原版unet复现
时间: 2025-05-14 10:39:24 浏览: 24
### 关于 U-Net 的 PyTorch 和 TensorFlow 实现
U-Net 是一种用于图像分割的经典卷积神经网络架构,最初由 Olaf Ronneberger 等人在 2015 年提出。它通过编码器-解码器结构以及跳跃连接实现了高分辨率特征图的重建[^1]。
#### 使用 PyTorch 复现 U-Net 模型
以下是基于 PyTorch 的 U-Net 模型实现:
```python
import torch
import torch.nn as nn
class DoubleConv(nn.Module):
"""(convolution => [BN] => ReLU) * 2"""
def __init__(self, in_channels, out_channels):
super().__init__()
self.double_conv = nn.Sequential(
nn.Conv2d(in_channels, out_channels, kernel_size=3, padding=1),
nn.BatchNorm2d(out_channels),
nn.ReLU(inplace=True),
nn.Conv2d(out_channels, out_channels, kernel_size=3, padding=1),
nn.BatchNorm2d(out_channels),
nn.ReLU(inplace=True)
)
def forward(self, x):
return self.double_conv(x)
class UNet(nn.Module):
def __init__(self, n_channels, n_classes):
super(UNet, self).__init__()
self.n_channels = n_channels
self.n_classes = n_classes
# 下采样路径 (Encoder)
self.down1 = DoubleConv(n_channels, 64)
self.pool1 = nn.MaxPool2d(2)
self.down2 = DoubleConv(64, 128)
self.pool2 = nn.MaxPool2d(2)
# 中间层
self.middle = DoubleConv(128, 256)
# 上采样路径 (Decoder),带跳跃连接
self.up1 = nn.Upsample(scale_factor=2, mode='bilinear', align_corners=True)
self.conv_up1 = DoubleConv(256 + 128, 128)
self.up2 = nn.Upsample(scale_factor=2, mode='bilinear', align_corners=True)
self.conv_up2 = DoubleConv(128 + 64, 64)
# 输出层
self.outc = nn.Conv2d(64, n_classes, kernel_size=1)
def forward(self, x):
# Encoder 部分
x1 = self.down1(x)
x2 = self.pool1(x1)
x3 = self.down2(x2)
x4 = self.pool2(x3)
# Middle Layer
x_mid = self.middle(x4)
# Decoder 部分
up_x1 = self.up1(x_mid)
concat_x1 = torch.cat([up_x1, x3], dim=1)
conv_x1 = self.conv_up1(concat_x1)
up_x2 = self.up2(conv_x1)
concat_x2 = torch.cat([up_x2, x1], dim=1)
conv_x2 = self.conv_up2(concat_x2)
output = self.outc(conv_x2)
return output
```
上述代码定义了一个标准的 U-Net 架构,其中 `DoubleConv` 表示两个连续的卷积操作加上批量归一化和激活函数。
---
#### 使用 TensorFlow/Keras 复现 U-Net 模型
以下是基于 TensorFlow/Keras 的 U-Net 模型实现:
```python
from tensorflow.keras.models import Model
from tensorflow.keras.layers import Input, Conv2D, MaxPooling2D, Dropout, concatenate, UpSampling2D
def unet(input_shape=(256, 256, 1), num_classes=1):
inputs = Input(shape=input_shape)
# Down-sampling path
c1 = Conv2D(64, (3, 3), activation='relu', padding='same')(inputs)
c1 = Conv2D(64, (3, 3), activation='relu', padding='same')(c1)
p1 = MaxPooling2D((2, 2))(c1)
c2 = Conv2D(128, (3, 3), activation='relu', padding='same')(p1)
c2 = Conv2D(128, (3, 3), activation='relu', padding='same')(c2)
p2 = MaxPooling2D((2, 2))(c2)
# Bottleneck layer
b = Conv2D(256, (3, 3), activation='relu', padding='same')(p2)
b = Conv2D(256, (3, 3), activation='relu', padding='same')(b)
# Up-sampling path with skip connections
u1 = UpSampling2D((2, 2))(b)
u1 = concatenate([u1, c2])
c3 = Conv2D(128, (3, 3), activation='relu', padding='same')(u1)
c3 = Conv2D(128, (3, 3), activation='relu', padding='same')(c3)
u2 = UpSampling2D((2, 2))(c3)
u2 = concatenate([u2, c1])
c4 = Conv2D(64, (3, 3), activation='relu', padding='same')(u2)
c4 = Conv2D(64, (3, 3), activation='relu', padding='same')(c4)
outputs = Conv2D(num_classes, (1, 1), activation='sigmoid')(c4)
model = Model(inputs=[inputs], outputs=[outputs])
return model
```
此代码同样遵循原始论文中的设计原则,即下采样阶段逐步提取高层次语义信息,在上采样阶段利用跳跃连接恢复空间细节。
---
#### 如何获取相关代码资源?
如果希望直接下载已有的开源项目作为参考,则可以考虑以下方式:
- **Git 克隆命令**:可以通过 Git 命令快速拉取公开仓库的内容。例如,对于某些特定框架下的实现版本,可执行如下指令完成环境搭建与依赖安装[^2]:
```bash
git clone https://github.com/milesial/Pytorch-UNet.git
```
或者针对其他变体模型如 Wave-U-Net:
```bash
git clone https://github.com/f90/Wave-U-Net-Pytorch.git
cd Wave-U-Net-Pytorch
```
这些存储库通常会附带详细的文档说明如何运行实验并调整超参数设置以适配不同的数据集需求。
另外需要注意的是当涉及到更复杂的深度学习框架同步时可能还需要额外指定子模块更新选项以便完整复制整个开发工具链状态[^3]:
```bash
git clone --recursive https://github.com/pytorch/examples.git
```
这一步骤确保所有必要的外部依赖项也被正确加载进来从而减少后续编译过程中可能出现的问题风险.
---
#### 数据处理建议
为了更好地训练 U-Net 或类似的扩散模型,推荐使用标准化的数据加载流程。例如在 PyTorch 中可通过自定义 Dataset 类来读取图片文件夹内的样本集合[^4]:
```python
from torchvision.datasets import ImageFolder
dataset = ImageFolder(root='./data/images/', transform=None)
```
此处需注意实际应用场合下往往还需加入更多预处理步骤比如裁剪缩放增强等具体取决于目标应用场景的要求.
---
阅读全文
相关推荐


















