宏**: c #define SET_INT_PRIORITY(irq, pri) \ do { \ HAL_NVIC_SetPriority(irq, pri, 0U); \ HAL_NVIC_EnableIRQ(irq); \ } while(0) // 使用示例 SET_INT_PRIORITY(RTC_IRQn, 2); 3. **优先级验证代码**: c // 检查实际设置的优先级 uint32_t readPriority = NVIC_GetPriority(RTC_IRQn); if(readPriority != expectedPriority) { // 优先级设置失败处理 Error_Handler(); } #### 不同 STM32 系列对比 | 特性 | STM32F0 系列 | STM32F1/F4 系列 | |---------------------|-------------------|--------------------| | 优先级分组 | 不支持 | 支持 (4-7 位分组) | | 优先级位宽 | 2 位 (4 级) | 4-8 位 | | 子优先级参数 | 忽略 | 有效 | | 典型优先级范围 | 0-3 | 0-15 或 0-255 | 并且在stm32f0xx_hal.c文档的__weak HAL_StatusTypeDef HAL_InitTick(uint32_t TickPriority)前,有这样一段描述: Care must be taken if HAL_Delay() is called from a peripheral ISR process, The SysTick interrupt must have higher priority (numerically lower) than the peripheral interrupt. Otherwise the caller ISR process will be blocked. 进一步印证了你前面“SysTick_IRQn不需要设为0,就可以启用HAL_Dealy”的说法有问题。

/****************************************************************************** * @fn zb_ReceiveDataIndication * * @brief The zb_ReceiveDataIndication callback function is called * asynchronously by the ZigBee stack to notify the application * when data is received from a peer device. * * @param source - The short address of the peer device that sent the data * command - The commandId associated with the data * len - The number of bytes in the pData parameter * pData - The data sent by the peer device * * @return none */ /* void zb_ReceiveDataIndication( uint16 source, uint16 command, uint16 len, uint8 *pData ) { //处理数据格式 gtwData.parent = BUILD_UINT16(pData[SENSOR_PARENT_OFFSET+ 1], pData[SENSOR_PARENT_OFFSET]); gtwData.source=source; gtwData.temp=*pData; gtwData.voltage=*(pData+1); // Flash LED 1 once to indicate data reception //接收到数据之后LED灯闪烁1次 HalLedSet( HAL_LED_1, HAL_LED_MODE_OFF ); HalLedSet( HAL_LED_1, HAL_LED_MODE_BLINK ); // Send gateway report //发送网关数据 sendGtwReport(>wData); } */ void zb_ReceiveDataIndication(uint16 source, uint16 command, uint16 len, uint8 *pData) { gtwData.parent = BUILD_UINT16(pData[SENSOR_PARENT_OFFSET+1], pData[SENSOR_PARENT_OFFSET]); gtwData.source = source; gtwData.temp = *pData; gtwData.humidity = *(pData+1); gtwData.humandetected = *(pData+2); // Flash LED 1 once to indicate data reception HalLedSet(HAL_LED_1, HAL_LED_MODE_OFF); HalLedSet(HAL_LED_1, HAL_LED_MODE_BLINK); // 格式化显示数据 char displayBuf[50]; //sprintf(displayBuf, "22145131 22145137:%d,%d\r\n", gtwData.temp, gtwData.humidity); sprintf(displayBuf, "A0=%d A1=%d H0=%d\r\n", gtwData.temp, gtwData.humidity,gtwData.humandetected); HalUARTWrite(HAL_UART_PORT_0,(uint8 *)displayBuf, strlen(displayBuf)); sendGtwReport(>wData); } /****************************************************************************** * @fn uartRxCB * * @brief Callback function for UART * * @param port - UART port * event - UART event that caused callback * * @return none */ /*void uartRxCB(uint8 port, uint8 event) { uint8 pBuf[RX_BUF_LEN]; uint16 len; uint16 cmd; if (event != HAL_UART_TX_EMPTY) { len = HalUARTRead(HAL_UART_PORT_0, pBuf, RX_BUF_LEN); if (len > 0) { // 检查是否是PING请求 cmd = BUILD_UINT16(pBuf[SYS_PING_CMD_OFFSET+1], pBuf[SYS_PING_CMD_OFFSET]); if ((pBuf[FRAME_SOF_OFFSET] == CPT_SOP) && (cmd == SYS_PING_REQUEST)) { sysPingReqRcvd(); return; } // 处理字符串命令 if (strncmp((char *)pBuf, "0x131 ON", 8) == 0) { // LED ON命令 HalLedSet(HAL_LED_2, HAL_LED_MODE_BLINK); uint8 cmd[] = "305 ON"; zb_SendDataRequest(0xFFFF, SENSOR_REPORT_CMD_ID, sizeof(cmd)-1, cmd, 0, AF_ACK_REQUEST, 0); HalUARTWrite(HAL_UART_PORT_0, "22145131 22145137:LED ON ok\r\n", sizeof("22145131 22145137:LED ON ok\r\n")); } else if (strncmp((char *)pBuf, "0x131 OFF", 9) == 0) { // LED OFF命令 HalLedSet(HAL_LED_2, HAL_LED_MODE_OFF); uint8 cmd[] = "305 OFF"; zb_SendDataRequest(0xFFFF, SENSOR_REPORT_CMD_ID, sizeof(cmd)-1, cmd, 0, AF_ACK_REQUEST, 0); HalUARTWrite(HAL_UART_PORT_0, "22145131 22145137:LED OFF命令已发送\r\n", sizeof("22145131 22145137:LED OFF命令已发送\r\n")); } else if (strncmp((char *)pBuf, "0x132", 5) == 0) { // 单次采集命令 uint8 cmd[] = "SINGLE_REPORT"; zb_SendDataRequest(0xFFFE, SENSOR_REPORT_CMD_ID, sizeof(cmd)-1, cmd, 0, AF_ACK_REQUEST, 0); HalUARTWrite(HAL_UART_PORT_0, "22145131 22145137:one collect ok\r\n", sizeof("22145131 22145137:one collect ok\r\n")); } else if (strncmp((char *)pBuf, "0x133", 5) == 0) { // 连续采集命令 continuousReporting = 1; reportCount = 0; uint8 cmd[] = "CONTINUOUS_REPORT"; zb_SendDataRequest(0xFFFE, SENSOR_REPORT_CMD_ID, sizeof(cmd)-1, cmd, 0, AF_ACK_REQUEST, 0); HalUARTWrite(HAL_UART_PORT_0, "22145131 22145137:many collect ok\r\n", sizeof("22145131 22145137:many collect ok\r\n")); } else if (strncmp((char *)pBuf, "0x134", 5) == 0) { // 停止采集命令 continuousReporting = 0; uint8 cmd[] = "STOP_REPORT"; zb_SendDataRequest(0xFFFE, SENSOR_REPORT_CMD_ID, sizeof(cmd)-1, cmd, 0, AF_ACK_REQUEST, 0); HalUARTWrite(HAL_UART_PORT_0, "22145131 22145137:stop collect ok\r\n", sizeof("22145131 22145137:stop collect ok\r\n")); } } } }*/ /*风扇传感器------------------------------------------------------------------ ------------------------------------------------------------------------*/ //转速显示函数 int count = 0; void Speed(void) { char Str[10]; sprintf(Str,"%d\r\n",count/3); Uart_Send_String(Str); //串口发送数据 count = 0; halWait(250); //延时 halWait(250); halWait(250); halWait(250); } /*T1初始化函数,配置为pwm模式 -------------------------------------------------------*/ void t1_init(void) { PERCFG = 0x03; //位置1 定时器1设置为位置1, P0SEL |= 0x20; //P0_5用作外设接口 P0DIR |= 0x20; P2DIR |= 0xC0; T1CNTL = 0x00; T1CNTH = 0x00; T1CCTL3 = 0x2C; //比较模式6 T1CC0L = 0xFF; //周期 T1CC0H = 0xEF; T1CC3L = 0xFF; //占空比 T1CC3H = 0x6F; T1CTL = 0x0E; //模模式 } /*中断服务子程序 -------------------------------------------------------*/ #pragma vector = P0INT_VECTOR __interrupt void P0_ISR(void) { EA = 0; //关中断 if((P0IFG & 0x02 ) >0 ) //按键中断 ,p0_1 { halWait(200); //去抖动 P0IFG &= ~0x02; //P0.1中断标志清0 T1CC3H = T1CC3H + 0x20; //减小占空比 T1CC3L = 0xFF; } if((P0IFG & 0x10 ) >0 ) //按键中断 ,p0_4 { halWait(200); //去抖动 P0IFG &= ~0x10; //P0.4中断标志清0 T1CC3H = T1CC3H - 0x20; //增大占空比 T1CC3L = 0xFF; } if((P0IFG & 0x40 ) >0 ) // p0_6 { P0IFG &= ~0x40; //P0.5中断标志清0 count++; } P0IF = 0; //P0中断标志清0 EA = 1; //开中断 } /*延时函数 -------------------------------------------------------*/ void halWait(unsigned char wait) { unsigned long largeWait; if(wait == 0) {return;} largeWait = ((unsigned short) (wait << 7)); largeWait += 114*wait; largeWait = (largeWait >> CLKSPD); while(largeWait--); return; } //节能模式 void SetLowPowerMode(void) { // 1. 降低传感器采样频率 osal_stop_timerEx(sapi_TaskID, SENSOR_SAMPLE_EVT); osal_start_timerEx(sapi_TaskID, SENSOR_SAMPLE_EVT, 5000); // 5秒采样 // 2. 关闭非必要外设 HalLedSet(HAL_LED_2, HAL_LED_MODE_OFF); // 关闭D6 // 3. 发送节能通知 Uart_Send_String("SYSTEM: Entering Low Power Mode"); }

UART1 and UART2 initialized. ERR: Failed to rbWrite ERR: Failed to rbWrite ERR: Failed to rbWrite ERR: Failed to rbWrite ERR: Failed to rbWrite ERR: Failed to rbWrite ERR: Failed to rbWrite ERR: Failed to rbWrite rbCreate Success DHT11 OK: T=30, H=53Warning:gizProtocolResendData 589 2 0Warning: timeout, resend data valueFan_OnOff ChangedvalueLED_OnOff Changedchanged, report dataDHT11 OK: T=30, H=53Warning:gizProtocolResendData 857 604 0Warning: timeout, resend data DHT11 OK: T=30, H=53Warning:gizProtocolResendData 1118 865 1Warning: timeout, resend data DHT11 OK: T=30, H=53DHT11 OK: T=30, H=53DHT11 OK: T=30, H=53DHT11 OK: T=30, H=53DHT11 OK: T=30, H=53DHT11 OK: T=30, H=53DHT11 OK: T=30, H=53DHT11 OK: T=30, H=53DHT11 OK: T=30, H=53DHT11 OK: T=30, H=53DHT11 OK: T=30, H=53DHT11 OK: T=30, H=53DHT11 OK: T=30, H=53DHT11 OK: T=30, H=53DHT11 OK: T=30, H=53DHT11 OK: T=30, H=53DHT11 OK: T=30, H=53DHT11 OK: T=30, H=53DHT11 OK: T=30, H=53DHT11 OK: T=30, H=53DHT11 OK: T=30, H=53DHT11 OK: T=30, H=53valuelight Changedchanged, report dataDHT11 OK: T=30, H=53Warning:gizProtocolResendData 6950 6697 0Warning: timeout, resend data DHT11 OK: T=30, H=53Warning:gizProtocolResendData 7211 6958 1Warning: timeout, resend data DHT11 OK: T=30, H=53DHT11 OK: T=30, H=53DHT11 OK: T=30, H=53DHT11 OK: T=30, H=53DHT11 OK: T=30, H=53DHT11 OK: T=30, H=53连不上网 #include "stm32f10x.h" // Device header #include "Delay.h" #include "OLED.h" #include "DHT11.h" #include "LED.h" #include "Light_Sensor.h" // 光敏电阻驱动(PA7) #include "Fan.h" #include "Buzzer.h" #include "TIM3.h" // TIM3定时器(1ms中断) #include "usart.h" // 串口通信(含机智云数据传输) #include "gizwits_product.h" // 机智云SDK #include "gizwits_protocol.h" // 阈值定义 #define TEMP_THRESHOLD 29 // 温度阈值(℃) #define LIGHT_THRESHOLD 128 // 光照阈值(0-255) extern uint8_t temp; extern uint8_t humi; extern dataPoint_t currentDataPoint; // 全局变量 uint8_t light_intensity; // 光照强度 void controlPeripherals(void) { // 温度控制风扇 if (temp > TEMP_THRESHOLD) { Control_Fan(1); // 风扇开启 currentDataPoint.valueFan_OnOff = 1; // 更新机智云风扇状态 OLED_ShowString(4, 1, "Fan: ON "); } else { Control_Fan(0); // 风扇关闭 currentDataPoint.valueFan_OnOff = 0; // 更新机智云风扇状态 OLED_ShowString(4, 1, "Fan: OFF"); } // 光照控制LED if (light_intensity < LIGHT_THRESHOLD) { Control_Light(1); // 光照不足,开灯 currentDataPoint.valueLED_OnOff = 1; } else { Control_Light(0); // 光照充足,关灯 currentDataPoint.valueLED_OnOff = 0; } // 超阈值报警(温度+湿度) if (temp > TEMP_THRESHOLD) { Buzzer_ON(); // 蜂鸣器报警 } else { Buzzer_OFF(); // 停止报警 } } // OLED显示更新 void updateOLED(void) { // 光照显示 OLED_ShowString(1, 1, "Light:"); OLED_ShowNum(1, 7, light_intensity, 3); OLED_ShowString(1, 10, "/255"); // 温度显示 OLED_ShowString(2, 1, "Temp:"); if(temp == 0xFF) { // 0xFF表示读取错误 OLED_ShowString(2, 6, "ERR"); } else { OLED_ShowNum(2, 6, temp, 2); OLED_ShowCC_F16x16(2, 8, 0); // 显示℃ } // 湿度显示 OLED_ShowString(3, 1, "Humi:"); OLED_ShowNum(3, 6, humi, 2); OLED_ShowCC_F16x16(3, 8, 1); // %显示 } int main(void) { // 初始化外设(按依赖顺序) NVIC_PriorityGroupConfig(NVIC_PriorityGroup_2); Delay_Init(); uart1_init(115200); // 初始化USART1,用于printf输出 uart2_init(115200); printf("UART1 and UART2 initialized.\r\n"); // 现在应该可以输出 OLED_Init(); // OLED显示屏 OLED_ShowString(1, 1, "System Start"); Delay_ms(1000); OLED_Clear(); LED_Init(); // LED初始化 LightSensor_Init(); // 光敏电阻初始化(PA7) ADC1_Init(); // ADC初始化(读取光敏电阻) DHT11_UserConfig(); // DHT11温湿度传感器初始化 Fan_Init(); // 风扇初始化 Buzzer_Init(); // 蜂鸣器初始化 GENERAL_TIM_Init(); // TIM3初始化(1ms中断,机智云定时) userInit(); // 机智云用户初始化 gizwitsInit(); gizwitsSetMode(WIFI_AIRLINK_MODE); // 机智云设备初始化 Delay_ms(500); OLED_Clear(); // 清屏准备正式显示 while (1) { light_intensity = Get_Light_Intensity(); // 1. 采集传感器数据 collectSensorData(); // 2. 更新机智云数据点(供云端读取) currentDataPoint.valuetemp = temp; // 温度数据 currentDataPoint.valuehumi = humi; // 湿度数据 currentDataPoint.valuelight = light_intensity;// 光照数据 // 3. 控制外设(风扇、LED、蜂鸣器) controlPeripherals(); // 4. 更新OLED显示 updateOLED(); // 5. 机智云任务处理(数据上报/指令接收) userHandle(); // 用户自定义处理 gizwitsHandle(¤tDataPoint); // 机智云核心处理 // 6. 延时,降低CPU占用 Delay_ms(200); } } #include "sys.h" #include "usart.h" #include "gizwits_product.h" #if 1 #pragma import(__use_no_semihosting) //Ҫ׼ࠢѨҪք֧Ԗگ˽ struct __FILE { int handle; }; FILE __stdout; //֨ӥ_sys_exit()ӔҜĢʹԃѫ׷ܺģʽ void _sys_exit(int x) { x = x; } int fputc(int ch, FILE *f) { while((USART1->SR&0X40)==0); USART1->DR = (u8) ch; return ch; } #endif #if EN_USART1_RX //ɧڻʹŜ‹ޓ˕ //Ԯࠚ1א׏ؾϱԌѲ //עӢ,ׁȡUSARTx->SRŜҜĢĪĻǤĮքխϳ u8 USART_RX_BUF[USART_REC_LEN]; //ޓ˕ۺԥ,خճUSART_REC_LENٶؖޚ. //ޓ˕״̬ //bit15ì ޓ˕ΪԉҪ־ //bit14ì ޓ˕ս0x0d //bit13~0ì ޓ˕սքԐЧؖޚ˽Ŀ u16 USART_RX_STA=0; //ޓ˕״̬Ҫ݇ void uart1_init(u32 bound){ //GPIO׋ࠚʨ׃ GPIO_InitTypeDef GPIO_InitStructure; USART_InitTypeDef USART_InitStructure; NVIC_InitTypeDef NVIC_InitStructure; RCC_APB2PeriphClockCmd(RCC_APB2Periph_USART1|RCC_APB2Periph_GPIOA, ENABLE); //ʹŜUSART1ìGPIOAʱד //USART1_TX GPIOA.9 GPIO_InitStructure.GPIO_Pin = GPIO_Pin_9; //PA.9 GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz; GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF_PP; //شԃΆάˤԶ GPIO_Init(GPIOA, &GPIO_InitStructure);//ԵʼۯGPIOA.9 //USART1_RX GPIOA.10Եʼۯ GPIO_InitStructure.GPIO_Pin = GPIO_Pin_10;//PA10 GPIO_InitStructure.GPIO_Mode = GPIO_Mode_IN_FLOATING;//ءࠕˤɫ GPIO_Init(GPIOA, &GPIO_InitStructure);//ԵʼۯGPIOA.10 //Usart1 NVIC Ƥ׃ NVIC_InitStructure.NVIC_IRQChannel = USART1_IRQn; NVIC_InitStructure.NVIC_IRQChannelPreemptionPriority=0 ;//ȀռԅЈܶ3 NVIC_InitStructure.NVIC_IRQChannelSubPriority = 3; //ؓԅЈܶ3 NVIC_InitStructure.NVIC_IRQChannelCmd = ENABLE; //IRQͨրʹŜ NVIC_Init(&NVIC_InitStructure); //ٹߝָ֨քӎ˽ԵʼۯVIC݄զǷ //USART Եʼۯʨ׃ USART_InitStructure.USART_BaudRate = bound;//ԮࠚҨ͘Ê USART_InitStructure.USART_WordLength = USART_WordLength_8b;//ؖӤΪ8λ˽ߝٱʽ USART_InitStructure.USART_StopBits = USART_StopBits_1;//һٶֹͣλ USART_InitStructure.USART_Parity = USART_Parity_No;//ϞǦżУҩλ USART_InitStructure.USART_HardwareFlowControl = USART_HardwareFlowControl_None;//ϞӲݾ˽ߝ·࠘׆ USART_InitStructure.USART_Mode = USART_Mode_Rx | USART_Mode_Tx; //˕עģʽ USART_Init(USART1, &USART_InitStructure); //ԵʼۯԮࠚ1 USART_ITConfig(USART1, USART_IT_RXNE, ENABLE);//ߪǴԮࠚޓ˜א׏ USART_Cmd(USART1, ENABLE); //ʹŜԮࠚ1 } void uart2_init(u32 bound){ //GPIO׋ࠚʨ׃ GPIO_InitTypeDef GPIO_InitStructure; USART_InitTypeDef USART_InitStructure; NVIC_InitTypeDef NVIC_InitStructure; RCC_APB1PeriphClockCmd(RCC_APB1Periph_USART2, ENABLE); //ʹŜUSART2ìGPIOAʱד RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOA, ENABLE); //USART1_TX GPIOA.9 GPIO_InitStructure.GPIO_Pin = GPIO_Pin_2; //PA.9 GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz; GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF_PP; //شԃΆάˤԶ GPIO_Init(GPIOA, &GPIO_InitStructure);//ԵʼۯGPIOA.9 //USART1_RX GPIOA.10Եʼۯ GPIO_InitStructure.GPIO_Pin = GPIO_Pin_3;//PA10 GPIO_InitStructure.GPIO_Mode = GPIO_Mode_IN_FLOATING;//ءࠕˤɫ GPIO_Init(GPIOA, &GPIO_InitStructure);//ԵʼۯGPIOA.10 //Usart1 NVIC Ƥ׃ NVIC_InitStructure.NVIC_IRQChannel = USART2_IRQn; NVIC_InitStructure.NVIC_IRQChannelPreemptionPriority=0 ;//ȀռԅЈܶ3 NVIC_InitStructure.NVIC_IRQChannelSubPriority = 2; //ؓԅЈܶ3 NVIC_InitStructure.NVIC_IRQChannelCmd = ENABLE; //IRQͨրʹŜ NVIC_Init(&NVIC_InitStructure); //ٹߝָ֨քӎ˽ԵʼۯVIC݄զǷ //USART Եʼۯʨ׃ USART_InitStructure.USART_BaudRate = bound;//ԮࠚҨ͘Ê USART_InitStructure.USART_WordLength = USART_WordLength_8b;//ؖӤΪ8λ˽ߝٱʽ USART_InitStructure.USART_StopBits = USART_StopBits_1;//һٶֹͣλ USART_InitStructure.USART_Parity = USART_Parity_No;//ϞǦżУҩλ USART_InitStructure.USART_HardwareFlowControl = USART_HardwareFlowControl_None;//ϞӲݾ˽ߝ·࠘׆ USART_InitStructure.USART_Mode = USART_Mode_Rx | USART_Mode_Tx; //˕עģʽ USART_Init(USART2, &USART_InitStructure); //ԵʼۯԮࠚ1 USART_ITConfig(USART2, USART_IT_RXNE, ENABLE);//ߪǴԮࠚޓ˜א׏ USART_Cmd(USART2, ENABLE); //ʹŜԮࠚ1 // 添加串口错误中断使能 USART_ITConfig(USART2, USART_IT_ORE, ENABLE); // 过载错误 USART_ITConfig(USART2, USART_IT_NE, ENABLE); // 噪声错误 USART_ITConfig(USART2, USART_IT_FE, ENABLE); // 帧错误 } void USART1_IRQHandler(void) //Ԯࠚ1א׏ؾϱԌѲ { u8 Res; if(USART_GetITStatus(USART1, USART_IT_RXNE) != RESET) //ޓ˕א׏(ޓ˕սք˽ߝҘѫˇ0x0d 0x0aޡβ) { USART_ClearITPendingBit(USART1,USART_IT_RXNE); Res =USART_ReceiveData(USART1); //ׁȡޓ˕սք˽ߝ } } void USART2_IRQHandler(void) //Ԯࠚ2א׏ؾϱԌѲ { u8 Res; if(USART_GetITStatus(USART2, USART_IT_ORE) != RESET) { USART_ClearITPendingBit(USART2, USART_IT_ORE); USART_ReceiveData(USART2); // 清除溢出 } if(USART_GetITStatus(USART2, USART_IT_NE) != RESET) { USART_ClearITPendingBit(USART2, USART_IT_NE); } if(USART_GetITStatus(USART2, USART_IT_FE) != RESET) { USART_ClearITPendingBit(USART2, USART_IT_FE); } if(USART_GetITStatus(USART2, USART_IT_RXNE) != RESET) //ޓ˕א׏(ޓ˕սք˽ߝҘѫˇ0x0d 0x0aޡβ) { USART_ClearITPendingBit(USART2,USART_IT_RXNE); Res =USART_ReceiveData(USART2); //ׁȡޓ˕սք˽ߝ gizPutData(&Res,1); } } #endif /** ************************************************************ * @file gizwits_protocol.c * @brief Corresponding gizwits_product.c header file (including product hardware and software version definition) * @author Gizwits * @date 2017-07-19 * @version V03030000 * @copyright Gizwits * * @note 机智云.只为智能硬件而生 * Gizwits Smart Cloud for Smart Products * 链接|增值ֵ|开放|中立|安全|自有|自由|生态 * www.gizwits.com * ***********************************************************/ #include "ringBuffer.h" #include "gizwits_product.h" #include "dataPointTools.h" /** Protocol global variables **/ gizwitsProtocol_t gizwitsProtocol; /**@name The serial port receives the ring buffer implementation * @{ */ rb_t pRb; ///< Ring buffer structure variable static uint8_t rbBuf[RB_MAX_LEN]; ///< Ring buffer data cache buffer /**@} */ /** * @brief Write data to the ring buffer * @param [in] buf : buf adress * @param [in] len : byte length * @return correct : Returns the length of the written data failure : -1 */ int32_t gizPutData(uint8_t *buf, uint32_t len) { int32_t count = 0; if(NULL == buf) { GIZWITS_LOG("ERR: gizPutData buf is empty \n"); return -1; } count = rbWrite(&pRb, buf, len); if(count != len) { GIZWITS_LOG("ERR: Failed to rbWrite \n"); return -1; } return count; } /** * @brief Protocol header initialization * * @param [out] head : Protocol header pointer * * @return 0, success; other, failure */ static int8_t gizProtocolHeadInit(protocolHead_t *head) { if(NULL == head) { GIZWITS_LOG("ERR: gizProtocolHeadInit head is empty \n"); return -1; } memset((uint8_t *)head, 0, sizeof(protocolHead_t)); head->head[0] = 0xFF; head->head[1] = 0xFF; return 0; } /** * @brief Protocol ACK check processing function * * @param [in] data : data adress * @param [in] len : data length * * @return 0, suceess; other, failure */ static int8_t gizProtocolWaitAck(uint8_t *gizdata, uint32_t len) { if(NULL == gizdata) { GIZWITS_LOG("ERR: data is empty \n"); return -1; } memset((uint8_t *)&gizwitsProtocol.waitAck, 0, sizeof(protocolWaitAck_t)); memcpy((uint8_t *)gizwitsProtocol.waitAck.buf, gizdata, len); gizwitsProtocol.waitAck.dataLen = (uint16_t)len; gizwitsProtocol.waitAck.flag = 1; gizwitsProtocol.waitAck.sendTime = gizGetTimerCount(); return 0; } /** * @brief generates "controlled events" according to protocol * @param [in] issuedData: Controlled data * @param [out] info: event queue * @param [out] dataPoints: data point data * @return 0, the implementation of success, non-0, failed */ static int8_t ICACHE_FLASH_ATTR gizDataPoint2Event(gizwitsIssued_t *issuedData, eventInfo_t *info, dataPoint_t *dataPoints) { if((NULL == issuedData) || (NULL == info) ||(NULL == dataPoints)) { GIZWITS_LOG("gizDataPoint2Event Error , Illegal Param\n"); return -1; } /** Greater than 1 byte to do bit conversion **/ if(sizeof(issuedData->attrFlags) > 1) { if(-1 == gizByteOrderExchange((uint8_t *)&issuedData->attrFlags,sizeof(attrFlags_t))) { GIZWITS_LOG("gizByteOrderExchange Error\n"); return -1; } } if(0x01 == issuedData->attrFlags.flagFan_OnOff) { info->event[info->num] = EVENT_Fan_OnOff; info->num++; dataPoints->valueFan_OnOff = gizStandardDecompressionValue(Fan_OnOff_BYTEOFFSET,Fan_OnOff_BITOFFSET,Fan_OnOff_LEN,(uint8_t *)&issuedData->attrVals.wBitBuf,sizeof(issuedData->attrVals.wBitBuf)); } if(0x01 == issuedData->attrFlags.flagLED_OnOff) { info->event[info->num] = EVENT_LED_OnOff; info->num++; dataPoints->valueLED_OnOff = gizStandardDecompressionValue(LED_OnOff_BYTEOFFSET,LED_OnOff_BITOFFSET,LED_OnOff_LEN,(uint8_t *)&issuedData->attrVals.wBitBuf,sizeof(issuedData->attrVals.wBitBuf)); } return 0; } /** * @brief contrasts the current data with the last data * * @param [in] cur: current data point data * @param [in] last: last data point data * * @return: 0, no change in data; 1, data changes */ static int8_t ICACHE_FLASH_ATTR gizCheckReport(dataPoint_t *cur, dataPoint_t *last) { int8_t ret = 0; static uint32_t lastReportTime = 0; uint32_t currentTime = 0; if((NULL == cur) || (NULL == last)) { GIZWITS_LOG("gizCheckReport Error , Illegal Param\n"); return -1; } currentTime = gizGetTimerCount(); if(last->valueFan_OnOff != cur->valueFan_OnOff) { GIZWITS_LOG("valueFan_OnOff Changed\n"); ret = 1; } if(last->valueLED_OnOff != cur->valueLED_OnOff) { GIZWITS_LOG("valueLED_OnOff Changed\n"); ret = 1; } if(last->valuetemp != cur->valuetemp) { if(currentTime - lastReportTime >= REPORT_TIME_MAX) { GIZWITS_LOG("valuetemp Changed\n"); ret = 1; } } if(last->valuehumi != cur->valuehumi) { if(currentTime - lastReportTime >= REPORT_TIME_MAX) { GIZWITS_LOG("valuehumi Changed\n"); ret = 1; } } if(last->valuelight != cur->valuelight) { if(currentTime - lastReportTime >= REPORT_TIME_MAX) { GIZWITS_LOG("valuelight Changed\n"); ret = 1; } } if(1 == ret) { lastReportTime = gizGetTimerCount(); } return ret; } /** * @brief User data point data is converted to wit the cloud to report data point data * * @param [in] dataPoints: user data point data address * @param [out] devStatusPtr: wit the cloud data point data address * * @return 0, the correct return; -1, the error returned */ static int8_t ICACHE_FLASH_ATTR gizDataPoints2ReportData(dataPoint_t *dataPoints , devStatus_t *devStatusPtr) { if((NULL == dataPoints) || (NULL == devStatusPtr)) { GIZWITS_LOG("gizDataPoints2ReportData Error , Illegal Param\n"); return -1; } gizMemset((uint8_t *)devStatusPtr->wBitBuf,0,sizeof(devStatusPtr->wBitBuf)); gizStandardCompressValue(Fan_OnOff_BYTEOFFSET,Fan_OnOff_BITOFFSET,Fan_OnOff_LEN,(uint8_t *)devStatusPtr,dataPoints->valueFan_OnOff); gizStandardCompressValue(LED_OnOff_BYTEOFFSET,LED_OnOff_BITOFFSET,LED_OnOff_LEN,(uint8_t *)devStatusPtr,dataPoints->valueLED_OnOff); gizByteOrderExchange((uint8_t *)devStatusPtr->wBitBuf,sizeof(devStatusPtr->wBitBuf)); devStatusPtr->valuetemp = gizY2X(temp_RATIO, temp_ADDITION, dataPoints->valuetemp); devStatusPtr->valuehumi = gizY2X(humi_RATIO, humi_ADDITION, dataPoints->valuehumi); devStatusPtr->valuelight = exchangeBytes(gizY2X(light_RATIO, light_ADDITION, dataPoints->valuelight)); return 0; } /** * @brief This function is called by the Gagent module to receive the relevant protocol data from the cloud or APP * @param [in] inData The protocol data entered * @param [in] inLen Enter the length of the data * @param [out] outData The output of the protocol data * @param [out] outLen The length of the output data * @return 0, the implementation of success, non-0, failed */ static int8_t gizProtocolIssuedProcess(char *did, uint8_t *inData, uint32_t inLen, uint8_t *outData, uint32_t *outLen) { uint8_t issuedAction = inData[0]; if((NULL == inData)||(NULL == outData)||(NULL == outLen)) { GIZWITS_LOG("gizProtocolIssuedProcess Error , Illegal Param\n"); return -1; } if(NULL == did) { memset((uint8_t *)&gizwitsProtocol.issuedProcessEvent, 0, sizeof(eventInfo_t)); switch(issuedAction) { case ACTION_CONTROL_DEVICE: gizDataPoint2Event((gizwitsIssued_t *)&inData[1], &gizwitsProtocol.issuedProcessEvent,&gizwitsProtocol.gizCurrentDataPoint); gizwitsProtocol.issuedFlag = ACTION_CONTROL_TYPE; outData = NULL; *outLen = 0; break; case ACTION_READ_DEV_STATUS: if(0 == gizDataPoints2ReportData(&gizwitsProtocol.gizLastDataPoint,&gizwitsProtocol.reportData.devStatus)) { memcpy(outData+1, (uint8_t *)&gizwitsProtocol.reportData.devStatus, sizeof(gizwitsReport_t)); outData[0] = ACTION_READ_DEV_STATUS_ACK; *outLen = sizeof(gizwitsReport_t)+1; } else { return -1; } break; case ACTION_W2D_TRANSPARENT_DATA: memcpy(gizwitsProtocol.transparentBuff, &inData[1], inLen-1); gizwitsProtocol.transparentLen = inLen - 1; gizwitsProtocol.issuedProcessEvent.event[gizwitsProtocol.issuedProcessEvent.num] = TRANSPARENT_DATA; gizwitsProtocol.issuedProcessEvent.num++; gizwitsProtocol.issuedFlag = ACTION_W2D_TRANSPARENT_TYPE; outData = NULL; *outLen = 0; break; default: break; } } return 0; } /** * @brief The protocol sends data back , P0 ACK * * @param [in] head : Protocol head pointer * @param [in] data : Payload data * @param [in] len : Payload data length * @param [in] proFlag : DID flag ,1 for Virtual sub device did ,0 for single product or gateway * * @return : 0,Ack success; * -1,Input Param Illegal * -2,Serial send faild */ static int32_t gizProtocolIssuedDataAck(protocolHead_t *head, uint8_t *gizdata, uint32_t len, uint8_t proFlag) { int32_t ret = 0; uint8_t tx_buf[RB_MAX_LEN]; uint32_t offset = 0; uint8_t sDidLen = 0; uint16_t data_len = 0; uint8_t *pTxBuf = tx_buf; if(NULL == gizdata) { GIZWITS_LOG("[ERR] data Is Null \n"); return -1; } if(0x1 == proFlag) { sDidLen = *((uint8_t *)head + sizeof(protocolHead_t)); data_len = 5 + 1 + sDidLen + len; } else { data_len = 5 + len; } GIZWITS_LOG("len = %d , sDidLen = %d ,data_len = %d\n", len,sDidLen,data_len); *pTxBuf ++= 0xFF; *pTxBuf ++= 0xFF; *pTxBuf ++= (uint8_t)(data_len>>8); *pTxBuf ++= (uint8_t)(data_len); *pTxBuf ++= head->cmd + 1; *pTxBuf ++= head->sn; *pTxBuf ++= 0x00; *pTxBuf ++= proFlag; offset = 8; if(0x1 == proFlag) { *pTxBuf ++= sDidLen; offset += 1; memcpy(&tx_buf[offset],(uint8_t *)head+sizeof(protocolHead_t)+1,sDidLen); offset += sDidLen; pTxBuf += sDidLen; } if(0 != len) { memcpy(&tx_buf[offset],gizdata,len); } tx_buf[data_len + 4 - 1 ] = gizProtocolSum( tx_buf , (data_len+4)); ret = uartWrite(tx_buf, data_len+4); if(ret < 0) { GIZWITS_LOG("uart write error %d \n", ret); return -2; } return 0; } /** * @brief Report data interface * * @param [in] action : PO action * @param [in] data : Payload data * @param [in] len : Payload data length * * @return : 0,Ack success; * -1,Input Param Illegal * -2,Serial send faild */ static int32_t gizReportData(uint8_t action, uint8_t *gizdata, uint32_t len) { int32_t ret = 0; protocolReport_t protocolReport; if(NULL == gizdata) { GIZWITS_LOG("gizReportData Error , Illegal Param\n"); return -1; } gizProtocolHeadInit((protocolHead_t *)&protocolReport); protocolReport.head.cmd = CMD_REPORT_P0; protocolReport.head.sn = gizwitsProtocol.sn++; protocolReport.action = action; protocolReport.head.len = exchangeBytes(sizeof(protocolReport_t)-4); memcpy((gizwitsReport_t *)&protocolReport.reportData, (gizwitsReport_t *)gizdata,len); protocolReport.sum = gizProtocolSum((uint8_t *)&protocolReport, sizeof(protocolReport_t)); ret = uartWrite((uint8_t *)&protocolReport, sizeof(protocolReport_t)); if(ret < 0) { GIZWITS_LOG("ERR: uart write error %d \n", ret); return -2; } gizProtocolWaitAck((uint8_t *)&protocolReport, sizeof(protocolReport_t)); return ret; }/** * @brief Datapoints reporting mechanism * * 1. Changes are reported immediately * 2. Data timing report , 600000 Millisecond * *@param [in] currentData : Current datapoints value * @return : NULL */ static void gizDevReportPolicy(dataPoint_t *currentData) { static uint32_t lastRepTime = 0; uint32_t timeNow = gizGetTimerCount(); if((1 == gizCheckReport(currentData, (dataPoint_t *)&gizwitsProtocol.gizLastDataPoint))) { GIZWITS_LOG("changed, report data\n"); if(0 == gizDataPoints2ReportData(currentData,&gizwitsProtocol.reportData.devStatus)) { gizReportData(ACTION_REPORT_DEV_STATUS, (uint8_t *)&gizwitsProtocol.reportData.devStatus, sizeof(devStatus_t)); } memcpy((uint8_t *)&gizwitsProtocol.gizLastDataPoint, (uint8_t *)currentData, sizeof(dataPoint_t)); } if((0 == (timeNow % (600000))) && (lastRepTime != timeNow)) { GIZWITS_LOG("Info: 600S report data\n"); if(0 == gizDataPoints2ReportData(currentData,&gizwitsProtocol.reportData.devStatus)) { gizReportData(ACTION_REPORT_DEV_STATUS, (uint8_t *)&gizwitsProtocol.reportData.devStatus, sizeof(devStatus_t)); } memcpy((uint8_t *)&gizwitsProtocol.gizLastDataPoint, (uint8_t *)currentData, sizeof(dataPoint_t)); lastRepTime = timeNow; } } /** * @brief Get a packet of data from the ring buffer * * @param [in] rb : Input data address * @param [out] data : Output data address * @param [out] len : Output data length * * @return : 0,Return correct ;-1,Return failure;-2,Data check failure */ static int8_t gizProtocolGetOnePacket(rb_t *rb, uint8_t *gizdata, uint16_t *len) { int32_t ret = 0; uint8_t sum = 0; int32_t i = 0; uint8_t tmpData; uint16_t tmpLen = 0; uint16_t tmpCount = 0; static uint8_t protocolFlag = 0; static uint16_t protocolCount = 0; static uint8_t lastData = 0; static uint8_t debugCount = 0; uint8_t *protocolBuff = gizdata; protocolHead_t *head = NULL; if((NULL == rb) || (NULL == gizdata) ||(NULL == len)) { GIZWITS_LOG("gizProtocolGetOnePacket Error , Illegal Param\n"); return -1; } tmpLen = rbCanRead(rb); if(0 == tmpLen) { return -1; } for(i=0; i<tmpLen; i++) { ret = rbRead(rb, &tmpData, 1); if(0 != ret) { if((0xFF == lastData) && (0xFF == tmpData)) { if(0 == protocolFlag) { protocolBuff[0] = 0xFF; protocolBuff[1] = 0xFF; protocolCount = 2; protocolFlag = 1; } else { if((protocolCount > 4) && (protocolCount != tmpCount)) { protocolBuff[0] = 0xFF; protocolBuff[1] = 0xFF; protocolCount = 2; } } } else if((0xFF == lastData) && (0x55 == tmpData)) { } else { if(1 == protocolFlag) { protocolBuff[protocolCount] = tmpData; protocolCount++; if(protocolCount > 4) { head = (protocolHead_t *)protocolBuff; tmpCount = exchangeBytes(head->len)+4; if (tmpCount >= MAX_PACKAGE_LEN || tmpCount <= 4) { protocolFlag = 0; protocolCount = 0; GIZWITS_LOG("ERR:the data length is too long or too small, will abandon \n"); } if(protocolCount == tmpCount) { break; } } } } lastData = tmpData; debugCount++; } } if((protocolCount > 4) && (protocolCount == tmpCount)) { sum = gizProtocolSum(protocolBuff, protocolCount); if(protocolBuff[protocolCount-1] == sum) { *len = tmpCount; protocolFlag = 0; protocolCount = 0; debugCount = 0; lastData = 0; return 0; } else { protocolFlag = 0; protocolCount = 0; return -2; } } return 1; } /** * @brief Protocol data resend * The protocol data resend when check timeout and meet the resend limiting * @param none * * @return none */ static void gizProtocolResendData(void) { int32_t ret = 0; if(0 == gizwitsProtocol.waitAck.flag) { return; } GIZWITS_LOG("Warning: timeout, resend data \n"); ret = uartWrite(gizwitsProtocol.waitAck.buf, gizwitsProtocol.waitAck.dataLen); if(ret != gizwitsProtocol.waitAck.dataLen) { GIZWITS_LOG("ERR: resend data error\n"); } gizwitsProtocol.waitAck.sendTime = gizGetTimerCount(); } /** * @brief Clear the ACK protocol message * * @param [in] head : Protocol header address * * @return 0, success; other, failure */ static int8_t gizProtocolWaitAckCheck(protocolHead_t *head) { protocolHead_t *waitAckHead = (protocolHead_t *)gizwitsProtocol.waitAck.buf; if(NULL == head) { GIZWITS_LOG("ERR: data is empty \n"); return -1; } if(waitAckHead->cmd+1 == head->cmd) { memset((uint8_t *)&gizwitsProtocol.waitAck, 0, sizeof(protocolWaitAck_t)); } return 0; } /** * @brief Send general protocol message data * * @param [in] head : Protocol header address * * @return : Return effective data length;-1,return failure */ static int32_t gizProtocolCommonAck(protocolHead_t *head) { int32_t ret = 0; protocolCommon_t ack; if(NULL == head) { GIZWITS_LOG("ERR: gizProtocolCommonAck data is empty \n"); return -1; } memcpy((uint8_t *)&ack, (uint8_t *)head, sizeof(protocolHead_t)); ack.head.cmd = ack.head.cmd+1; ack.head.len = exchangeBytes(sizeof(protocolCommon_t)-4); ack.sum = gizProtocolSum((uint8_t *)&ack, sizeof(protocolCommon_t)); ret = uartWrite((uint8_t *)&ack, sizeof(protocolCommon_t)); if(ret < 0) { GIZWITS_LOG("ERR: uart write error %d \n", ret); } return ret; } /** * @brief ACK processing function * Time-out 200ms no ACK resend,resend two times at most * @param none * * @return none */ static void gizProtocolAckHandle(void) { if(1 == gizwitsProtocol.waitAck.flag) { if(SEND_MAX_NUM > gizwitsProtocol.waitAck.num) { // Time-out no ACK resend if(SEND_MAX_TIME < (gizGetTimerCount() - gizwitsProtocol.waitAck.sendTime)) { GIZWITS_LOG("Warning:gizProtocolResendData %d %d %d\n", gizGetTimerCount(), gizwitsProtocol.waitAck.sendTime, gizwitsProtocol.waitAck.num); gizProtocolResendData(); gizwitsProtocol.waitAck.num++; } } else { memset((uint8_t *)&gizwitsProtocol.waitAck, 0, sizeof(protocolWaitAck_t)); } } } /** * @brief Protocol 4.1 WiFi module requests device information * * @param[in] head : Protocol header address * * @return Return effective data length;-1,return failure */ static int32_t gizProtocolGetDeviceInfo(protocolHead_t * head) { int32_t ret = 0; protocolDeviceInfo_t deviceInfo; if(NULL == head) { GIZWITS_LOG("gizProtocolGetDeviceInfo Error , Illegal Param\n"); return -1; } gizProtocolHeadInit((protocolHead_t *)&deviceInfo); deviceInfo.head.cmd = ACK_GET_DEVICE_INFO; deviceInfo.head.sn = head->sn; memcpy((uint8_t *)deviceInfo.protocolVer, protocol_VERSION, 8); memcpy((uint8_t *)deviceInfo.p0Ver, P0_VERSION, 8); memcpy((uint8_t *)deviceInfo.softVer, SOFTWARE_VERSION, 8); memcpy((uint8_t *)deviceInfo.hardVer, HARDWARE_VERSION, 8); memcpy((uint8_t *)deviceInfo.productKey, PRODUCT_KEY, strlen(PRODUCT_KEY)); memcpy((uint8_t *)deviceInfo.productSecret, PRODUCT_SECRET, strlen(PRODUCT_SECRET)); memset((uint8_t *)deviceInfo.devAttr, 0, 8); deviceInfo.devAttr[7] |= DEV_IS_GATEWAY<<0; deviceInfo.devAttr[7] |= (0x01<<1); deviceInfo.ninableTime = exchangeBytes(NINABLETIME); #ifdef DATA_CONFIG_ENABLE deviceInfo.DataLen = exchangeBytes(GIZ_DATA_LEN); sprintf(deviceInfo.Data,"apName=%s&apPwd=%s&cfgMode=%s",AP_NAME,AP_PWD,CFG_MODE); #endif deviceInfo.head.len = exchangeBytes(sizeof(protocolDeviceInfo_t)-4); deviceInfo.sum = gizProtocolSum((uint8_t *)&deviceInfo, sizeof(protocolDeviceInfo_t)); ret = uartWrite((uint8_t *)&deviceInfo, sizeof(protocolDeviceInfo_t)); if(ret < 0) { GIZWITS_LOG("ERR: uart write error %d \n", ret); } return ret; } /** * @brief Protocol 4.7 Handling of illegal message notification * @param[in] head : Protocol header address * @param[in] errno : Illegal message notification type * @return 0, success; other, failure */ static int32_t gizProtocolErrorCmd(protocolHead_t *head,errorPacketsType_t errno) { int32_t ret = 0; protocolErrorType_t errorType; if(NULL == head) { GIZWITS_LOG("gizProtocolErrorCmd Error , Illegal Param\n"); return -1; } gizProtocolHeadInit((protocolHead_t *)&errorType); errorType.head.cmd = ACK_ERROR_PACKAGE; errorType.head.sn = head->sn; errorType.head.len = exchangeBytes(sizeof(protocolErrorType_t)-4); errorType.error = errno; errorType.sum = gizProtocolSum((uint8_t *)&errorType, sizeof(protocolErrorType_t)); ret = uartWrite((uint8_t *)&errorType, sizeof(protocolErrorType_t)); if(ret < 0) { GIZWITS_LOG("ERR: uart write error %d \n", ret); } return ret; } /** * @brief Protocol 4.13 Get and process network time * * @param [in] head : Protocol header address * * @return 0, success; other, failure */ static int8_t gizProtocolNTP(protocolHead_t *head) { protocolUTT_t *UTTInfo = (protocolUTT_t *)head; if(NULL == head) { GIZWITS_LOG("ERR: NTP is empty \n"); return -1; } memcpy((uint8_t *)&gizwitsProtocol.TimeNTP.year,(uint8_t *)UTTInfo->time, 7); memcpy((uint8_t *)&gizwitsProtocol.TimeNTP.ntp,(uint8_t *)UTTInfo->ntp_time, 4); gizwitsProtocol.TimeNTP.year = exchangeBytes(gizwitsProtocol.TimeNTP.year); gizwitsProtocol.TimeNTP.ntp =exchangeWord(gizwitsProtocol.TimeNTP.ntp); gizwitsProtocol.NTPEvent.event[gizwitsProtocol.NTPEvent.num] = WIFI_NTP; gizwitsProtocol.NTPEvent.num++; gizwitsProtocol.issuedFlag = GET_NTP_TYPE; return 0; } /** * @brief Protocol 4.4 Device MCU restarts function * @param none * @return none */ static void gizProtocolReboot(void) { uint32_t timeDelay = gizGetTimerCount(); /*Wait 600ms*/ while((gizGetTimerCount() - timeDelay) <= 600); mcuRestart(); } /** * @brief Protocol 4.5 :The WiFi module informs the device MCU of working status about the WiFi module * @param[in] status WiFi module working status * @return none */ static int8_t gizProtocolModuleStatus(protocolWifiStatus_t *status) { static wifiStatus_t lastStatus; if(NULL == status) { GIZWITS_LOG("gizProtocolModuleStatus Error , Illegal Param\n"); return -1; } status->ststus.value = exchangeBytes(status->ststus.value); //OnBoarding mode status if(lastStatus.types.onboarding != status->ststus.types.onboarding) { if(1 == status->ststus.types.onboarding) { if(1 == status->ststus.types.softap) { gizwitsProtocol.wifiStatusEvent.event[gizwitsProtocol.wifiStatusEvent.num] = WIFI_SOFTAP; gizwitsProtocol.wifiStatusEvent.num++; GIZWITS_LOG("OnBoarding: SoftAP or Web mode\n"); } if(1 == status->ststus.types.station) { gizwitsProtocol.wifiStatusEvent.event[gizwitsProtocol.wifiStatusEvent.num] = WIFI_AIRLINK; gizwitsProtocol.wifiStatusEvent.num++; GIZWITS_LOG("OnBoarding: AirLink mode\n"); } } else { if(1 == status->ststus.types.softap) { gizwitsProtocol.wifiStatusEvent.event[gizwitsProtocol.wifiStatusEvent.num] = WIFI_SOFTAP; gizwitsProtocol.wifiStatusEvent.num++; GIZWITS_LOG("OnBoarding: SoftAP or Web mode\n"); } if(1 == status->ststus.types.station) { gizwitsProtocol.wifiStatusEvent.event[gizwitsProtocol.wifiStatusEvent.num] = WIFI_STATION; gizwitsProtocol.wifiStatusEvent.num++; GIZWITS_LOG("OnBoarding: Station mode\n"); } } } //binding mode status if(lastStatus.types.binding != status->ststus.types.binding) { lastStatus.types.binding = status->ststus.types.binding; if(1 == status->ststus.types.binding) { gizwitsProtocol.wifiStatusEvent.event[gizwitsProtocol.wifiStatusEvent.num] = WIFI_OPEN_BINDING; gizwitsProtocol.wifiStatusEvent.num++; GIZWITS_LOG("WiFi status: in binding mode\n"); } else { gizwitsProtocol.wifiStatusEvent.event[gizwitsProtocol.wifiStatusEvent.num] = WIFI_CLOSE_BINDING; gizwitsProtocol.wifiStatusEvent.num++; GIZWITS_LOG("WiFi status: out binding mode\n"); } } //router status if(lastStatus.types.con_route != status->ststus.types.con_route) { lastStatus.types.con_route = status->ststus.types.con_route; if(1 == status->ststus.types.con_route) { gizwitsProtocol.wifiStatusEvent.event[gizwitsProtocol.wifiStatusEvent.num] = WIFI_CON_ROUTER; gizwitsProtocol.wifiStatusEvent.num++; GIZWITS_LOG("WiFi status: connected router\n"); } else { gizwitsProtocol.wifiStatusEvent.event[gizwitsProtocol.wifiStatusEvent.num] = WIFI_DISCON_ROUTER; gizwitsProtocol.wifiStatusEvent.num++; GIZWITS_LOG("WiFi status: disconnected router\n"); } } //M2M server status if(lastStatus.types.con_m2m != status->ststus.types.con_m2m) { lastStatus.types.con_m2m = status->ststus.types.con_m2m; if(1 == status->ststus.types.con_m2m) { gizwitsProtocol.wifiStatusEvent.event[gizwitsProtocol.wifiStatusEvent.num] = WIFI_CON_M2M; gizwitsProtocol.wifiStatusEvent.num++; GIZWITS_LOG("WiFi status: connected m2m\n"); } else { gizwitsProtocol.wifiStatusEvent.event[gizwitsProtocol.wifiStatusEvent.num] = WIFI_DISCON_M2M; gizwitsProtocol.wifiStatusEvent.num++; GIZWITS_LOG("WiFi status: disconnected m2m\n"); } } //APP status if(lastStatus.types.app != status->ststus.types.app) { lastStatus.types.app = status->ststus.types.app; if(1 == status->ststus.types.app) { gizwitsProtocol.wifiStatusEvent.event[gizwitsProtocol.wifiStatusEvent.num] = WIFI_CON_APP; gizwitsProtocol.wifiStatusEvent.num++; GIZWITS_LOG("WiFi status: app connect\n"); } else { gizwitsProtocol.wifiStatusEvent.event[gizwitsProtocol.wifiStatusEvent.num] = WIFI_DISCON_APP; gizwitsProtocol.wifiStatusEvent.num++; GIZWITS_LOG("WiFi status: no app connect\n"); } } //test mode status if(lastStatus.types.test != status->ststus.types.test) { lastStatus.types.test = status->ststus.types.test; if(1 == status->ststus.types.test) { gizwitsProtocol.wifiStatusEvent.event[gizwitsProtocol.wifiStatusEvent.num] = WIFI_OPEN_TESTMODE; gizwitsProtocol.wifiStatusEvent.num++; GIZWITS_LOG("WiFi status: in test mode\n"); } else { gizwitsProtocol.wifiStatusEvent.event[gizwitsProtocol.wifiStatusEvent.num] = WIFI_CLOSE_TESTMODE; gizwitsProtocol.wifiStatusEvent.num++; GIZWITS_LOG("WiFi status: out test mode\n"); } } gizwitsProtocol.wifiStatusEvent.event[gizwitsProtocol.wifiStatusEvent.num] = WIFI_RSSI; gizwitsProtocol.wifiStatusEvent.num++; gizwitsProtocol.wifiStatusData.rssi = status->ststus.types.rssi; GIZWITS_LOG("RSSI is %d \n", gizwitsProtocol.wifiStatusData.rssi); gizwitsProtocol.issuedFlag = WIFI_STATUS_TYPE; return 0; } /**@name Gizwits User API interface * @{ */ /** * @brief gizwits Protocol initialization interface * Protocol-related timer, serial port initialization * Datapoint initialization * @param none * @return none */ void gizwitsInit(void) { pRb.rbCapacity = RB_MAX_LEN; pRb.rbBuff = rbBuf; if(0 == rbCreate(&pRb)) { GIZWITS_LOG("rbCreate Success \n"); } else { GIZWITS_LOG("rbCreate Faild \n"); } memset((uint8_t *)&gizwitsProtocol, 0, sizeof(gizwitsProtocol_t)); } /** * @brief WiFi configure interface * Set the WiFi module into the corresponding configuration mode or reset the module * @param[in] mode :0x0, reset the module ;0x01, SoftAp mode ;0x02, AirLink mode ;0x03, Production test mode; 0x04:allow users to bind devices * @return Error command code */ int32_t gizwitsSetMode(uint8_t mode) { int32_t ret = 0; protocolCfgMode_t cfgMode; protocolCommon_t setDefault; switch(mode) { case WIFI_RESET_MODE: gizProtocolHeadInit((protocolHead_t *)&setDefault); setDefault.head.cmd = CMD_SET_DEFAULT; setDefault.head.sn = gizwitsProtocol.sn++; setDefault.head.len = exchangeBytes(sizeof(protocolCommon_t)-4); setDefault.sum = gizProtocolSum((uint8_t *)&setDefault, sizeof(protocolCommon_t)); ret = uartWrite((uint8_t *)&setDefault, sizeof(protocolCommon_t)); if(ret < 0) { GIZWITS_LOG("ERR: uart write error %d \n", ret); } gizProtocolWaitAck((uint8_t *)&setDefault, sizeof(protocolCommon_t)); break; case WIFI_SOFTAP_MODE: gizProtocolHeadInit((protocolHead_t *)&cfgMode); cfgMode.head.cmd = CMD_WIFI_CONFIG; cfgMode.head.sn = gizwitsProtocol.sn++; cfgMode.cfgMode = mode; cfgMode.head.len = exchangeBytes(sizeof(protocolCfgMode_t)-4); cfgMode.sum = gizProtocolSum((uint8_t *)&cfgMode, sizeof(protocolCfgMode_t)); ret = uartWrite((uint8_t *)&cfgMode, sizeof(protocolCfgMode_t)); if(ret < 0) { GIZWITS_LOG("ERR: uart write error %d \n", ret); } gizProtocolWaitAck((uint8_t *)&cfgMode, sizeof(protocolCfgMode_t)); break; case WIFI_AIRLINK_MODE: gizProtocolHeadInit((protocolHead_t *)&cfgMode); cfgMode.head.cmd = CMD_WIFI_CONFIG; cfgMode.head.sn = gizwitsProtocol.sn++; cfgMode.cfgMode = mode; cfgMode.head.len = exchangeBytes(sizeof(protocolCfgMode_t)-4); cfgMode.sum = gizProtocolSum((uint8_t *)&cfgMode, sizeof(protocolCfgMode_t)); ret = uartWrite((uint8_t *)&cfgMode, sizeof(protocolCfgMode_t)); if(ret < 0) { GIZWITS_LOG("ERR: uart write error %d \n", ret); } gizProtocolWaitAck((uint8_t *)&cfgMode, sizeof(protocolCfgMode_t)); break; case WIFI_PRODUCTION_TEST: gizProtocolHeadInit((protocolHead_t *)&setDefault); setDefault.head.cmd = CMD_PRODUCTION_TEST; setDefault.head.sn = gizwitsProtocol.sn++; setDefault.head.len = exchangeBytes(sizeof(protocolCommon_t)-4); setDefault.sum = gizProtocolSum((uint8_t *)&setDefault, sizeof(protocolCommon_t)); ret = uartWrite((uint8_t *)&setDefault, sizeof(protocolCommon_t)); if(ret < 0) { GIZWITS_LOG("ERR: uart write error %d \n", ret); } gizProtocolWaitAck((uint8_t *)&setDefault, sizeof(protocolCommon_t)); break; case WIFI_NINABLE_MODE: gizProtocolHeadInit((protocolHead_t *)&setDefault); setDefault.head.cmd = CMD_NINABLE_MODE; setDefault.head.sn = gizwitsProtocol.sn++; setDefault.head.len = exchangeBytes(sizeof(protocolCommon_t)-4); setDefault.sum = gizProtocolSum((uint8_t *)&setDefault, sizeof(protocolCommon_t)); ret = uartWrite((uint8_t *)&setDefault, sizeof(protocolCommon_t)); if(ret < 0) { GIZWITS_LOG("ERR: uart write error %d \n", ret); } gizProtocolWaitAck((uint8_t *)&setDefault, sizeof(protocolCommon_t)); break; case WIFI_REBOOT_MODE: gizProtocolHeadInit((protocolHead_t *)&setDefault); setDefault.head.cmd = CMD_REBOOT_MODULE; setDefault.head.sn = gizwitsProtocol.sn++; setDefault.head.len = exchangeBytes(sizeof(protocolCommon_t)-4); setDefault.sum = gizProtocolSum((uint8_t *)&setDefault, sizeof(protocolCommon_t)); ret = uartWrite((uint8_t *)&setDefault, sizeof(protocolCommon_t)); if(ret < 0) { GIZWITS_LOG("ERR: uart write error %d \n", ret); } gizProtocolWaitAck((uint8_t *)&setDefault, sizeof(protocolCommon_t)); break; default: GIZWITS_LOG("ERR: CfgMode error!\n"); break; } return ret; } /** * @brief Get the the network time * Protocol 4.13:"Device MCU send" of "the MCU requests access to the network time" * @param[in] none * @return none */ void gizwitsGetNTP(void) { int32_t ret = 0; protocolCommon_t getNTP; gizProtocolHeadInit((protocolHead_t *)&getNTP); getNTP.head.cmd = CMD_GET_NTP; getNTP.head.sn = gizwitsProtocol.sn++; getNTP.head.len = exchangeBytes(sizeof(protocolCommon_t)-4); getNTP.sum = gizProtocolSum((uint8_t *)&getNTP, sizeof(protocolCommon_t)); ret = uartWrite((uint8_t *)&getNTP, sizeof(protocolCommon_t)); if(ret < 0) { GIZWITS_LOG("ERR[NTP]: uart write error %d \n", ret); } gizProtocolWaitAck((uint8_t *)&getNTP, sizeof(protocolCommon_t)); } /** * @brief Get Module Info * * @param[in] none * @return none */ void gizwitsGetModuleInfo(void) { int32_t ret = 0; protocolGetModuleInfo_t getModuleInfo; gizProtocolHeadInit((protocolHead_t *)&getModuleInfo); getModuleInfo.head.cmd = CMD_ASK_MODULE_INFO; getModuleInfo.head.sn = gizwitsProtocol.sn++; getModuleInfo.type = 0x0; getModuleInfo.head.len = exchangeBytes(sizeof(protocolGetModuleInfo_t)-4); getModuleInfo.sum = gizProtocolSum((uint8_t *)&getModuleInfo, sizeof(protocolGetModuleInfo_t)); ret = uartWrite((uint8_t *)&getModuleInfo, sizeof(protocolGetModuleInfo_t)); if(ret < 0) { GIZWITS_LOG("ERR[NTP]: uart write error %d \n", ret); } gizProtocolWaitAck((uint8_t *)&getModuleInfo, sizeof(protocolGetModuleInfo_t)); } /** * @brief Module Info Analyse * * @param [in] head : * * @return 0, Success, , other,Faild */ static int8_t gizProtocolModuleInfoHandle(protocolHead_t *head) { protocolModuleInfo_t *moduleInfo = (protocolModuleInfo_t *)head; if(NULL == head) { GIZWITS_LOG("NTP is empty \n"); return -1; } #if MODULE_TYPE memcpy((uint8_t *)&gizwitsProtocol.gprsInfoNews,(uint8_t *)&moduleInfo->gprsModuleInfo, sizeof(gprsInfo_t)); #else memcpy((uint8_t *)&gizwitsProtocol.wifiModuleNews,(uint8_t *)&moduleInfo->wifiModuleInfo, sizeof(moduleInfo_t)); #endif gizwitsProtocol.moduleInfoEvent.event[gizwitsProtocol.moduleInfoEvent.num] = MODULE_INFO; gizwitsProtocol.moduleInfoEvent.num++; gizwitsProtocol.issuedFlag = GET_MODULEINFO_TYPE; return 0; } /** * @brief Protocol handling function * * @param [in] currentData :The protocol data pointer * @return none */ int32_t gizwitsHandle(dataPoint_t *currentData) { int8_t ret = 0; #ifdef PROTOCOL_DEBUG uint16_t i = 0; #endif uint8_t ackData[RB_MAX_LEN]; uint16_t protocolLen = 0; uint32_t ackLen = 0; protocolHead_t *recvHead = NULL; char *didPtr = NULL; uint16_t offset = 0; if(NULL == currentData) { GIZWITS_LOG("GizwitsHandle Error , Illegal Param\n"); return -1; } /*resend strategy*/ gizProtocolAckHandle(); ret = gizProtocolGetOnePacket(&pRb, gizwitsProtocol.protocolBuf, &protocolLen); if(0 == ret) { GIZWITS_LOG("Get One Packet!\n"); #ifdef PROTOCOL_DEBUG GIZWITS_LOG("WiFi2MCU[%4d:%4d]: ", gizGetTimerCount(), protocolLen); for(i=0; icmd) { case CMD_GET_DEVICE_INTO: gizProtocolGetDeviceInfo(recvHead); break; case CMD_ISSUED_P0: GIZWITS_LOG("flag %x %x \n", recvHead->flags[0], recvHead->flags[1]); //offset = 1; if(0 == gizProtocolIssuedProcess(didPtr, gizwitsProtocol.protocolBuf+sizeof(protocolHead_t)+offset, protocolLen-(sizeof(protocolHead_t)+offset+1), ackData, &ackLen)) { gizProtocolIssuedDataAck(recvHead, ackData, ackLen,recvHead->flags[1]); GIZWITS_LOG("AckData : \n"); } break; case CMD_HEARTBEAT: gizProtocolCommonAck(recvHead); break; case CMD_WIFISTATUS: gizProtocolCommonAck(recvHead); gizProtocolModuleStatus((protocolWifiStatus_t *)recvHead); break; case ACK_REPORT_P0: case ACK_WIFI_CONFIG: case ACK_SET_DEFAULT: case ACK_NINABLE_MODE: case ACK_REBOOT_MODULE: gizProtocolWaitAckCheck(recvHead); break; case CMD_MCU_REBOOT: gizProtocolCommonAck(recvHead); GIZWITS_LOG("report:MCU reboot!\n"); gizProtocolReboot(); break; case CMD_ERROR_PACKAGE: break; case ACK_PRODUCTION_TEST: gizProtocolWaitAckCheck(recvHead); GIZWITS_LOG("Ack PRODUCTION_MODE success \n"); break; case ACK_GET_NTP: gizProtocolWaitAckCheck(recvHead); gizProtocolNTP(recvHead); GIZWITS_LOG("Ack GET_UTT success \n"); break; case ACK_ASK_MODULE_INFO: gizProtocolWaitAckCheck(recvHead); gizProtocolModuleInfoHandle(recvHead); GIZWITS_LOG("Ack GET_Module success \n"); break; default: gizProtocolErrorCmd(recvHead,ERROR_CMD); GIZWITS_LOG("ERR: cmd code error!\n"); break; } } else if(-2 == ret) { //Check failed, report exception recvHead = (protocolHead_t *)gizwitsProtocol.protocolBuf; gizProtocolErrorCmd(recvHead,ERROR_ACK_SUM); GIZWITS_LOG("ERR: check sum error!\n"); return -2; } switch(gizwitsProtocol.issuedFlag) { case ACTION_CONTROL_TYPE: gizwitsProtocol.issuedFlag = STATELESS_TYPE; gizwitsEventProcess(&gizwitsProtocol.issuedProcessEvent, (uint8_t *)&gizwitsProtocol.gizCurrentDataPoint, sizeof(dataPoint_t)); memset((uint8_t *)&gizwitsProtocol.issuedProcessEvent,0x0,sizeof(gizwitsProtocol.issuedProcessEvent)); break; case WIFI_STATUS_TYPE: gizwitsProtocol.issuedFlag = STATELESS_TYPE; gizwitsEventProcess(&gizwitsProtocol.wifiStatusEvent, (uint8_t *)&gizwitsProtocol.wifiStatusData, sizeof(moduleStatusInfo_t)); memset((uint8_t *)&gizwitsProtocol.wifiStatusEvent,0x0,sizeof(gizwitsProtocol.wifiStatusEvent)); break; case ACTION_W2D_TRANSPARENT_TYPE: gizwitsProtocol.issuedFlag = STATELESS_TYPE; gizwitsEventProcess(&gizwitsProtocol.issuedProcessEvent, (uint8_t *)gizwitsProtocol.transparentBuff, gizwitsProtocol.transparentLen); break; case GET_NTP_TYPE: gizwitsProtocol.issuedFlag = STATELESS_TYPE; gizwitsEventProcess(&gizwitsProtocol.NTPEvent, (uint8_t *)&gizwitsProtocol.TimeNTP, sizeof(protocolTime_t)); memset((uint8_t *)&gizwitsProtocol.NTPEvent,0x0,sizeof(gizwitsProtocol.NTPEvent)); break; case GET_MODULEINFO_TYPE: gizwitsProtocol.issuedFlag = STATELESS_TYPE; gizwitsEventProcess(&gizwitsProtocol.moduleInfoEvent, (uint8_t *)&gizwitsProtocol.wifiModuleNews, sizeof(moduleInfo_t)); memset((uint8_t *)&gizwitsProtocol.moduleInfoEvent,0x0,sizeof(moduleInfo_t)); break; default: break; } gizDevReportPolicy(currentData); return 0; } /** * @brief gizwits report transparent data interface * The user can call the interface to complete the reporting of private protocol data * @param [in] data :Private protocol data * @param [in] len :Private protocol data length * @return 0,success ;other,failure */ int32_t gizwitsPassthroughData(uint8_t * gizdata, uint32_t len) { int32_t ret = 0; uint8_t tx_buf[MAX_PACKAGE_LEN]; uint8_t *pTxBuf = tx_buf; uint16_t data_len = 6+len; if(NULL == gizdata) { GIZWITS_LOG("[ERR] gizwitsPassthroughData Error \n"); return (-1); } *pTxBuf ++= 0xFF; *pTxBuf ++= 0xFF; *pTxBuf ++= (uint8_t)(data_len>>8);//len *pTxBuf ++= (uint8_t)(data_len); *pTxBuf ++= CMD_REPORT_P0;//0x1b cmd *pTxBuf ++= gizwitsProtocol.sn++;//sn *pTxBuf ++= 0x00;//flag *pTxBuf ++= 0x00;//flag *pTxBuf ++= ACTION_D2W_TRANSPARENT_DATA;//P0_Cmd memcpy(&tx_buf[9],gizdata,len); tx_buf[data_len + 4 - 1 ] = gizProtocolSum( tx_buf , (data_len+4)); ret = uartWrite(tx_buf, data_len+4); if(ret < 0) { GIZWITS_LOG("ERR: uart write error %d \n", ret); } gizProtocolWaitAck(tx_buf, data_len+4); return 0; } /**@} */

大家在看

recommend-type

华为OLT MA5680T工具.zip

华为OLT管理器 MA5680T MA5608T全自动注册光猫,其他我的也不知道,我自己不用这玩意; 某宝上卖500大洋的货。需要的下载。 附后某宝链接: https://item.taobao.com/item.htm?spm=a230r.1.14.149.2d8548e4oynrAP&id=592880631233&ns=1&abbucket=12#detail 证明寡人没有吹牛B
recommend-type

STP-RSTP-MSTP配置实验指导书 ISSUE 1.3

STP-RSTP-MSTP配置实验指导书 ISSUE 1.3
recommend-type

基于FPGA的AD9910控制设计

为了满足目前对数据处理速度的需求,设计了一种基于FPGA+DDS的控制系统。根据AD9910的特点设计了控制系统的硬件部分,详细阐述了电源、地和滤波器的设计。设计了FPGA的软件控制流程,给出了流程图和关键部分的例程,并对DDSAD9910各个控制寄存器的设置与时序进行详细说明,最后给出了实验结果。实验结果证明输出波形质量高、效果好。对于频率源的设计与实现具有工程实践意义。
recommend-type

Android全景视频播放器 源代码

Android全景视频播放器 源代码
recommend-type

pytorch-book:《神经网络和PyTorch的应用》一书的源代码

神经网络与PyTorch实战 世界上第一本 PyTorch 1 纸质教程书籍 本书讲解神经网络设计与 PyTorch 应用。 全书分为三个部分。 第 1 章和第 2 章:厘清神经网络的概念关联,利用 PyTorch 搭建迷你 AlphaGo,使你初步了解神经网络和 PyTorch。 第 3~9 章:讲解基于 PyTorch 的科学计算和神经网络搭建,涵盖几乎所有 PyTorch 基础知识,涉及所有神经网络的常用结构,并通过 8 个例子使你完全掌握神经网络的原理和应用。 第 10 章和第 11 章:介绍生成对抗网络和增强学习,使你了解更多神经网络的实际用法。 在线阅读: 勘误列表: 本书中介绍的PyTorch的安装方法已过时。PyTorch安装方法(2020年12月更新): Application of Neural Network and PyTorch The First Hard-co

最新推荐

recommend-type

造纸机变频分布传动与Modbus RTU通讯技术的应用及其实现

造纸机变频分布传动与Modbus RTU通讯技术的应用及其优势。首先,文中解释了变频分布传动系统的组成和功能,包括采用PLC(如S7-200SMART)、变频器(如英威腾、汇川、ABB)和触摸屏(如昆仑通泰)。其次,重点阐述了Modbus RTU通讯协议的作用,它不仅提高了系统的可靠性和抗干扰能力,还能实现对造纸机各个生产环节的精确监控和调节。最后,强调了该技术在提高造纸机运行效率、稳定性和产品质量方面的显著效果,适用于多种类型的造纸机,如圆网造纸机、长网多缸造纸机和叠网多缸造纸机。 适合人群:从事造纸机械制造、自动化控制领域的工程师和技术人员。 使用场景及目标:① 提升造纸机的自动化水平;② 实现对造纸机的精确控制,确保纸张质量和生产效率;③ 改善工业现场的数据传输和监控功能。 其他说明:文中提到的具体品牌和技术细节有助于实际操作和维护,同时也展示了该技术在不同纸厂的成功应用案例。
recommend-type

Visual C++.NET编程技术实战指南

根据提供的文件信息,可以生成以下知识点: ### Visual C++.NET编程技术体验 #### 第2章 定制窗口 - **设置窗口风格**:介绍了如何通过编程自定义窗口的外观和行为。包括改变窗口的标题栏、边框样式、大小和位置等。这通常涉及到Windows API中的`SetWindowLong`和`SetClassLong`函数。 - **创建六边形窗口**:展示了如何创建一个具有特殊形状边界的窗口,这类窗口不遵循标准的矩形形状。它需要使用`SetWindowRgn`函数设置窗口的区域。 - **创建异形窗口**:扩展了定制窗口的内容,提供了创建非标准形状窗口的方法。这可能需要创建一个不规则的窗口区域,并将其应用到窗口上。 #### 第3章 菜单和控制条高级应用 - **菜单编程**:讲解了如何创建和修改菜单项,处理用户与菜单的交互事件,以及动态地添加或删除菜单项。 - **工具栏编程**:阐述了如何使用工具栏,包括如何创建工具栏按钮、分配事件处理函数,并实现工具栏按钮的响应逻辑。 - **状态栏编程**:介绍了状态栏的创建、添加不同类型的指示器(如文本、进度条等)以及状态信息的显示更新。 - **为工具栏添加皮肤**:展示了如何为工具栏提供更加丰富的视觉效果,通常涉及到第三方的控件库或是自定义的绘图代码。 #### 第5章 系统编程 - **操作注册表**:解释了Windows注册表的结构和如何通过程序对其进行读写操作,这对于配置软件和管理软件设置非常关键。 - **系统托盘编程**:讲解了如何在系统托盘区域创建图标,并实现最小化到托盘、从托盘恢复窗口的功能。 - **鼠标钩子程序**:介绍了钩子(Hook)技术,特别是鼠标钩子,如何拦截和处理系统中的鼠标事件。 - **文件分割器**:提供了如何将文件分割成多个部分,并且能够重新组合文件的技术示例。 #### 第6章 多文档/多视图编程 - **单文档多视**:展示了如何在同一个文档中创建多个视图,这在文档编辑软件中非常常见。 #### 第7章 对话框高级应用 - **实现无模式对话框**:介绍了无模式对话框的概念及其应用场景,以及如何实现和管理无模式对话框。 - **使用模式属性表及向导属性表**:讲解了属性表的创建和使用方法,以及如何通过向导性质的对话框引导用户完成多步骤的任务。 - **鼠标敏感文字**:提供了如何实现点击文字触发特定事件的功能,这在阅读器和编辑器应用中很有用。 #### 第8章 GDI+图形编程 - **图像浏览器**:通过图像浏览器示例,展示了GDI+在图像处理和展示中的应用,包括图像的加载、显示以及基本的图像操作。 #### 第9章 多线程编程 - **使用全局变量通信**:介绍了在多线程环境下使用全局变量进行线程间通信的方法和注意事项。 - **使用Windows消息通信**:讲解了通过消息队列在不同线程间传递信息的技术,包括发送消息和处理消息。 - **使用CriticalSection对象**:阐述了如何使用临界区(CriticalSection)对象防止多个线程同时访问同一资源。 - **使用Mutex对象**:介绍了互斥锁(Mutex)的使用,用以同步线程对共享资源的访问,保证资源的安全。 - **使用Semaphore对象**:解释了信号量(Semaphore)对象的使用,它允许一个资源由指定数量的线程同时访问。 #### 第10章 DLL编程 - **创建和使用Win32 DLL**:介绍了如何创建和链接Win32动态链接库(DLL),以及如何在其他程序中使用这些DLL。 - **创建和使用MFC DLL**:详细说明了如何创建和使用基于MFC的动态链接库,适用于需要使用MFC类库的场景。 #### 第11章 ATL编程 - **简单的非属性化ATL项目**:讲解了ATL(Active Template Library)的基础使用方法,创建一个不使用属性化组件的简单项目。 - **使用ATL开发COM组件**:详细阐述了使用ATL开发COM组件的步骤,包括创建接口、实现类以及注册组件。 #### 第12章 STL编程 - **list编程**:介绍了STL(标准模板库)中的list容器的使用,讲解了如何使用list实现复杂数据结构的管理。 #### 第13章 网络编程 - **网上聊天应用程序**:提供了实现基本聊天功能的示例代码,包括客户端和服务器的通信逻辑。 - **简单的网页浏览器**:演示了如何创建一个简单的Web浏览器程序,涉及到网络通信和HTML解析。 - **ISAPI服务器扩展编程**:介绍了如何开发ISAPI(Internet Server API)服务器扩展来扩展IIS(Internet Information Services)的功能。 #### 第14章 数据库编程 - **ODBC数据库编程**:解释了ODBC(开放数据库互联)的概念,并提供了使用ODBC API进行数据库访问的示例。 - **ADO编程**:介绍了ADO(ActiveX Data Objects)技术,讲解了如何使用ADO进行数据库的增删改查等操作。 #### 第15章 HTML帮助系统编程 - **创建HTML帮助文件**:讲解了如何创建HTML帮助文件(.chm),这是微软帮助系统的一种形式。 - **区分上下文帮助**:提供了在应用程序中实现上下文敏感帮助的技术示例。 #### 第16章 安装和部署项目 - **用安装程序向导创建安装项目**:介绍了如何使用Visual Studio中的安装和部署项目向导,快速创建安装程序。 - **部署应用程序**:阐述了部署应用程序到目标系统的过程,以及如何确保应用程序的正确安装和运行。 以上内容涵盖了Visual C++.NET编程技术体验一书中涉及的各个技术点,并对每个章节中的示例做了详细的说明。这些知识点对于理解和掌握Visual C++.NET编程非常重要,并能够帮助读者在实际项目开发中应用这些技术。
recommend-type

HarmonyOS内核深度探秘:优化自由行旅游系统的策略

# 1. HarmonyOS内核概述与旅游系统需求分析 ## 1.1 HarmonyOS内核概述 HarmonyOS(鸿蒙操作系统)是由华为开发的一个分布式操作系统,旨在提供跨多种设备的无缝体验。其内核设计理念强调高效、安全和模块化,以微内核架构和分布式能力
recommend-type

tkinter模块所有控件

<think>好的,我现在需要回答用户关于Tkinter模块中所有控件列表的问题。首先,我需要回忆Tkinter的基础知识,确保自己了解各个控件的名称和用途。用户希望得到所有支持的控件列表,所以必须全面覆盖,不能遗漏。 首先,我应该从Tkinter的标准控件开始。常见的控件包括Label、Button、Entry这些基础部件。然后是Frame,用于布局,还有Canvas用于绘图。接下来是Checkbutton、Radiobutton,这些属于选择类控件。Listbox和Scrollbar通常一起使用,处理滚动内容。还有Scale(滑块)、Spinbox、Menu、Menubutton这些可能
recommend-type

局域网五子棋游戏:娱乐与聊天的完美结合

标题“网络五子棋”和描述“适合于局域网之间娱乐和聊天!”以及标签“五子棋 网络”所涉及的知识点主要围绕着五子棋游戏的网络版本及其在局域网中的应用。以下是详细的知识点: 1. 五子棋游戏概述: 五子棋是一种两人对弈的纯策略型棋类游戏,又称为连珠、五子连线等。游戏的目标是在一个15x15的棋盘上,通过先后放置黑白棋子,使得任意一方先形成连续五个同色棋子的一方获胜。五子棋的规则简单,但策略丰富,适合各年龄段的玩家。 2. 网络五子棋的意义: 网络五子棋是指可以在互联网或局域网中连接进行对弈的五子棋游戏版本。通过网络版本,玩家不必在同一地点即可进行游戏,突破了空间限制,满足了现代人们快节奏生活的需求,同时也为玩家们提供了与不同对手切磋交流的机会。 3. 局域网通信原理: 局域网(Local Area Network,LAN)是一种覆盖较小范围如家庭、学校、实验室或单一建筑内的计算机网络。它通过有线或无线的方式连接网络内的设备,允许用户共享资源如打印机和文件,以及进行游戏和通信。局域网内的计算机之间可以通过网络协议进行通信。 4. 网络五子棋的工作方式: 在局域网中玩五子棋,通常需要一个客户端程序(如五子棋.exe)和一个服务器程序。客户端负责显示游戏界面、接受用户输入、发送落子请求给服务器,而服务器负责维护游戏状态、处理玩家的游戏逻辑和落子请求。当一方玩家落子时,客户端将该信息发送到服务器,服务器确认无误后将更新后的棋盘状态传回给所有客户端,更新显示。 5. 五子棋.exe程序: 五子棋.exe是一个可执行程序,它使得用户可以在个人计算机上安装并运行五子棋游戏。该程序可能包含了游戏的图形界面、人工智能算法(如果支持单机对战AI的话)、网络通信模块以及游戏规则的实现。 6. put.wav文件: put.wav是一个声音文件,很可能用于在游戏进行时提供声音反馈,比如落子声。在网络环境中,声音文件可能被用于提升玩家的游戏体验,尤其是在局域网多人游戏场景中。当玩家落子时,系统会播放.wav文件中的声音,为游戏增添互动性和趣味性。 7. 网络五子棋的技术要求: 为了确保多人在线游戏的顺利进行,网络五子棋需要具备一些基本的技术要求,包括但不限于稳定的网络连接、高效的数据传输协议(如TCP/IP)、以及安全的数据加密措施(如果需要的话)。此外,还需要有一个良好的用户界面设计来提供直观和舒适的用户体验。 8. 社交与娱乐: 网络五子棋除了是一个娱乐游戏外,它还具有社交功能。玩家可以通过游戏内的聊天系统进行交流,分享经验和策略,甚至通过网络寻找新的朋友。这使得网络五子棋不仅是一个个人娱乐工具,同时也是一种社交活动。 总结来说,网络五子棋结合了五子棋游戏的传统魅力和现代网络技术,使得不同地区的玩家能够在局域网内进行娱乐和聊天,既丰富了人们的娱乐生活,又加强了人际交流。而实现这一切的基础在于客户端程序的设计、服务器端的稳定运行、局域网的高效通信,以及音效文件增强的游戏体验。
recommend-type

自由行旅游新篇章:HarmonyOS技术融合与系统架构深度解析

# 1. HarmonyOS技术概述 ## 1.1 HarmonyOS的起源与发展 HarmonyOS(鸿蒙操作系统)由华为公司开发,旨在构建全场景分布式OS,以应对不同设备间的互联问题。自从2019年首次发布以来,HarmonyOS迅速成长,并迅速应用于智能手机、平板、智能穿戴、车载设备等多种平台。该系
recommend-type

足底支撑相到达73%是什么问题

<think>好的,我现在要处理用户的问题:“足底支撑相达到73%可能的原因及影响”。首先,需要理解用户提到的“足底支撑相73%”具体指什么。足底支撑相通常指步态周期中脚与地面接触的时间占比,正常范围大约在60%-62%左右。如果达到73%,明显超出正常范围,可能意味着步态异常。 接下来,需要确定可能的原因。可能的原因包括生物力学异常,比如足弓异常(扁平足或高弓足)、踝关节活动度受限,或者肌肉力量不足,特别是小腿和足部肌肉。另外,神经系统疾病如脑卒中或帕金森病可能影响步态控制。骨骼关节问题如关节炎、髋膝关节病变也可能导致支撑时间延长。还有代偿性步态,比如因疼痛或受伤而改变步态模式。 然后是
recommend-type

宾馆预约系统开发与优化建议

宾馆预约系统是一个典型的在线服务应用,它允许用户通过互联网平台预定宾馆房间。这种系统通常包含多个模块,比如用户界面、房态管理、预订处理、支付处理和客户评价等。从技术层面来看,构建一个宾馆预约系统涉及到众多的IT知识和技术细节,下面将详细说明。 ### 标题知识点 - 宾馆预约系统 #### 1. 系统架构设计 宾馆预约系统作为一个完整的应用,首先需要进行系统架构设计,决定其采用的软件架构模式,如B/S架构或C/S架构。此外,系统设计还需要考虑扩展性、可用性、安全性和维护性。一般会采用三层架构,包括表示层、业务逻辑层和数据访问层。 #### 2. 前端开发 前端开发主要负责用户界面的设计与实现,包括用户注册、登录、房间搜索、预订流程、支付确认、用户反馈等功能的页面展示和交互设计。常用的前端技术栈有HTML, CSS, JavaScript, 以及各种前端框架如React, Vue.js或Angular。 #### 3. 后端开发 后端开发主要负责处理业务逻辑,包括用户管理、房间状态管理、订单处理等。后端技术包括但不限于Java (使用Spring Boot框架), Python (使用Django或Flask框架), PHP (使用Laravel框架)等。 #### 4. 数据库设计 数据库设计对系统的性能和可扩展性至关重要。宾馆预约系统可能需要设计的数据库表包括用户信息表、房间信息表、预订记录表、支付信息表等。常用的数据库系统有MySQL, PostgreSQL, MongoDB等。 #### 5. 网络安全 网络安全是宾馆预约系统的重要考虑因素,包括数据加密、用户认证授权、防止SQL注入、XSS攻击、CSRF攻击等。系统需要实现安全的认证机制,比如OAuth或JWT。 #### 6. 云服务和服务器部署 现代的宾馆预约系统可能部署在云平台上,如AWS, Azure, 腾讯云或阿里云。在云平台上,系统可以按需分配资源,提高系统的稳定性和弹性。 #### 7. 付款接口集成 支付模块需要集成第三方支付接口,如支付宝、微信支付、PayPal等,需要处理支付请求、支付状态确认、退款等业务。 #### 8. 接口设计与微服务 系统可能采用RESTful API或GraphQL等接口设计方式,提供服务的微服务化,以支持不同设备和服务的接入。 ### 描述知识点 - 这是我个人自己做的 请大家帮忙修改哦 #### 个人项目经验与团队合作 描述中的这句话暗示了该宾馆预约系统可能是由一个个人开发者创建的。个人开发和团队合作在软件开发流程中有着显著的不同。个人开发者需要关注的方面包括项目管理、需求分析、代码质量保证、测试和部署等。而在团队合作中,每个成员会承担不同的职责,需要有效的沟通和协作。 #### 用户反馈与迭代 描述还暗示了该系统目前处于需要外部反馈和修改的阶段。这表明系统可能还处于开发或测试阶段,需要通过用户的实际使用反馈来不断迭代改进。 ### 标签知识点 - 200 #### 未提供信息 “200”这个标签可能指的是HTTP状态码中表示请求成功(OK)的200状态码。但是,由于没有提供更多的上下文信息,无法进一步分析其在本例中的具体含义。 ### 压缩包子文件的文件名称列表知识点 - 1111 #### 文件命名与管理 “1111”这个文件名称可能是一个版本号、日期标记或者是一个简单的标识符。文件命名应当遵循一定的规则,以确保文件的可追溯性和管理的便利性。在软件开发过程中,合理组织文件和版本控制(如使用Git)是必不可少的。 综上所述,宾馆预约系统的开发是一项复杂的工程,它涉及前后端的开发、数据库设计、系统安全、接口设计等多个方面。开发者在开发过程中需要不断学习和应用各类IT知识,以确保系统能够安全、高效、稳定地运行。而对于个人开发项目,如何合理利用有限资源、高效地管理和优化项目过程也是至关重要的。
recommend-type

HarmonyOS在旅游领域的创新:揭秘最前沿应用实践

# 1. HarmonyOS旅游应用的市场前景分析 随着数字化转型的不断深入,旅游行业正面临着前所未有的变革。在这样的背景下,HarmonyOS作为一种新兴的操作系统,带来了全新的市场前景和机遇。本章将深入分析HarmonyOS在旅游应用领域的市场潜力、用户需求、以及技术创新对旅游体验的改善。 ## 1.1 市场需求与用户画像分析 旅游市场的需求持续增
recommend-type

数据架构师需要具备什么能力

<think>嗯,用户现在转向询问数据架构师的能力要求了,而且特别提到要参考站内引用内容。看来ta正在规划职业方向,可能是个技术岗位的进阶者或转行者。之前对话历史显示用户对技术细节有深度需求(比如C语言底层特性),这次提问虽然跨度大,但延续了“技术职业发展”这条主线。用户引用的三段材料其实很有意思:第一篇强调综合能力,第二篇突出编程基础,第三篇提到商业洞察力——这正好构成数据架构师的三个能力象限。用户给出的引用里埋了个关键矛盾:第二篇说“速成只能做码农”,第三篇说“需要持续学习”,暗示ta可能担心速成班的局限性。回应时得强调“扎实基础+持续成长”的平衡。技术层面需要覆盖三个维度:硬技能(数据库