yolov8 位置损失函数公式
时间: 2025-05-21 15:37:10 浏览: 15
### YOLOv8 位置损失函数的公式
YOLOv8 的位置损失函数主要基于边界框回归任务的设计,通常使用的是 IoU 或其变体作为核心指标。具体来说,在 YOLOv8 中的位置损失函数可以表示为一种改进版的 CIoU 损失或者 DIoU 损失[^1]。
CIoU 损失的定义如下:
\[
\text{CIoU} = 1 - \left(\frac{\rho^2(b, b_{gt})}{c^2} + \alpha v\right)
\]
其中:
- \(b\) 和 \(b_{gt}\) 分别代表预测框和真实框;
- \(\rho(b, b_{gt})\) 是两个框中心点之间的欧几里得距离;
- \(c\) 是覆盖这两个框的最小闭包区域的对角线长度;
- \(\alpha\) 是一个比例因子,用于平衡重叠面积与宽高比一致性的影响;
- \(v\) 表示宽高比一致性的度量,定义为:
\[
v = \frac{4}{\pi^2} (\arctan(w_{gt}/h_{gt}) - \arctan(w/h))^2
\]
在某些实现中,为了进一步优化难易样本的学习效果,可能会引入 Focaler-IoU 方法来调整损失权重[^5]。这种技术通过对不同难度的样本分配不同的学习重点,从而改善整体检测性能。
以下是 Python 实现的一个简化版本的 CIoU 计算代码:
```python
import torch
def ciou_loss(preds, targets, eps=1e-7):
"""
Calculate the Complete Intersection over Union (CIOU) loss.
Args:
preds: Predicted bounding boxes with shape [N, 4], where N is number of predictions,
and each box format should be [cx, cy, w, h].
targets: Ground truth bounding boxes with same shape as `preds`.
eps: A small value to avoid division by zero.
Returns:
The CIOU loss tensor.
"""
# Convert center-width-height format to top-left-bottom-right corners
px1y1 = preds[:, :2] - preds[:, 2:] / 2
px2y2 = preds[:, :2] + preds[:, 2:] / 2
tx1y1 = targets[:, :2] - targets[:, 2:] / 2
tx2y2 = targets[:, :2] + targets[:, 2:] / 2
# Compute intersection area
inter_x1y1 = torch.max(px1y1, tx1y1)
inter_x2y2 = torch.min(px2y2, tx2y2)
inter_wh = (inter_x2y2 - inter_x1y1).clamp(min=0)
inter_area = inter_wh[:, 0] * inter_wh[:, 1]
# Compute union area
pred_area = preds[:, 2] * preds[:, 3]
target_area = targets[:, 2] * targets[:, 3]
union_area = pred_area + target_area - inter_area + eps
ious = inter_area / union_area
# Compute distance between centers
center_dist_sq = ((preds[:, 0] - targets[:, 0]) ** 2 +
(preds[:, 1] - targets[:, 1]) ** 2)
# Compute diagonal length of smallest enclosing box
enclose_x1y1 = torch.min(px1y1, tx1y1)
enclose_x2y2 = torch.max(px2y2, tx2y2)
enclose_diagonal_sq = ((enclose_x2y2[:, 0] - enclose_x1y1[:, 0]) ** 2 +
(enclose_x2y2[:, 1] - enclose_x1y1[:, 1]) ** 2 + eps)
diou_term = center_dist_sq / enclose_diagonal_sq
# Aspect ratio consistency term
atan_pred = torch.atan(preds[:, 2] / preds[:, 3])
atan_target = torch.atan(targets[:, 2] / targets[:, 3])
aspect_ratio_consistency = 4.0 / (torch.pi ** 2) * ((atan_pred - atan_target) ** 2)
alpha = aspect_ratio_consistency / (1 - ious + aspect_ratio_consistency + eps)
ciou_loss_value = 1 - ious + diou_term + alpha * aspect_ratio_consistency
return ciou_loss_value.mean()
```
阅读全文
相关推荐


















