(deephdr) nvidia@nvidia-SYS-4028GR-TR2:~/chenboln/DeepHDR-master$ ls /usr/local/cuda-9.0/lib64/ | grep libcublas libcublas_device.a libcublas.so libcublas.so.9.0 libcublas.so.9.0.176 libcublas_static.a

时间: 2025-03-14 09:03:33 浏览: 41
从你的命令输出结果来看,系统中确实存在 `libcublas.so.9.0` 和其他相关的 CUDA 库文件。这表明你的 CUDA 9.0 安装应该是完整的,并且包含了 TensorFlow 所需的动态链接库。 既然如此,接下来需要重点检查以下几个方面: ### 可能的问题点 1. **环境变量未正确配置** - 尽管库里已经有了目标文件,但如果你的操作环境中没有包含 `/usr/local/cuda-9.0/lib64/` 路径,那么 Python 在加载 TensorFlow 时仍然会找不到对应的共享对象文件。 2. **权限不足或其他干扰因素** - 如果某些安全模块限制了对共享内存区域的访问权,也有可能引发类似错误提示。尽管这种情况较为少见,在 Linux 上依旧需要注意用户权限是否满足需求。 3. **虚拟环境下路径冲突** - 当你在 Anaconda 创建的新环境中操作时,默认情况下它的搜索顺序优先考虑自身目录而非全局范围内的资源。这意味着即使主机端一切正常,仍可能出现无法识别外部依赖的情况。 --- ### 解决建议 #### 步骤一:验证并更新 LD_LIBRARY_PATH 先临时设定一下 `LD_LIBRARY_PATH` 查看效果如何: ```bash export LD_LIBRARY_PATH=/usr/local/cuda-9.0/lib64:$LD_LIBRARY_PATH ``` 然后再次尝试导入 tensorflow 测试一遍: ```python import tensorflow as tf print("成功加载TensorFlow:", tf.__version__) ``` 如果上面的办法可行,则可以把这条指令追加进个人 profile 文件当中(比如 ~/.bashrc)使得每次登录都会自动应用新的 PATH 设置: ```bash echo 'export LD_LIBRARY_PATH=/usr/local/cuda-9.0/lib64:$LD_LIBRARY_PATH' >> ~/.bashrc source ~/.bashrc ``` #### 步骤二:强制激活 Conda 环境下的 cuda_toolkit 有时直接修改系统的 `LD_LIBRARY_PATH` 并不足以解决问题,特别是当 conda 自带了一套独立管理机制之后更易发生此类现象。此时我们应当明确告诉 conda 使用特定版本的 cuda toolkit 包代替默认值: ```bash conda install cudatoolkit=9.0 -c anaconda ``` 执行完毕后再重启 jupyter notebook 或者 python 控制台重新测试一次即可。 #### 步骤三:彻底移除多余冗余内容 最后一步就是清理掉那些可能引起混淆的东西——包括不同源码下载下来的 tensorflow-gpu 复杂版本以及其它无关插件之类的玩意儿;接着再干净地按照官方文档指引完成安装流程便大功告成啦! --- 希望以上方法可以帮助您顺利解决此次难题!若有任何疑问欢迎继续提问哦~
阅读全文

相关推荐

//----------------------------------------------------------------------------- // Includes //----------------------------------------------------------------------------- #include <SI_C8051F300_Register_Enums.h> #include <stdio.h> //----------------------------------------------------------------------------- // Global CONSTANTS //----------------------------------------------------------------------------- #define SYSCLK 24500000 // SYSCLK frequency in Hz #define BAUDRATE 115200 // Baud rate of UART in bps SI_SBIT(DE_RE, SFR_P0, 6); //定義P0.6 控制名稱為DE_RE SI_SBIT(LED2, SFR_P0, 1); //定義P0.1 控制名稱為LED2 SI_SBIT(LED1, SFR_P0, 0); //定義P0.0 控制名稱為LED1 SI_SBIT(LED3, SFR_P0, 2); //定義P0.2 控制名稱為LED3 SI_SBIT(LED4, SFR_P0, 3); //定義P0.3 控制名稱為LED4 SI_SBIT(LED5, SFR_P0, 7); //定義P0.7 控制名稱為LED5 //----------------------------------------------------------------------------- // Function PROTOTYPES //----------------------------------------------------------------------------- SI_INTERRUPT_PROTO(UART0_Interrupt, 4); void SYSCLK_Init (void); void UART0_Init (void); void PORT_Init (void); void Timer2_Init (int16_t); void MyDelay (uint16_t Value); #define KEY_DOWN 1 #define KEY_UP 0 #define LED_ON 0 #define LED_OFF 1 //----------------------------------------------------------------------------- // Global Variables //----------------------------------------------------------------------------- #define UART_BUFFERSIZE 6 uint8_t UART_Buffer[UART_BUFFERSIZE]; uint8_t UART_Buffer_Size = 0; uint8_t UART_Input_First = 0; uint8_t UART_Output_First = 0; uint8_t TX_Ready =1; uint8_t RX_Ready =0; static char Byte; uint8_t SnapDown_TimeCnt =0; uint8_t fSnap = 0; uint8_t RecDown_TimeCnt =0; uint8_t fRec = 0; //----------------------------------------------------------------------------- // SiLabs_Startup() Routine // ---------------------------------------------------------------------------- // This function is called immediately after reset, before the initialization // code is run in SILABS_STARTUP.A51 (which runs before main() ). This is a // useful place to disable the watchdog timer, which is enable by default // and may trigger before main() in some instances. //----------------------------------------------------------------------------- void SiLabs_Startup (void) { PCA0MD &= ~0x40; // WDTE = 0 (clear watchdog timer } //----------------------------------------------------------------------------- // MAIN Routine //----------------------------------------------------------------------------- void main (void) { // enable) PORT_Init(); // Initialize Port I/O SYSCLK_Init (); // Initialize Oscillator UART0_Init(); IE_EA = 1; DE_RE =0; Timer2_Init (SYSCLK / 12 / 1000); // Init Timer2 to generate // 每1ms 計時中斷 while(1) { if(RX_Ready) { RX_Ready = 0; UART_Buffer_Size =0; if(UART_Buffer[3]==0x01)//任一鍵按下 { if(UART_Buffer[4]==0x01)//REC { fRec = KEY_DOWN; RecDown_TimeCnt=0; } else if(UART_Buffer[4]==0x02)//SNAP { fSnap = KEY_DOWN; SnapDown_TimeCnt=0; } else if(UART_Buffer[4]==0x03)//LED UP LED3 = LED_ON; else if(UART_Buffer[4]==0x04)//LED DO LED4 = LED_ON; else if(UART_Buffer[4]==0x05)//Mirror LED5 = LED_ON; } if(UART_Buffer[3]==0x00)//任一鍵放開 { if(UART_Buffer[4]==0x01)//REC { fRec = KEY_UP; } else if(UART_Buffer[4]==0x02)//SNAP { fSnap = KEY_UP; } else if(UART_Buffer[4]==0x03)//LED UP LED3 = LED_OFF; else if(UART_Buffer[4]==0x04)//LED DO LED4 = LED_OFF; else if(UART_Buffer[4]==0x05)//Mirror LED5 = LED_OFF; } IE_ES0 =1; } if(SnapDown_TimeCnt >55 && fSnap == KEY_DOWN) { LED1 = LED_ON; } else if(SnapDown_TimeCnt >55 && fSnap == KEY_UP) { LED1 =LED_OFF; SnapDown_TimeCnt =0; } else if(SnapDown_TimeCnt >45 && SnapDown_TimeCnt <55 && fSnap == KEY_UP) { LED1 = LED_ON; LED2 = LED_ON; MyDelay(1100);//延遲約0.5秒 LED1 = LED_OFF; LED2 = LED_OFF; SnapDown_TimeCnt =0; } if(RecDown_TimeCnt >55 && fRec == KEY_DOWN) { LED2 = LED_ON; } else if(RecDown_TimeCnt >55 && fRec == KEY_UP) { LED2 = LED_OFF; RecDown_TimeCnt =0; } else if(RecDown_TimeCnt >45 && RecDown_TimeCnt <55 && fRec == KEY_UP) { LED4 = LED_ON; LED5 = LED_ON; MyDelay(1100);//延遲約0.5秒 LED4 = LED_OFF; LED5 = LED_OFF; RecDown_TimeCnt =0; } } } //----------------------------------------------------------------------------- // Initialization Subroutines //----------------------------------------------------------------------------- //----------------------------------------------------------------------------- // PORT_Init //----------------------------------------------------------------------------- // // Return Value : None // Parameters : None // // Configure the Crossbar and GPIO ports. // // P0.4 digital push-pull UART TX // P0.5 digital open-drain UART RX // //----------------------------------------------------------------------------- void PORT_Init (void) { P0MDOUT |= 0x10; // set UART TX to push-pull output XBR1 = 0x03; // Enable UTX, URX as push-pull output XBR2 = 0x40; // Enable crossbar, weak pull-ups // disabled XBR0 = 0x40; P0MDOUT |= 0x40; } //----------------------------------------------------------------------------- // SYSCLK_Init //----------------------------------------------------------------------------- // // Return Value : None // Parameters : None // // This routine initializes the system clock to use the internal oscillator // at its maximum frequency. // Also enables the Missing Clock Detector. //----------------------------------------------------------------------------- void SYSCLK_Init (void) { OSCICN |= 0x03; // Configure internal oscillator for // its maximum frequency RSTSRC = 0x04; // Enable missing clock detector } //----------------------------------------------------------------------------- // UART0_Init //----------------------------------------------------------------------------- // // Return Value : None // Parameters : None // // Configure the UART0 using Timer1, for <BAUDRATE> and 8-N-1. //----------------------------------------------------------------------------- void UART0_Init (void) { SCON0 = 0x10; // SCON0: 8-bit variable bit rate // level of STOP bit is ignored // RX enabled // ninth bits are zeros // clear SCON0_RI and SCON0_TI bits if (SYSCLK/BAUDRATE/2/256 < 1) { TH1 = -(SYSCLK/BAUDRATE/2); CKCON |= 0x10; // T1M = 1; SCA1:0 = xx } else if (SYSCLK/BAUDRATE/2/256 < 4) { TH1 = -(SYSCLK/BAUDRATE/2/4); CKCON |= 0x01; // T1M = 0; SCA1:0 = 01 CKCON &= ~0x12; } else if (SYSCLK/BAUDRATE/2/256 < 12) { TH1 = -(SYSCLK/BAUDRATE/2/12); CKCON &= ~0x13; // T1M = 0; SCA1:0 = 00 } else { TH1 = -(SYSCLK/BAUDRATE/2/48); CKCON |= 0x02; // T1M = 0; SCA1:0 = 10 CKCON &= ~0x11; } TL1 = 0xff; // set Timer1 to overflow immediately TMOD |= 0x20; // TMOD: timer 1 in 8-bit autoreload TMOD &= ~0xD0; // mode TCON_TR1 = 1; // START Timer1 TX_Ready = 1; // Flag showing that UART can transmit IP |= 0x10; // Make UART high priority IE_ES0 = 1; // Enable UART0 interrupts } //----------------------------------------------------------------------------- // Interrupt Service Routines //----------------------------------------------------------------------------- //----------------------------------------------------------------------------- // UART0_Interrupt //----------------------------------------------------------------------------- // // This routine is invoked whenever a character is entered or displayed on the // Hyperterminal. // //----------------------------------------------------------------------------- SI_INTERRUPT(UART0_Interrupt, 4) { if (SCON0_RI == 1) { if( UART_Buffer_Size == 0) { // If new word is entered UART_Input_First = 0; } SCON0_RI = 0; // Clear interrupt flag Byte = SBUF0; // Read a character from UART if (UART_Buffer_Size < UART_BUFFERSIZE) { UART_Buffer[UART_Input_First] = Byte; // Store in array UART_Buffer_Size++; // Update array's size UART_Input_First++; // Update counter } if(UART_Buffer_Size >= UART_BUFFERSIZE) { RX_Ready =1; UART_Buffer_Size =0; IE_ES0 = 0; } } if (SCON0_TI == 1) // Check if transmit flag is set { SCON0_TI = 0; // Clear interrupt flag if (UART_Buffer_Size != 1) // If buffer not empty { // If a new word is being output if ( UART_Buffer_Size == UART_Input_First ) { UART_Output_First = 0; } // Store a character in the variable byte Byte = UART_Buffer[UART_Output_First]; if ((Byte >= 0x61) && (Byte <= 0x7A)) { // If upper case letter Byte -= 32; } SBUF0 = Byte; // Transmit to Hyperterminal UART_Output_First++; // Update counter UART_Buffer_Size--; // Decrease array size } else { UART_Buffer_Size = 0; // Set the array size to 0 TX_Ready = 1; // Indicate transmission complete } } } //----------------------------------------------------------------------------- // Timer2_Init //----------------------------------------------------------------------------- // // Configure Timer2 to 16-bit auto-reload and generate an interrupt at // interval specified by <counts> using SYSCLK/12 as its time base. // void Timer2_Init (int16_t counts) { TMR2CN = 0x00; // Stop Timer2; Clear TF2; // use SYSCLK/12 as timebase CKCON &= ~(CKCON_T2MH__BMASK | CKCON_T2ML__BMASK ); // Timer2 clocked based on TMR2CN_T2XCLK TMR2RL = -counts; // Init reload values TMR2 = 0xffff; // set to reload immediately IE_ET2 = 1; // enable Timer2 interrupts TMR2CN_TR2 = 1; // start Timer2 } //----------------------------------------------------------------------------- // Timer2_ISR //----------------------------------------------------------------------------- // This routine changes the state of the LED whenever Timer2 overflows. // SI_INTERRUPT(Timer2_ISR, TIMER2_IRQn) { TMR2CN_TF2H = 0; // clear Timer2 interrupt flag if(fSnap == KEY_DOWN) { SnapDown_TimeCnt++; // change state of LED if(SnapDown_TimeCnt==255) SnapDown_TimeCnt = 254; } else if(fRec == KEY_DOWN) { RecDown_TimeCnt++; // change state of LED if(RecDown_TimeCnt==255) RecDown_TimeCnt = 254; } } void MyDelay(uint16_t Value) { uint16_t i,j; for(i=0;i<Value;i++) { for(j=0;j<1000;j++) _nop_(); } } //----------------------------------------------------------------------------- // End Of File //-----------------------------------------------------------------------------

参考源main代码后再修改代码并完成任务:////////////////////////////////////////////////////////////////////////////////// //本程序只供学习使用,未经作者许可,不得用于其它任何用途 /*************************************** * STC8A8K64D4 * 硬件连接:------------------------MCU--74HC573---数码管显示控制 // 说明: 2个74HC573,第一个用于控制段选,第二个用于控制位选(带时钟的,需要使用位选中的2个输出) // ---------------------------------------------------------------- // 数码管段选: // MCU--------74HC573---------数码管 // P0.0--------D0---O0---------A // P0.1--------D1---O1---------B // P0.2--------D2---O2---------C // P0.3--------D3---O3---------D // P0.4--------D4---O4---------E // P0.5--------D5---O5---------F // P0.6--------D6---O6---------G // P0.7--------D7---O7---------DP // ---------------------------------------------------------------- // 数码管控制位选: // MCU--------74HC573---------数码管 // P2.7--------D0---O0---------DIG1 // P2.6--------D1---O1---------DIG2 // P2.5--------D2---O2---------DIG3 // P2.4--------D3---O3---------DIG4 // ---------------------------------------------------------------- * 库版本 :V3.5.0 ******************************************************************************/ #include "stc8a8k64d4.h" #include <string.h> #include <math.h> #include <stdio.h> #include <stdint.h> #include <stdlib.h> #include <delay.h> #include <uart.h> #include "digtal_led.h" //定义一个变量,系统启动时显示此变量数值 static uint16_t a = 0; void EXIT0_irq_handler(void) __interrupt (0) __using (0) { if(a > 0) { a--; } else { a=0; } } void EXIT1_irq_handler(void) __interrupt (2) __using (2) { if(a == 9999) { a=9999; } else { a++; } } int main() { //配置外部中断0为下降沿触发 IT0 = 1; //使能外部中断0 EX0 = 1; //配置外部中断1为下降沿触发 IT1 = 1; //使能外部中断1 EX1 = 1; //打开中断总开关 EA = 1; //配置数码管引脚为输出模式 P0M1 &= 0x00; P0M0 |= 0xFF; P2M1 &= 0x0F; P2M0 |= 0xF0; //初始化数码管引脚的电平 P0 = 0; P2 |= 0xF0; while(1) { show_digtal_four_segment(a); } }

////////////////////////////////////////////////////////////////////////////////// //本程序只供学习使用,未经作者许可,不得用于其它任何用途 /*************************************** * STC8A8K64D4 * 硬件连接:------------------------MCU--74HC573---数码管显示控制 // 说明: 2个74HC573,第一个用于控制段选,第二个用于控制位选(带时钟的,需要使用位选中的2个输出) // ---------------------------------------------------------------- // 数码管段选: // MCU--------74HC573---------数码管 // P0.0--------D0---O0---------A // P0.1--------D1---O1---------B // P0.2--------D2---O2---------C // P0.3--------D3---O3---------D // P0.4--------D4---O4---------E // P0.5--------D5---O5---------F // P0.6--------D6---O6---------G // P0.7--------D7---O7---------DP // ---------------------------------------------------------------- // 数码管控制位选: // MCU--------74HC573---------数码管 // P2.7--------D0---O0---------DIG1 // P2.6--------D1---O1---------DIG2 // P2.5--------D2---O2---------DIG3 // P2.4--------D3---O3---------DIG4 // ---------------------------------------------------------------- * 库版本 :V3.5.0 ******************************************************************************/ #include "stc8a8k64d4.h" #include <string.h> #include <math.h> #include <stdio.h> #include <stdint.h> #include <stdlib.h> #include <delay.h> #include <uart.h> #include "digtal_led.h" //定义一个变量,系统启动时显示此变量数值 static uint16_t a = 0; void EXIT0_irq_handler(void) __interrupt (0) __using (0) { if(a > 0) { a--; } else { a=0; } } void EXIT1_irq_handler(void) __interrupt (2) __using (2) { if(a == 9999) { a=9999; } else { a++; } } int main() { //配置外部中断0为下降沿触发 IT0 = 1; //使能外部中断0 EX0 = 1; //配置外部中断1为下降沿触发 IT1 = 1; //使能外部中断1 EX1 = 1; //打开中断总开关 EA = 1; //配置数码管引脚为输出模式 P0M1 &= 0x00; P0M0 |= 0xFF; P2M1 &= 0x0F; P2M0 |= 0xF0; //初始化数码管引脚的电平 P0 = 0; P2 |= 0xF0; while(1) { show_digtal_four_segment(a); } } 加入TIMER2触发中断的程序

////////////////////////////////////////////////////////////////////////////////// //本程序只供学习使用,未经作者许可,不得用于其它任何用途 /*************************************** STC8A8K64D4 硬件连接:------------------------MCU–74HC573—数码管显示控制 // 说明: 2个74HC573,第一个用于控制段选,第二个用于控制位选(带时钟的,需要使用位选中的2个输出) // ---------------------------------------------------------------- // 数码管段选: // MCU--------74HC573---------数码管 // P0.0--------D0—O0---------A // P0.1--------D1—O1---------B // P0.2--------D2—O2---------C // P0.3--------D3—O3---------D // P0.4--------D4—O4---------E // P0.5--------D5—O5---------F // P0.6--------D6—O6---------G // P0.7--------D7—O7---------DP // ---------------------------------------------------------------- // 数码管控制位选: // MCU--------74HC573---------数码管 // P2.7--------D0—O0---------DIG1 // P2.6--------D1—O1---------DIG2 // P2.5--------D2—O2---------DIG3 // P2.4--------D3—O3---------DIG4 // ---------------------------------------------------------------- 库版本 :V3.5.0 ******************************************************************************/ #include “stc8a8k64d4.h” #include <string.h> #include <math.h> #include <stdio.h> #include <stdint.h> #include <stdlib.h> #include <delay.h> #include <uart.h> #include “digtal_led.h” //定义一个变量,系统启动时显示此变量数值 static uint16_t a = 0; void EXIT0_irq_handler(void) __interrupt (0) __using (0) { if(a > 0) { a–; } else { a=0; } } void EXIT1_irq_handler(void) __interrupt (2) __using (2) { if(a == 9999) { a=9999; } else { a++; } } int main() { //配置外部中断0为下降沿触发 IT0 = 1; //使能外部中断0 EX0 = 1; //配置外部中断1为下降沿触发 IT1 = 1; //使能外部中断1 EX1 = 1; //打开中断总开关 EA = 1; //配置数码管引脚为输出模式 P0M1 &= 0x00; P0M0 |= 0xFF; P2M1 &= 0x0F; P2M0 |= 0xF0; //初始化数码管引脚的电平 P0 = 0; P2 |= 0xF0; while(1) { show_digtal_four_segment(a); } } 加入TIMER2触发中断的程序

#include<bits/stdc++.h> #define ll long long using namespace std; struct Node{ int v,p,sz; unsigned int he; Node *cl,*cr; Node(int x):v(x),p(rand()),sz(1),he(x),cl(nullptr),cr(nullptr){} ~Node(){ delete cl; delete cr; } friend int siz(Node *x){ if(x==nullptr)return 0; return x->sz; } void push_up(){ sz=1; he=v*(1u<<siz(cl)); if(cl!=nullptr){ sz+=cl->sz; he+=cl->he; } if(cr!=nullptr){ sz+=cr->sz; he+=(1u<<(siz(cl)+1))*cr->he; } } friend Node* merge(Node *x,Node *y){ if(x==nullptr)return y; if(y==nullptr)return x; if(x->p<y->p){ x->cr=merge(x->cr,y); x->push_up(); return x; }else{ y->cl=merge(x,y->cl); y->push_up(); return y; } } friend Node* split(Node *&x,int r){ if(x==nullptr)return nullptr; if(siz(x->cl)>=r){ Node *t=split(x->cl,r); swap(t,x->cl); x->push_up(); swap(t,x); return t; }else{ Node *t=split(x->cr,r-siz(x->cl)-1); x->push_up(); return t; } } friend void change(Node *&h,int x,Node w){ Node *wr=split(h,x),*dq=split(h,x-1); delete dq; h=merge(h,merge(new Node(w),wr)); } friend void add(Node *&h,int x,Node w){ Node *wr=split(h,x); h=merge(h,merge(new Node(w),wr)); } }; int main(){ ios::sync_with_stdio(0); cin.tie(0); cout.tie(0); string s; cin>>s; Node *tr1=nullptr,*tr2=nullptr; for(int i=0;i<s.size();++i){ tr1=merge(tr1,new Node(s[i])); tr2=merge(tr2,new Node(s[i])); } int T; cin>>T; while(T--){ char op; cin>>op; if(op=='Q'){ int x,y; cin>>x>>y; Node *r1=split(tr1,x),*r2=split(tr2,y); int ans=0; for(int i=20;i>=0;--i){ if(ans+(1<<i)>min(r1->sz,r2->sz))continue; Node *rr1=split(r1,ans+(1<<i)),*rr2=split(r2,ans+(1<<i)); if(r1->he==r2->he)ans+=1<<i; merge(r1,rr1); merge(r2,rr2); } cout<<ans; tr1=merge(tr1,r1); tr2=merge(tr2,r2); }else if(op=='R'){ int x; char c; cin>>x>>c; change(tr1,x,Node(c)); change(tr2,x,Node(c)); }else{ int x; char c; cin>>x>>c; add(tr1,x,Node(c)); add(tr2,x,Node(c)); } } delete tr1; delete tr2; return 0; }# P4036 [JSOI2008] 火星人 ## 题目描述 火星人最近研究了一种操作:求一个字串两个后缀的公共前缀。 比方说,有这样一个字符串:madamimadam,我们将这个字符串的各个字符予以标号: 序号 1 2 3 4 5 6 7 8 9 10 11 字符 m a d a m i m a d a m 现在,火星人定义了一个函数 $LCQ(x, y)$,表示:该字符串中第 $x$ 个字符开始的字串,与该字符串中第 $y$ 个字符开始的字串,两个字串的公共前缀的长度。比方说,$LCQ(1, 7) = 5, LCQ(2, 10) = 1, LCQ(4, 7) = 0$ 在研究 $LCQ$ 函数的过程中,火星人发现了这样的一个关联:如果把该字符串的所有后缀排好序,就可以很快地求出 $LCQ$ 函数的值;同样,如果求出了 $LCQ$ 函数的值,也可以很快地将该字符串的后缀排好序。 尽管火星人聪明地找到了求取 $LCQ$ 函数的快速算法,但不甘心认输的地球人又给火星人出了个难题:在求取 $LCQ$ 函数的同时,还可以改变字符串本身。具体地说,可以更改字符串中某一个字符的值,也可以在字符串中的某一个位置插入一个字符。地球人想考验一下,在如此复杂的问题中,火星人是否还能够做到很快地求取 $LCQ$ 函数的值。 ## 输入格式 第一行给出初始的字符串。第二行是一个非负整数 $M$ ,表示操作的个数。接下来的M行,每行描述一个操作。操作有 $3$ 种,如下所示 1. 询问。语法:$Q$ $x$ $y$ ,$x$ ,$y$ 均为正整数。功能:计算 $LCQ(x,y)$ 限制:$1$ $\leq$ $x$ , $y$ $\leq$ 当前字符串长度 。 2. 修改。语法:$R$ $x$ $d$,$x$ 是正整数,$d$ 是字符。功能:将字符串中第 $x$ 个数修改为字符 $d$ 。限制:$x$ 不超过当前字符串长度。 3. 插入:语法:$I$ $x$ $d$ ,$x$ 是非负整数,$d$ 是字符。功能:在字符串第 $x$ 个字符之后插入字符 $d$ ,如果 $x=0$,则在字符串开头插入。限制:$x$ 不超过当前字符串长度 ## 输出格式 对于输入文件中每一个询问操作,你都应该输出对应的答案。一个答案一行。 ## 输入输出样例 #1 ### 输入 #1 madamimadam 7 Q 1 7 Q 4 8 Q 10 11 R 3 a Q 1 7 I 10 a Q 2 11 ### 输出 #1 5 1 0 2 1 ## 说明/提示 1. 所有字符串自始至终都只有小写字母构成。 2. $M\leq150,000$ 3. 字符串长度L自始至终都满足$L\leq100,000$ 4. 询问操作的个数不超过 $10,000$ 个。 对于第 $1$,$2$ 个数据,字符串长度自始至终都不超过 $1,000$ 对于第 $3$,$4$,$5$ 个数据,没有插入操作。 2024/07/40 更新一组 hack。 debug RE

#include<bits/stdc++.h> #define ll long long using namespace std; struct Node{ int v,p,sz; unsigned ll he; Node *cl,*cr; Node(int x):v(x),p(rand()),sz(1),he(x),cl(nullptr),cr(nullptr){} ~Node(){ delete cl; delete cr; } friend int siz(Node *x){ if(x==nullptr)return 0; return x->sz; } void push_up(){ sz=1; he=v*(1u<<siz(cl)); if(cl!=nullptr){ sz+=cl->sz; he+=cl->he; } if(cr!=nullptr){ sz+=cr->sz; he+=(1ull<<(siz(cl)+1))*cr->he; } } friend Node* merge(Node *x,Node *y){ if(x==nullptr)return y; if(y==nullptr)return x; if(x->p<y->p){ x->cr=merge(x->cr,y); x->push_up(); return x; }else{ y->cl=merge(x,y->cl); y->push_up(); return y; } } friend Node* split(Node *&x,int r){ if(x==nullptr)return nullptr; if(siz(x->cl)>=r){ Node *t=split(x->cl,r); swap(t,x->cl); x->push_up(); swap(t,x); return t; }else{ Node *t=split(x->cr,r-siz(x->cl)-1); x->push_up(); return t; } } friend void change(Node *&h,int x,Node w){ Node *wr=split(h,x),*dq=split(h,x-1); delete dq; h=merge(h,merge(new Node(w),wr)); } friend void add(Node *&h,int x,Node w){ Node *wr=split(h,x); h=merge(h,merge(new Node(w),wr)); } }; int main(){ ios::sync_with_stdio(0); cin.tie(0); cout.tie(0); string s; cin>>s; Node *tr1=nullptr,*tr2=nullptr; for(int i=0;i<s.size();++i){ tr1=merge(tr1,new Node(s[i]-'a'+1)); tr2=merge(tr2,new Node(s[i]-'a'+1)); } int T; cin>>T; while(T--){ char op; cin>>op; if(op=='Q'){ int x,y; cin>>x>>y; Node *r1=split(tr1,x-1),*r2=split(tr2,y-1); int ans=0; for(int i=20;i>=0;--i){ if(ans+(1<<i)>min(siz(r1),siz(r2)))continue; Node *rr1=split(r1,ans+(1<<i)),*rr2=split(r2,ans+(1<<i)); if(r1->he==r2->he)ans+=1<<i; merge(r1,rr1); merge(r2,rr2); } cout<<ans<<endl; tr1=merge(tr1,r1); tr2=merge(tr2,r2); }else if(op=='R'){ int x; char c; cin>>x>>c; change(tr1,x,Node(c-'a'+1)); change(tr2,x,Node(c-'a'+1)); }else{ int x; char c; cin>>x>>c; add(tr1,x,Node(c-'a'+1)); add(tr2,x,Node(c-'a'+1)); } } delete tr1; delete tr2; return 0; }debug # P4036 [JSOI2008] 火星人 ## 题目描述 火星人最近研究了一种操作:求一个字串两个后缀的公共前缀。 比方说,有这样一个字符串:madamimadam,我们将这个字符串的各个字符予以标号: 序号 1 2 3 4 5 6 7 8 9 10 11 字符 m a d a m i m a d a m 现在,火星人定义了一个函数 $LCQ(x, y)$,表示:该字符串中第 $x$ 个字符开始的字串,与该字符串中第 $y$ 个字符开始的字串,两个字串的公共前缀的长度。比方说,$LCQ(1, 7) = 5, LCQ(2, 10) = 1, LCQ(4, 7) = 0$ 在研究 $LCQ$ 函数的过程中,火星人发现了这样的一个关联:如果把该字符串的所有后缀排好序,就可以很快地求出 $LCQ$ 函数的值;同样,如果求出了 $LCQ$ 函数的值,也可以很快地将该字符串的后缀排好序。 尽管火星人聪明地找到了求取 $LCQ$ 函数的快速算法,但不甘心认输的地球人又给火星人出了个难题:在求取 $LCQ$ 函数的同时,还可以改变字符串本身。具体地说,可以更改字符串中某一个字符的值,也可以在字符串中的某一个位置插入一个字符。地球人想考验一下,在如此复杂的问题中,火星人是否还能够做到很快地求取 $LCQ$ 函数的值。 ## 输入格式 第一行给出初始的字符串。第二行是一个非负整数 $M$ ,表示操作的个数。接下来的M行,每行描述一个操作。操作有 $3$ 种,如下所示 1. 询问。语法:$Q$ $x$ $y$ ,$x$ ,$y$ 均为正整数。功能:计算 $LCQ(x,y)$ 限制:$1$ $\leq$ $x$ , $y$ $\leq$ 当前字符串长度 。 2. 修改。语法:$R$ $x$ $d$,$x$ 是正整数,$d$ 是字符。功能:将字符串中第 $x$ 个数修改为字符 $d$ 。限制:$x$ 不超过当前字符串长度。 3. 插入:语法:$I$ $x$ $d$ ,$x$ 是非负整数,$d$ 是字符。功能:在字符串第 $x$ 个字符之后插入字符 $d$ ,如果 $x=0$,则在字符串开头插入。限制:$x$ 不超过当前字符串长度 ## 输出格式 对于输入文件中每一个询问操作,你都应该输出对应的答案。一个答案一行。 ## 输入输出样例 #1 ### 输入 #1 madamimadam 7 Q 1 7 Q 4 8 Q 10 11 R 3 a Q 1 7 I 10 a Q 2 11 ### 输出 #1 5 1 0 2 1 ## 说明/提示 1. 所有字符串自始至终都只有小写字母构成。 2. $M\leq150,000$ 3. 字符串长度L自始至终都满足$L\leq100,000$ 4. 询问操作的个数不超过 $10,000$ 个。 对于第 $1$,$2$ 个数据,字符串长度自始至终都不超过 $1,000$ 对于第 $3$,$4$,$5$ 个数据,没有插入操作。 2024/07/40 更新一组 hack。

大家在看

recommend-type

FloodRouting:使用python进行洪水常规调度

洪水调洪常规调度计算方法 使用python语言进行洪水常规调度计算。 数据来自汉江某水库的计算值。
recommend-type

Industrial Society and Its Future.pdf

作者:Theodore Kaczyns 卡辛斯基 题名:Industrial Society and Its Future 《论工业社会及其未来》
recommend-type

C语言流程图生成工具

AutoFlowChart 自动生成流程图 AutoFlowchart 是一个极佳的根据源码生成流程图的工具 它生成的流程图支持展开 合拢 并且可以预定义流程图块的大小和间隔 移动和缩放流程图也很方便 你还可以把它导出到WORD文档或BMP文件 它可以帮助程序员更好地理解程序 制作文档和可视化代码 支持C C++ VC++ Visual C++ NET Delphi Object Pascal 主要功能 根据源程序生成流程图 导出流程图到WORD文档中 展开 合拢流程图 自动生成一个 TreeView显示所有函数 过程 同步显示对应块的源程序和流程图 自定义流程图的配色方案 自定义流程图的大小和间距 根据格式自动排列程序 自由缩小 放大 移动流程图 显示程序行号 支持清除当前流程图 导出流程图到 bmp文件 发展前瞻 ① 支持各种语言 已经完成Pascal C 待完成:Java FoxPro Basic Fortan等; ② 支持反向操作 可以动态修改流程图 并可根据流程图生成相应的语言代码; ③ 结合Delphi专家 嵌入IDE直接运行 已经完成详见主页 操作说明 ① 打开一个或多个文件; ② 双击一个If For While Case Repeat Try begin的起始行 你就可以看到流程图; ③ 双击流程图中相应的框 可以同步显示程序块位置;">AutoFlowChart 自动生成流程图 AutoFlowchart 是一个极佳的根据源码生成流程图的工具 它生成的流程图支持展开 合拢 并且可以预定义流程图块的大小和间隔 移动和缩放流程图也很方便 你还可以把它导出到WORD文档或BMP文件 [更多]
recommend-type

dhtmlxGantt_v4.0.0

甘特图(dhtmlxgantt)的资源文件,具体代码请访问https://blog.csdn.net/qq_27339781/article/details/79869584
recommend-type

数字图像处理 冈萨雷斯 第三版 课后答案绝对完整

数字图像处理 冈萨雷斯 第三版 课后答案绝对完整

最新推荐

recommend-type

IPD技术评审(TR1-TR6)知识分享

- TR2侧重产品设计规格的完整性,确保设计需求转化为可执行的设计规范。 - TR3涉及概要设计,确认模块化和接口设计的合理性。 - TR4专注于详细设计和构建,验证功能模块的集成和测试。 - TR4A对系统级功能进行...
recommend-type

MATLAB-robotic-toolbox工具箱学习笔记

* tr2angvec() 函数:将旋转矩阵转化为旋转轴矢量和转角 * tr2eul() 函数:将旋转矩阵转化为欧拉角表示 * tr2rpy() 函数:将旋转矩阵转化为 roll-pitch-yaw 角表示 * Quaternion() 函数:将旋转矩阵转化为四元数...
recommend-type

52单片机的定时器/计数器T2应用

* TR2:T2的启动控制标志;TR2=0:停止T2;TR2=1:启动T2。 * C/T2:T2的定时方式或计数方式选择位。只能通过软件的置位或清除;C/T2=0:选择T2为定时器方式;C/T2=1:选择T2为计数器方式,下降沿触发。 * CP/RT2:...
recommend-type

Twitter平台完整数据压缩包文件下载

资源下载链接为: https://pan.quark.cn/s/22ca96b7bd39 小米手机安装 Twitter 时若出现闪退,多与缺失 OBB 扩展文件有关。Google Play 为突破 APK 体积上限,允许把游戏或大型应用的高清资源打包成 main.<包名>.obb,存于 /Android/obb/ 目录。小米系统因权限或优化策略,可能无法自动放置该文件,导致 Twitter 启动即崩溃。 解决思路: 改用整合 APK 与 OBB 的 XAPK 包,借助 XAPK 安装器一键解压到正确路径; 手动把 obb 文件移至 /Android/obb/com.twitter.android/,确认应用有读写存储权限; 若仍失败,关闭 MIUI 优化、检查剩余空间或更新系统与客户端。 下载 XAPK 时务必选择可信来源,避免恶意软件。
recommend-type

Web2.0新特征图解解析

Web2.0是互联网发展的一个阶段,相对于早期的Web1.0时代,Web2.0具有以下显著特征和知识点: ### Web2.0的定义与特点 1. **用户参与内容生产**: - Web2.0的一个核心特征是用户不再是被动接收信息的消费者,而是成为了内容的生产者。这标志着“读写网络”的开始,用户可以在网络上发布信息、评论、博客、视频等内容。 2. **信息个性化定制**: - Web2.0时代,用户可以根据自己的喜好对信息进行个性化定制,例如通过RSS阅读器订阅感兴趣的新闻源,或者通过社交网络筛选自己感兴趣的话题和内容。 3. **网页技术的革新**: - 随着技术的发展,如Ajax、XML、JSON等技术的出现和应用,使得网页可以更加动态地与用户交互,无需重新加载整个页面即可更新数据,提高了用户体验。 4. **长尾效应**: - 在Web2.0时代,即使是小型或专业化的内容提供者也有机会通过互联网获得关注,这体现了长尾理论,即在网络环境下,非主流的小众产品也有机会与主流产品并存。 5. **社交网络的兴起**: - Web2.0推动了社交网络的发展,如Facebook、Twitter、微博等平台兴起,促进了信息的快速传播和人际交流方式的变革。 6. **开放性和互操作性**: - Web2.0时代倡导开放API(应用程序编程接口),允许不同的网络服务和应用间能够相互通信和共享数据,提高了网络的互操作性。 ### Web2.0的关键技术和应用 1. **博客(Blog)**: - 博客是Web2.0的代表之一,它支持用户以日记形式定期更新内容,并允许其他用户进行评论。 2. **维基(Wiki)**: - 维基是另一种形式的集体协作项目,如维基百科,任何用户都可以编辑网页内容,共同构建一个百科全书。 3. **社交网络服务(Social Networking Services)**: - 社交网络服务如Facebook、Twitter、LinkedIn等,促进了个人和组织之间的社交关系构建和信息分享。 4. **内容聚合器(RSS feeds)**: - RSS技术让用户可以通过阅读器软件快速浏览多个网站更新的内容摘要。 5. **标签(Tags)**: - 用户可以为自己的内容添加标签,便于其他用户搜索和组织信息。 6. **视频分享(Video Sharing)**: - 视频分享网站如YouTube,用户可以上传、分享和评论视频内容。 ### Web2.0与网络营销 1. **内容营销**: - Web2.0为内容营销提供了良好的平台,企业可以通过撰写博客文章、发布视频等内容吸引和维护用户。 2. **社交媒体营销**: - 社交网络的广泛使用,使得企业可以通过社交媒体进行品牌传播、产品推广和客户服务。 3. **口碑营销**: - 用户生成内容、评论和分享在Web2.0时代更易扩散,为口碑营销提供了土壤。 4. **搜索引擎优化(SEO)**: - 随着内容的多样化和个性化,SEO策略也必须适应Web2.0特点,注重社交信号和用户体验。 ### 总结 Web2.0是对互联网发展的一次深刻变革,它不仅仅是一个技术变革,更是人们使用互联网的习惯和方式的变革。Web2.0的时代特征与Web1.0相比,更加注重用户体验、社交互动和信息的个性化定制。这些变化为网络营销提供了新的思路和平台,也对企业的市场策略提出了新的要求。通过理解Web2.0的特点和应用,企业可以更好地适应互联网的发展趋势,实现与用户的深度互动和品牌的有效传播。
recommend-type

【C++编程新手必看】:一步步带你制作出风靡全球的“别踩白块儿”游戏

# 摘要 本文全面介绍C++编程在游戏开发中的应用,涵盖了从基础概念到具体实现的多个方面。首先,文章提供了游戏开发环境的搭建指南,包括编译器配置和开发工具的选择。随后,重点介绍了游戏主循环和基本框架的构建,强调了事件处理和渲染技术。在游戏逻辑和交互设计方面,本文阐述了界面布局、事件响应和游戏状态管理的核心实现。为了提升游戏体验,本文还探讨了添加音效和背景音乐以及开发高级游戏特性的方法。最后,文章介绍了性能优化和跨平台发布的过程,包括游戏的打包和针对不同平台的发布策略。本文旨在为C++游戏开发者提供一个实用的开发指南,帮助他们从零开始构建出性能优化、跨平台兼容的游戏。 # 关键字 C++编程;
recommend-type

使用scikit-learn训练模型来预测鸢尾花种类

<think>我们使用scikit-learn库来训练一个分类模型预测鸢尾花种类。鸢尾花数据集是scikit-learn内置的经典数据集,包含三种鸢尾花的四个特征(花萼长度、花萼宽度、花瓣长度、花瓣宽度)和对应的类别标签。步骤:1.导入必要的库和数据集2.数据探索(可选,但建议了解数据)3.数据预处理(如划分训练集和测试集、标准化等)4.选择模型(例如KNN、随机森林等)5.训练模型6.模型评估7.使用模型进行预测下面以KNN(K近邻)算法为例,展示完整流程。</think>### 使用 scikit-learn 训练鸢尾花分类模型 以下是基于 scikit-learn 训练鸢尾花分类模型的
recommend-type

WWF工作流设计器C#源码解析及演示

### WWF工作流设计器控件C#源码知识点 #### 1. WWF(Windows Workflow Foundation)概述 WWF是微软公司推出的一个工作流框架,作为.NET Framework的一部分。它提供了一套丰富的API,用于设计、执行和管理工作流。工作流可以用于各种应用程序,包括Web应用、服务和桌面应用,使得开发者能够将复杂的业务逻辑以工作流的形式表现出来,简化业务流程自动化和管理。 #### 2. 工作流设计器控件(Workflow Designer Control) 工作流设计器控件是WWF中的一个组件,主要用于提供可视化设计工作流的能力。它允许用户通过拖放的方式在界面上添加、配置和连接工作流活动,从而构建出复杂的工作流应用。控件的使用大大降低了工作流设计的难度,并使得设计工作流变得直观和用户友好。 #### 3. C#源码分析 在提供的文件描述中提到了两个工程项目,它们均使用C#编写。下面分别对这两个工程进行介绍: - **WorkflowDesignerControl** - 该工程是工作流设计器控件的核心实现。它封装了设计工作流所需的用户界面和逻辑代码。开发者可以在自己的应用程序中嵌入这个控件,为最终用户提供一个设计工作流的界面。 - 重点分析:控件如何加载和显示不同的工作流活动、控件如何响应用户的交互、控件状态的保存和加载机制等。 - **WorkflowDesignerExample** - 这个工程是演示如何使用WorkflowDesignerControl的示例项目。它不仅展示了如何在用户界面中嵌入工作流设计器控件,还展示了如何处理用户的交互事件,比如如何在设计完工作流后进行保存、加载或执行等。 - 重点分析:实例程序如何响应工作流设计师的用户操作、示例程序中可能包含的事件处理逻辑、以及工作流的实例化和运行等。 #### 4. 使用Visual Studio 2008编译 文件描述中提到使用Visual Studio 2008进行编译通过。Visual Studio 2008是微软在2008年发布的集成开发环境,它支持.NET Framework 3.5,而WWF正是作为.NET 3.5的一部分。开发者需要使用Visual Studio 2008(或更新版本)来加载和编译这些代码,确保所有必要的项目引用、依赖和.NET 3.5的特性均得到支持。 #### 5. 关键技术点 - **工作流活动(Workflow Activities)**:WWF中的工作流由一系列的活动组成,每个活动代表了一个可以执行的工作单元。在工作流设计器控件中,需要能够显示和操作这些活动。 - **活动编辑(Activity Editing)**:能够编辑活动的属性是工作流设计器控件的重要功能,这对于构建复杂的工作流逻辑至关重要。 - **状态管理(State Management)**:工作流设计过程中可能涉及保存和加载状态,例如保存当前的工作流设计、加载已保存的工作流设计等。 - **事件处理(Event Handling)**:处理用户交互事件,例如拖放活动到设计面板、双击活动编辑属性等。 #### 6. 文件名称列表解释 - **WorkflowDesignerControl.sln**:解决方案文件,包含了WorkflowDesignerControl和WorkflowDesignerExample两个项目。 - **WorkflowDesignerControl.suo**:Visual Studio解决方案用户选项文件,该文件包含了开发者特有的个性化设置,比如窗口布局、断点位置等。 - **Thumbs.db**:缩略图缓存文件,由Windows自动生成,用于存储文件夹中的图片缩略图,与WWF工作流设计器控件功能无关。 - **WorkflowDesignerExample**:可能是一个文件夹,包含了示例工程相关的所有文件,或者是示例工程的可执行文件。 - **EULA.txt**:最终用户许可协议文本文件,通常说明了软件的版权和使用许可条件。 综上所述,该文件集包含了WWF工作流设计器控件的完整C#源码以及相应的Visual Studio项目文件,开发者可以利用这些资源深入理解WWF工作流设计器控件的工作机制,并将其应用于实际的项目开发中,实现工作流的设计和管理功能。
recommend-type

CAD数据在ANSA中:完美修复几何数据的策略与方法

# 摘要 CAD数据的准确性和几何完整性对于产品设计和工程分析至关重要。本文首先强调了CAD数据和几何修复的重要性,随后介绍了ANSA软件在处理CAD数据中的角色。通过详细的分析,本文探讨了几何数据的常见问题,以及有效的手动和自动修复技术。文中还提供了几何修复在实际应用中的案例分析,并讨论了行业未来对几何修复技术的需求和新兴技术趋势。文章旨在为CAD数据几何修复提供全面的理论知识、诊断方法和修复策略,并
recommend-type

编写verilog代码实现以上的规格化功能

<think>我们有一个16位的二进制数,其格式如下:-a15:尾数符号位(1位)-a14-a5:尾数数值位(10位)-a4:指数符号位(1位)-a3-a0:指数数值位(4位)规格化的目标:确保尾数数值位的最高位a14为1(即尾数的绝对值在[0.5,1)范围内)。步骤:1.提取输入信号的各个部分:尾数符号位、尾数数值位、指数符号位、指数数值位。2.将尾数数值位(10位)视为无符号整数M(范围0到1023),我们需要通过左移操作使得M的最高位为1(即M>=512)。同时记录左移的位数(shift_count)。3.调整指数:新的指数=原指数-shift_count(因为尾数左移相当于乘以2^sh