安卓手机adb 抓取systrace开始和结束的命令

时间: 2025-06-20 16:22:55 浏览: 12
<think>好的,我现在需要帮用户解答关于如何使用ADB抓取systrace的开始和结束命令的问题。首先,我得回想一下用户之前的问题,他之前问了关于Uninterruptible Sleep状态,现在转向了实际操作,如何抓取systrace。这说明用户可能在进行性能分析,遇到了线程阻塞的问题,现在需要实际操作的指导。 用户可能是一名Android开发者,或者正在做性能优化相关工作。他们可能已经知道systrace的基本用途,但需要具体的命令行步骤。我需要确保给出的命令准确,并且涵盖不同的Android版本,因为不同版本可能有不同的方法。 首先,我应该区分Android 9(API 28)及以上的版本和更早的版本,因为从Android 9开始,systrace被Perfetto取代,但可能仍支持旧命令。用户可能需要同时知道新旧方法,以确保兼容性。 接下来,我需要详细写出开始和结束的命令,包括参数说明,比如时间、输出文件、要跟踪的类别等。同时,要提醒用户关于注意事项,比如需要启用USB调试,是否有root权限等。此外,可能还需要提到如何自动结束抓取,或者手动停止的方法,比如Ctrl+C。 还要考虑用户可能遇到的常见问题,例如命令无法执行,或者输出文件找不到,这时候需要给出排查建议,比如检查Python环境,ADB是否正确连接等。另外,用户可能需要知道如何查看生成的文件,推荐使用Perfetto UI,并提供链接。 最后,要确保语言简洁明了,步骤清晰,避免使用过于专业的术语,但也要准确无误。可能用户是第一次使用systrace,所以需要给出完整的命令示例,包括参数的具体值,比如时间设为5秒,输出文件名等。 总结一下,我需要分步骤介绍命令,涵盖不同Android版本,解释每个参数的作用,给出示例,注意事项,以及后续分析工具的使用方法。这样用户能够按照步骤操作,解决实际问题,同时避免常见错误。</think>以下是使用 **ADB 抓取 systrace** 的核心命令和操作步骤,适用于 Android 性能分析场景: --- ### **1. 基础命令(Android 9 及以上)** 从 Android 9(API 28)开始,官方推荐使用 **`perfetto`** 替代传统 `systrace`,但仍兼容旧命令。 #### **(1) 启动抓取** ```bash # 通用命令格式 python systrace.py [options] [categories] # 示例:抓取 10 秒,跟踪 CPU、图形、磁盘 I/O 等核心事件 python systrace.py -t 10 -o output.html sched freq idle am wm gfx view binder_driver hal dalvik disk input ``` #### **(2) 手动控制开始/结束(需 root 权限)** ```bash # 开始抓取(后台运行) adb shell "atrace --async_start -b 16384 gfx input view webview wm am sm audio video camera hal res dalvik rs bionic power pm ss database network adb sched irq freq idle sync disk workq memreclaim regulators" # 结束抓取并导出结果 adb shell "atrace --async_stop" > trace.txt adb pull /sys/kernel/debug/tracing/trace trace.raw ``` --- ### **2. Perfetto 命令(Android 10+ 推荐)** Android 10 及以上默认集成 **Perfetto**,提供更强大的跟踪功能: #### **(1) 基础抓取** ```bash # 通过 ADB 触发 Perfetto 抓取(默认 10 秒) adb shell perfetto -o /data/misc/perfetto-traces/trace_file.perfetto-trace -t 10s sched freq idle am wm gfx input disk ``` #### **(2) 自定义配置** ```bash # 生成配置文件(JSON 格式),定义跟踪参数 echo ' buffers: { size_kb: 100000 } data_sources: { config { name: "linux.process_stats" } } duration_ms: 5000 ' > config.pbtx # 执行抓取 adb shell perfetto -c /data/local/tmp/config.pbtx -o /data/local/tmp/trace.perfetto-trace adb pull /data/local/tmp/trace.perfetto-trace ``` --- ### **3. 关键参数说明** | 参数 | 作用 | |------|------| | `-t N` | 抓取时长(秒) | | `-o FILE` | 输出文件名(默认 `trace.html`) | | `-b SIZE` | 缓冲区大小(KB,防溢出) | | `categories` | 指定跟踪的事件类别(如 `gfx` 图形、`input` 触控) | --- ### **4. 注意事项** 1. **环境依赖**: - 确保 Python 2.7 环境(传统 systrace 需要)和 `systrace.py` 文件(位于 Android SDK 的 `platform-tools/systrace` 目录)。 - Perfetto 无需额外配置,但需 ADB 版本 ≥ 1.0.40。 2. **权限要求**: - 部分内核事件(如 `binder_driver`)需要 **root 权限** 或 **eng 模式**。 - 普通应用进程跟踪可使用 `debug` 权限。 3. **文件导出**: - 使用 `adb pull` 导出文件时,注意目标路径是否可读。 - Perfetto 文件需通过 **[Perfetto UI](https://ui.perfetto.dev)** 解析。 --- ### **5. 结果分析** - **传统 systrace**:用 Chrome 浏览器打开 `.html` 文件(访问 `chrome://tracing`)。 - **Perfetto**:上传 `.perfetto-trace` 文件到 **[Perfetto UI](https://ui.perfetto.dev)**。 --- 通过上述命令,可灵活抓取 Android 系统的运行时行为,定位性能瓶颈(如 `Uninterruptible Sleep` 状态)。
阅读全文

相关推荐

响应速度问题分析套路(以 Systrace 为主) 确认前提条件(老化,数据量、下载等)、操作步骤、问题现象,本地复现 需要明确测试标准 启动时间的起点是哪里 启动时机的终点是哪里 抓取所需的日志信息(Systrace、常规 log 等) 首先分析 Systrace,大概找出差异的点 首先查看应用耗时点,分析对比机差异,这里可以把应用启动阶段分成好几段来看,来对比分析是哪部分时间增加 Application 创建 Activity 创建 第一个 doFrame 后续内容加载 应用自己的 Message 分析应用耗时的点 是否某一段方法自身执行耗时比较久(Running 状态) –> 应用自身问题 主线程是否有大段 Running 状态,但是底下没有任何堆栈 –> 应用自身问题,加 TraceTag 或者使用 TraceView 来找到对应的代码逻辑 是否在等 Binder 耗时比较久(Sleep 状态) –> 检测 Binder 服务端,一般是 SystemServer 是否在等待子线程返回数据(Sleep 状态) –> 应用自身问题,通过查看 wakeup 信息,来找到依赖的子线程 是否在等待子进程返回数据(Sleep 状态) –> 应用自身问题,通过查看 wakeup 信息,来找到依赖的子进程或者其他进程(一般是 ContentProvider 所在的进程) 是否有大量的 Runnable –> 系统问题,查看 CPU 部分,看看是否已经跑满 是否有大量的 IO 等待(Uninterruptible Sleep | WakeKill - Block I/O) –> 检查系统是否已经低内存 RenderThread 是否执行 dequeueBuffer 和 queueBuffer 耗时 –> 查看 SurfaceFlinger 如果分析是系统的问题,则根据上面耗时的点,查看系统对应的部分,一般情况要优先查看系统是否异常,参考上面列出的的系统原因,主要看下面四个区域(Systrace) Kernel 区域 查看关键任务是否跑在了小核 –> 一般小核是 0-3(也有特例),如果启动时候的关键任务跑到了小核,执行速度也会变慢 查看频率是否没有跑满 –> 表现是核心频率没有达到最大值,比如最大值是 2.8Ghz,但是只跑到了 1.8Ghz,那么可能是有问题的 查看 CPU 使用率,是否已经跑满了 –> 表现是 CPU 区域八个核心上,任务和任务之间没有空隙 查看是否低内存 应用进程状态有大量的 Uninterruptible Sleep | WakeKill - Block I/O HeapTaskDeamon 任务执行频繁 kswapd0 任务执行频繁 SystemServer 进程区域 input 事件读取和分发是否有异常 –> 表现是 input 事件传递耗时,比较少见 binder 执行是否耗时 –> 表现是 SystemServer 对应的 Binder 执行代码逻辑耗时 binder 等 am、wm 锁是否耗时–> 表现是 SystemServer 对应的 Binder 都在等待锁,可以通过 wakeup 信息跟踪等锁情况,分析等锁是不是由于应用导致的 是否有应用频繁启动或者被杀 –> 在 Systrace 中查看 startProcess,或者查看 Event Log SurfaceFlinger 进程区域 dequeueBuffer 和 queueBuffer 是否执行耗时 –> 表现是 SurfaceFlinger 的对应的 Binder 执行 dequeueBuffer 和 queueBuffer 耗时 主线程是否执行耗时 –> 表现是 SurfaceFlinger 主线程耗时,可能是在执行其他的任务 Launcher 进程区域(冷热启动场景) Launcher 进程处理点击事件是否耗时 –> 表现在处理 input 事件耗时 Launcher 自身 pause 是否耗时 –> 表现在执行 onPause 耗时 Launcher 应用启动动画是否耗时或者卡顿 –> 表现在动画耗时或者卡顿 初步分析有怀疑的点之后 如果是系统的原因,首先需要看应用自身是否能规避,如果不能规避,则转给系统来处理 如果是应用自身的原因,可以使用 TraceView(AS 自带的 CPU Profiler)、Simple Perf 等继续查看更加详细的函数调用信息,也可以使用 TraceFix 插件,插入更多的 TraceTag 之后,重新抓取 Systrace 来对比分析 问题可能有很多个原因 首先要把影响最大的因素找出来优化,影响比较小的因素可以先忽略 有些问题需要系统的配合才能解决,这时候需要跟系统一起进行调优(比如各大 App 厂商就会有专门跟手机厂商打交道的,手机厂商会以 SDK 的形式,暴露部分系统接口给 App 来使用,比如 Oppo 、华为、Vivo 等) 有些问题影响很小或者无解,这时候需要跟测试同学沟通清楚 有些问题是重复问题或不同平台的相同,可以在 Bug 库中搜索是否有案例 帮我总结以上systrace中分析响应速度问题的过程,给我形成一个大致的思路和流程,给我讲明白

最新推荐

recommend-type

1399043357-59574.rar

1399043357-59574.rar
recommend-type

网络安全基础与攻击防范教学PPT课件

网络安全是信息时代的一项重要课题,随着网络技术的快速发展和广泛应用,网络攻击手段也在不断翻新,因此了解和掌握网络安全的基本概念和防护措施对于每一个网络用户来说都至关重要。 首先,网络安全基本概念涵盖的范围广泛,主要包括了数据的保密性、完整性、可用性以及认证和授权等方面。保密性关注的是信息不被未授权的个人、实体访问或泄露;完整性保证信息在传输或存储的过程中不被未授权的修改;可用性确保授权用户能够及时地获取和使用信息。认证是验证身份的过程,授权则定义了经过认证的用户可以访问哪些资源。 网络安全攻击方式多种多样,常见的有病毒、木马、蠕虫、钓鱼攻击、拒绝服务攻击(DoS/DDoS)、中间人攻击、会话劫持、SQL注入等。病毒是一种可以自我复制并传播的恶意代码,它可能会破坏系统文件、窃取信息甚至影响计算机正常运行。木马通常伪装成合法软件,骗取用户安装后,在后台执行恶意操作。蠕虫与病毒类似,但不需要依附于宿主文件,可以自我复制并传播。钓鱼攻击通过伪造的电子邮件或网站来欺骗用户,获取敏感信息。拒绝服务攻击通过大量的请求导致服务瘫痪。中间人攻击是在通信双方之间拦截和篡改数据。会话劫持是指劫持用户与服务器之间的正常会话。SQL注入攻击则是利用了应用程序对输入数据的处理不当,注入恶意SQL语句到数据库中,从而窃取数据或对数据库进行破坏。 针对这些攻击方式,网络安全的防范措施也相应而生。防火墙是一种重要的安全设备,它可以监控进出网络的数据包,根据预设的安全规则允许或拒绝数据包通过。入侵检测系统(IDS)和入侵防御系统(IPS)能够识别潜在的恶意行为,并做出相应的响应措施。加密技术可以保障数据在传输过程中的安全性,常见的加密算法包括对称加密和非对称加密。 除此之外,安全管理措施也非常重要,比如进行安全审计、制定安全策略、进行安全教育和培训等。安全审计是对系统活动进行记录和分析的过程,帮助发现潜在的安全问题。安全策略是一系列规则和步骤,用于指导组织进行安全管理和决策。而安全教育和培训能够提高用户的安全意识和防范能力,这对于预防社会工程学攻击等尤为重要。 在网络攻击与防范的介绍中,本课件特别强调了安全意识的重要性。安全意识指的是用户对安全威胁的认识和对安全措施的了解,这是预防网络攻击的第一道防线。具有安全意识的用户会更加谨慎地处理邮件、安装软件、访问网站等,从而减少了遭受攻击的风险。 最后,本章还提到了如何通过配置和加固主机来提高安全性。这包括对操作系统和应用程序进行安全配置,关闭不必要的服务,定期更新系统和软件补丁,使用强密码和多因素认证,以及进行数据备份等操作。 通过以上内容的学习,学生们能够对网络安全有一个全面的了解,并在实际操作中采取有效措施来保护自己的网络环境免受攻击。这对于未来无论是从事IT行业,还是作为一个普通的网络用户,都是至关重要的技能。
recommend-type

【性能测试基准】:为RK3588选择合适的NVMe性能测试工具指南

# 1. NVMe性能测试基础 ## 1.1 NVMe协议简介 NVMe,全称为Non-Volatile Memory Express,是专为固态驱动器设计的逻辑设备接口规范。与传统的SATA接口相比,NVMe通过使用PCI Express(PCIe)总线,大大提高了存储设备的数据吞吐量和IOPS(每秒输入输出操作次数),特别适合于高速的固态存储设备。
recommend-type

setSceneRect

### 如何正确使用 `setSceneRect` 函数 在 Qt 图形视图框架中,`QGraphicsView` 和 `QGraphicsScene` 是两个核心组件。为了更好地管理和显示图形项,合理设置场景矩形非常重要。 #### 设置场景矩形的作用 通过调用 `setSceneRect()` 方法可以限定场景的逻辑坐标范围[^1]。这不仅有助于提高渲染效率,还能确保当试图移动超出此边界时不会无限扩展场景尺寸。具体来说: - 场景中的所有操作都将被限制在这个矩形范围内; - 视图自动调整其可视区域以适应这个矩形; - 如果不显式设定,则默认值可能无法满足特定应用需求; ####
recommend-type

提供源文件的FLASH华丽翻书特效教程

标题中的知识点:标题“华丽的翻书效果 FLASH”表明该文件主要讲述了如何在FLASH(Adobe Flash)软件中制作具有华丽翻书效果的动画。FLASH是一种广泛用于创建动画、游戏和各种互动媒体的软件,它允许设计师创建矢量图形和动画,以及交互式内容。翻书效果在这里指的是一种模仿真实书籍翻页效果的动画,使得电子杂志或其他数字媒体内容的展示更为生动和吸引人。 描述中的知识点:描述中提到“现在带源文件的不好找哇,快点吧”,暗示本文件包含了源文件。源文件指的是 FLASH 中创建翻书效果的原始项目文件,这种文件通常可以被打开和编辑,从而允许其他用户理解其结构和设计逻辑。这意味着该文件不仅是一个成品展示,还是一个可以学习和进一步开发的学习资源。这种资源对于想要了解如何创建类似效果的设计师来说是十分宝贵的。 标签中的知识点:标签“flash 电子杂志 翻书 特效 FLASH”进一步细化了知识点。这里提到了电子杂志,表明这种翻书特效常用于电子杂志的交互设计中,增强用户的阅读体验。"翻书"和"特效"再次强调了FLASH软件在制作具有视觉吸引力的动画方面的应用,尤其是模拟翻页这样的具体交互动作。 压缩包子文件的文件名称列表中的知识点:“8inter”这个名称显得较为简短且不具有足够的上下文信息来推断具体知识点,但可以推测这可能是压缩文件的名称,而“inter”可能是指“交互”(interaction)的缩写。如果是这样,则暗示压缩文件可能包含与FLASH交互设计相关的内容。同时,由于文件以数字开头,这可能表明这是一个特定系列或者版本的文件。 总结以上知识点,我们可以得出该文件是关于FLASH中翻书效果的制作教程或者成品展示,并且附带可编辑的源文件,使其成为了一个学习资源。这表明在FLASH的应用中,除了传统的动画制作以外,还可以用来设计交互性更强的视觉效果,如翻书特效,这些特效在电子出版物和交互式广告中尤为常见。此外,由于FLASH技术逐渐被HTML5和CSS3等现代网页技术所替代,拥有 FLASH 源文件变得越来越难,因此本文件更显得珍贵,对于学习和研究 FLASH 动画和特效的设计师和开发者而言,具有较高的参考价值。
recommend-type

【固态硬盘寿命延长】:RK3588平台NVMe维护技巧大公开

# 1. 固态硬盘寿命延长的基础知识 ## 1.1 固态硬盘的基本概念 固态硬盘(SSD)是现代计算设备中不可或缺的存储设备之一。与传统的机械硬盘(HDD)相比,SSD拥有更快的读写速度、更小的体积和更低的功耗。但是,SSD也有其生命周期限制,主要受限于NAND闪存的写入次数。 ## 1.2 SSD的写入次数和寿命 每块SSD中的NAND闪存单元都有有限的写入次数。这意味着,随着时间的推移,SSD的
recommend-type

word32赋值word16

### 将32位数据赋值给16位数据的方法 当需要将32位数据(`word32`)赋值给16位数据(`word16`)时,由于两者长度不同,直接赋值可能会导致数据丢失或溢出。为了确保转换过程中的准确性,通常有两种方法来处理这种类型的转换: #### 方法一:截断高位 如果仅需保留低16位的信息,则可以直接通过掩码操作提取`word32`的低16位作为新的`word16`值。 ```c #include <stdint.h> uint16_t convert_uint32_to_uint16_truncate(uint32_t word32) { return (uint16_t
recommend-type

VC实现简单COM组件,初探COM编程技巧

标题和描述指出了一个关键的IT知识点:COM(组件对象模型)的编程实践,特别是通过VC(Visual C++)环境来编写简单的COM组件。COM是一个由微软提出的组件对象模型,它为软件组件提供了二进制接口,使得这些组件可以在不同的编程语言中通过接口进行交互。COM是Windows操作系统下软件组件通信的基石,广泛应用于Windows应用程序开发。 首先,理解COM的基本概念对于编写COM组件至关重要。COM定义了一组接口规范,包括但不限于: 1. IUnknown接口:所有COM接口都必须直接或间接地继承自IUnknown接口,它提供了接口的查询(QueryInterface)、引用计数增加(AddRef)和减少(Release)的标准方法。 2. IDispatch接口:允许客户程序通过名字和参数类型来动态调用对象的方法。 3. IProvideClassInfo接口:提供类信息,以便对象可以返回类型信息。 在VC中编写COM组件涉及到以下关键步骤和概念: 1. 实现COM接口:编写类并实现COM接口,主要任务是重写IUnknown接口中声明的方法。 2. 类厂(Class Factory):负责创建COM对象的组件,通常需要实现IClassFactory接口。 3. 注册COM组件:创建COM对象前需要注册组件信息,以便系统可以识别和加载。这涉及到编辑注册表或使用注册工具。 4. 引用计数:COM使用引用计数来管理对象的生命周期,开发者必须确保在对象创建、查询接口以及接口引用释放时正确更新引用计数。 5. 唯一标识符(GUIDs):为了确保COM组件的唯一性,在实现COM时,需要为每个接口和组件生成一个全球唯一的标识符(GUIDs),这通常通过UUIDGen工具生成。 为了编写简单的COM组件,开发者需要掌握使用VC的Microsoft Foundation Classes (MFC) 或者使用ATL(Active Template Library)这两种方法。MFC提供了更完整的类库支持,而ATL则更接近于COM的核心概念,是编写轻量级COM组件的推荐方式。使用ATL,开发者可以通过向导快速生成COM类的框架代码。 此外,压缩包子文件名MyStudio可能指示了一个集成开发环境(IDE)或项目文件夹名称。在MyStudio中可能包含了与COM组件相关的各种文件,如头文件(.h)、实现文件(.cpp)、资源文件(.rc)、项目文件(.vcxproj)和解决方案文件(.sln),这些文件共同构成了COM组件的完整代码和配置信息。 在编写COM组件时,开发者还需要考虑线程模型,因为COM支持不同的线程模型,包括单线程公寓(STA)、多线程公寓(MTA)以及中性公寓(neutral apartment)。不同的线程模型对COM对象的调用和同步机制有影响,选择合适的线程模型对于编写高效的COM组件非常关键。 最后,需要注意的是,COM技术虽然功能强大,但是编写和维护相对复杂,对程序员有较高的要求。随着技术的发展,微软也推出了其他组件模型,比如.NET,它们在某些方面简化了组件编程的复杂性,但COM作为一种成熟的技术依然在某些应用场景下不可或缺。希望对想学习COM的人有所帮助的知识点已经详细说明,希望这些信息能对读者在学习和工作中遇到相关问题时提供帮助。
recommend-type

【故障恢复策略】:RK3588与NVMe固态硬盘的容灾方案指南

# 1. RK3588处理器与NVMe固态硬盘的概述 ## 1.1 RK3588处理器简介 RK3588是Rockchip推出的一款高端处理器,具备强大的性能和多样的功能,集成了八核CPU和六核GPU,以及专用的AI处理单元,主要用于高端移动设备、边缘计算和
recommend-type

使用python语言实现一个推箱子小游戏

### Python实现推箱子小游戏 #### 游戏初始化与状态管理 为了创建一个简单的推箱子游戏,首先需要定义游戏的基本结构和初始状态。这可以通过复制给定的游戏状态来完成。 ```python import copy def initialize_game(level_data): gameStateObj = copy.deepcopy(level_data['startState']) # 初始化游戏状态[^1] return gameStateObj ``` #### 游戏页面逻辑设计 游戏页面的主要功能包括显示当前关卡编号、绘制游戏地图以及处理玩家输入。这些