self.observation_space.append(spaces.Box(low=-np.inf, high=+np.inf, shape=(obs_dim,), dtype=np.float32)) TypeError: __init__() got an unexpected keyword argument 'dtype'怎么解决
时间: 2024-02-18 13:05:18 浏览: 137
这个错误通常是因为您正在使用的 Gym 版本较低,不支持 `dtype` 参数。您可以尝试更新 Gym 到最新版本,或者使用以下代码来替换您的现有代码:
```python
import gym
import numpy as np
from gym import spaces
low = np.array([-np.inf] * obs_dim, dtype=np.float32)
high = np.array([+np.inf] * obs_dim, dtype=np.float32)
self.observation_space.append(spaces.Box(low=low, high=high))
```
这里,我们使用了 `numpy` 库来创建低和高的数组,然后将其传递给 Box 空间。这应该可以解决您遇到的问题。
相关问题
搭建无人机import gym from gym import spaces import itertools import numpy as np import dynamic_uav_new as dy # 假设有一个无人机动力学模型 import copy import math from math_tool import * import matplotlib.backends.backend_agg as agg import matplotlib.pyplot as plt import matplotlib.transforms as transforms import matplotlib.cm as cm from PIL import Image import matplotlib.image as mpimg import random class UAVEnv(): def __init__(self, boundary, length=2, num_obstacle=3, num_agents=4): self.length = length # 边界长度 self.num_obstacle = num_obstacle #障碍物数量 self.num_agents = num_agents #总智能体数量(3无人机+1目标) self.boundary = boundary #边界坐标 self.time_step = 0.1 # 步长 #运动参数 self.v_max = 0.1#无人机最大速度 self.v_max_e = 0.05 #目标最大速度 self.a_max = 0.04 #无人机加速度限制 self.a_max_e = 0.05 #目标加速度限制 self.L_sensor = 0.2 # 激光雷达最大探测距离 self.num_lasers = 16 # 激光束数量 self.multi_current_lasers = [[self.L_sensor for _ in range(self.num_lasers)] for _ in range(self.num_agents)] self.agents = ['agent_0', 'agent_1', 'agent_2', 'target'] self.info = np.random.get_state() # 随机种子 self.obstacles = [obstacle() for _ in range(self.num_obstacle)] self.history_positions = [[] for _ in range(num_agents)] # 定义动作空间 self.action_space = { 'agent_0': spaces.Box(low=-np.inf, high=np.inf, shape=(2,)), 'agent_1': spaces.Box(low=-np.inf, high=np.inf, shape=(2,)), 'agent_2': spaces.Box(low=-np.inf, high=np.inf, shape=(2,)), 'target': spaces.Box(low=-np.inf, high=np.inf, shape=(2,)) } # action represents [a_x,a_y] self.observation_space = { 'agent_0': spaces.Box(low=-np.inf, high=np.inf, shape=(26,)), 'agent_1': spaces.Box(low=-np.inf, high=np.inf, shape=(26,)), 'agent_2': spaces.Box(low=-np.inf, high=np.inf, shape=(26,)), 'target': spaces.Box(low=-np.inf, high=np.inf, sha模拟环境
### 创建多智能体无人机仿真环境
为了实现基于 Python 的 Gym 库来创建一个多智能体无人机仿真环境,可以按照以下方法设计动态建模、激光雷达感知以及障碍物交互的功能。
#### 动态建模
在 Gym 中定义无人机的动力学特性可以通过状态空间表示完成。每架无人机的状态通常由位置 \( (x, y, z) \) 和速度 \( (\dot{x}, \dot{y}, \dot{z}) \) 组成。通过离散时间步长更新这些变量,从而模拟无人机的运动[^1]。
```python
import numpy as np
class DroneDynamics:
def __init__(self, initial_state=np.zeros(6)):
self.state = initial_state # [x, y, z, dx, dy, dz]
def step(self, action, dt=0.1):
"""
Update the drone's state based on its dynamics.
:param action: Control input [thrust_x, thrust_y, thrust_z].
:param dt: Time step size.
"""
acceleration = action / 1.0 # Assuming unit mass for simplicity
self.state[3:] += acceleration * dt # Update velocities
self.state[:3] += self.state[3:] * dt # Update positions
return self.state
```
此代码片段展示了如何利用简单的动力学方程描述单个无人机的行为,并支持扩展到多个无人机实例。
#### 多智能体框架
对于多智能体系统,需继承 `gym.Env` 并重写其核心函数以适配多智能体需求。每个智能体拥有独立的动作空间和观察空间,同时共享全局奖励机制或具有局部奖励信号[^2]。
```python
from gym import spaces
class MultiAgentDroneEnv(gym.Env):
metadata = {"render.modes": ["human"]}
def __init__(self, num_drones=2):
super(MultiAgentDroneEnv, self).__init__()
self.num_drones = num_drones
self.drones = [DroneDynamics() for _ in range(num_drones)]
# Define observation and action space per agent
low_observation = np.array([-np.inf]*6, dtype=np.float32)
high_observation = np.array([np.inf]*6, dtype=np.float32)
self.observation_space = spaces.Box(low=low_observation, high=high_observation)
low_action = np.array([-1., -1., -1.], dtype=np.float32)
high_action = np.array([1., 1., 1.], dtype=np.float32)
self.action_space = spaces.Box(low=low_action, high=high_action)
def reset(self):
"""Reset all drones to their initial states."""
for drone in self.drones:
drone.__init__()
return [drone.state for drone in self.drones]
def step(self, actions):
observations = []
rewards = []
dones = []
for i, (action, drone) in enumerate(zip(actions, self.drones)):
new_state = drone.step(action)
obs = new_state.copy()
reward = -(obs[0]**2 + obs[1]**2 + obs[2]**2) # Example cost function
done = False if abs(obs).max() < 10 else True
observations.append(obs)
rewards.append(reward)
dones.append(done)
return observations, rewards, dones, {}
```
上述代码实现了基本的多智能体环境结构,其中包含了初始化、状态转移逻辑及简单的目标导向型奖励设定。
#### 激光雷达感知模块
引入激光雷达作为额外输入源能够显著提高机器人对外界环境的认知水平[^3]。假设我们采用二维平面内的圆形扫描模式,则可通过三角几何关系计算各方向上的距离读数:
```python
def lidar_scan(positions, obstacles, max_range=5.0, resolution=36):
scans = []
angles = np.linspace(-np.pi, np.pi, resolution)
cosines = np.cos(angles)
sines = np.sin(angles)
for pos in positions:
distances = []
for angle_idx in range(resolution):
direction = np.array([cosines[angle_idx], sines[angle_idx]])
min_dist = float('inf')
for obstacle in obstacles:
vec_to_obstacle = obstacle - pos[:2]
dot_product = np.dot(vec_to_obstacle, direction)
if dot_product > 0:
proj_length = dot_product / np.linalg.norm(direction)**2
closest_point = pos[:2] + proj_length*direction
dist_sqrd = sum((closest_point - obstacle)**2)
if dist_sqrd <= 0.1**2 and proj_length >= 0:
distance = proj_length
if distance < min_dist:
min_dist = distance
distances.append(min(max_range, min_dist))
scans.append(distances)
return scans
```
该部分提供了针对一组给定物体坐标列表进行逐角度检测的方法,返回值即为对应视角下的测距数组集合。
#### 障碍物交互处理
最后一步涉及碰撞检测与响应策略的设计。当任意一架无人机遇上预设边界条件或者与其他实体发生接触时触发终止标志并施加惩罚项至总收益之中[^4]。
---
sy@ubuntu:~/Workspace/P4/staint-cc-main/staint-cc-main/train-code/rllib/single$ python3 train.py 2025-03-05 22:39:02,223 INFO worker.py:1528 -- Started a local Ray instance. 2025-03-05 22:39:02,797 INFO ppo.py:379 -- In multi-agent mode, policies will be optimized sequentially by the multi-GPU optimizer. Consider setting simple_optimizer=True if this doesn't work for you. 2025-03-05 22:39:02,798 INFO algorithm.py:457 -- Current log_level is WARN. For more information, set 'log_level': 'INFO' / 'DEBUG' or use the -v and -vv flags. 0 0 rlccstate_1001 订阅成功 2025-03-05 22:39:03,214 WARNING util.py:66 -- Install gputil for GPU system monitoring. save at 0 Traceback (most recent call last): File "train.py", line 81, in <module> print(algo.train()) File "/home/sy/.local/lib/python3.8/site-packages/ray/tune/trainable/trainable.py", line 355, in train raise skipped from exception_cause(skipped) File "/home/sy/.local/lib/python3.8/site-packages/ray/tune/trainable/trainable.py", line 352, in train result = self.step() File "/home/sy/.local/lib/python3.8/site-packages/ray/rllib/algorithms/algorithm.py", line 772, in step results, train_iter_ctx = self._run_one_training_iteration() File "/home/sy/.local/lib/python3.8/site-packages/ray/rllib/algorithms/algorithm.py", line 2953, in _run_one_training_iteration num_recreated += self.try_recover_from_step_attempt( File "/home/sy/.local/lib/python3.8/site-packages/ray/rllib/algorithms/algorithm.py", line 2622, in try_recover_from_step_attempt raise error File "/home/sy/.local/lib/python3.8/site-packages/ray/rllib/algorithms/algorithm.py", line 2948, in _run_one_training_iteration results = self.training_step() File "/home/sy/.local/lib/python3.8/site-packages/ray/rllib/algorithms/ppo/ppo.py", line 408, in training_step train_batch = synchronous_parallel_sample( File "/home/sy/.local/lib/python3.8/site-packages/ray/rllib/execution/rollout_ops.py", line 97, in synchronous_parallel_sample sample_batches = [worker_set.local_worker().sample()] File "/home/sy/.local/lib/python3.8/site-packages/ray/rllib/evaluation/rollout_worker.py", line 828, in sample batches = [self.input_reader.next()] File "/home/sy/.local/lib/python3.8/site-packages/ray/rllib/evaluation/sampler.py", line 92, in next batches = [self.get_data()] File "/home/sy/.local/lib/python3.8/site-packages/ray/rllib/evaluation/sampler.py", line 285, in get_data item = next(self._env_runner) File "/home/sy/.local/lib/python3.8/site-packages/ray/rllib/evaluation/sampler.py", line 660, in _env_runner unfiltered_obs, rewards, dones, infos, off_policy_actions = base_env.poll() File "/home/sy/.local/lib/python3.8/site-packages/ray/rllib/env/vector_env.py", line 364, in poll self.new_obs = self.vector_env.vector_reset() File "/home/sy/.local/lib/python3.8/site-packages/ray/rllib/env/vector_env.py", line 256, in vector_reset obs = self.reset_at(i) File "/home/sy/.local/lib/python3.8/site-packages/ray/rllib/env/vector_env.py", line 274, in reset_at raise e File "/home/sy/.local/lib/python3.8/site-packages/ray/rllib/env/vector_env.py", line 267, in reset_at obs = self.envs[index].reset() File "train.py", line 35, in reset return self.env.reset() File "/home/sy/Workspace/P4/staint-cc-main/staint-cc-main/rlcc-playground-mininet/gym-rlcc/gym_rlcc/envs/rlcc_world_rllib.py", line 296, in reset self.state = self._get_obs() File "/home/sy/Workspace/P4/staint-cc-main/staint-cc-main/rlcc-playground-mininet/gym-rlcc/gym_rlcc/envs/rlcc_world_rllib.py", line 275, in _get_obs return np.array(data_list, dtype=np.float32) ValueError: could not convert string to float: 'rlcc_flag:1001'
<think>好的,用户遇到了一个ValueError的问题,错误信息是“could not convert string to float: 'rlcc_flag:1001'”。我需要分析这个问题出现的原因,并给出解决办法。
首先,错误发生在将字符串转换为浮点数时。根据堆栈跟踪,问题出现在`_get_obs`方法中,具体是在将`data_list`转换为numpy数组的时候。这说明在`data_list`中有一个字符串'rlcc_flag:1001',而尝试将其转换为浮点数时失败了。
接下来,我需要看用户提供的代码段。用户运行的是train.py,其中调用了Ray的RLlib进行训练。在环境重置(reset)时,调用了`self.env.reset()`,进而进入`rlcc_world_rllib.py`中的`reset`和`_get_obs`方法。`_get_obs`试图将`data_list`转换为浮点数数组,但其中有一个元素是'rlcc_flag:1001',导致转换失败。
问题根源在于环境观察(observation)的数据处理部分。观察数据应该全部是数值类型,才能被转换为浮点数数组。但当前有一个字符串被包含在`data_list`中,可能是从某个地方错误地获取了这个字符串。
可能的解决步骤包括:
1. **检查数据来源**:查看`_get_obs`方法中的`data_list`是如何生成的。是否有部分数据来自外部系统或日志,导致字符串混入?
2. **验证数据内容**:在转换之前,打印或记录`data_list`的内容,确认其中是否存在非数值类型的元素。
3. **过滤或转换字符串**:如果'rlcc_flag:1001'是必要的信息,可能需要将其编码为数值形式(例如,提取数字部分1001作为整数或浮点数),或者在构造观察时排除此类非数值数据。
4. **修改环境代码**:在`rlcc_world_rllib.py`的`_get_obs`方法中,确保所有添加到`data_list`的元素都是数值类型。例如,将'rlcc_flag:1001'中的1001提取出来,或者检查是否有逻辑错误导致字符串被错误地加入。
此外,用户还应该检查环境初始化或状态生成的其他部分,确保所有返回的观察数据都是数值类型。可能是在环境的某个步骤中,错误地将标志字符串添加到了观察数据中,而不是处理成数值特征。
最后,建议用户在修复后重新运行程序,并观察是否还有其他问题。如果仍有错误,需要进一步检查数据处理流程,确保每个步骤都正确生成数值类型的观察数据。</think>这个错误表明在将环境观察数据转换为numpy浮点数组时,遇到了无法转换为数值的字符串'rlcc_flag:1001'。以下是逐步解决方案:
**错误分析流程**:
1. **观察数据污染**(关键错误点)
$$ \text{data\_list} = [..., 'rlcc\_flag:1001', ...] $$
环境返回的观测数据`data_list`中包含字符串类型数据,而numpy数组要求所有元素必须为数值类型
2. **错误触发路径**:
用户自定义环境 → reset() → _get_obs() → np.array()转换失败
**解决步骤**:
1. **定位数据污染源**
在`rlcc_world_rllib.py`中找到`_get_obs`方法:
```python
def _get_obs(self):
data_list = [...] # 这里可能混入了字符串数据
return np.array(data_list, dtype=np.float32) # 转换失败点
```
2. **添加数据类型验证**(调试建议)
在转换前插入验证代码:
```python
print("Observation components:", data_list)
for item in data_list:
if not isinstance(item, (int, float)):
print(f"Invalid data type: {item} (type: {type(item)})")
```
3. **修正数据生成逻辑**
根据错误信息,需要处理'rlcc_flag:1001'这个特定字符串:
```python
# 修改前(错误示例)
data_list.append(some_function_returning_string())
# 修改后(正确做法)
# 提取有效数值部分(假设需要flag后的数字)
flag_value = int(some_function_returning_string().split(':')[-1])
data_list.append(float(flag_value))
```
4. **验证环境配置**
确保所有观察空间定义与数据匹配:
```python
# 在环境初始化中应定义正确的观察空间维度
self.observation_space = spaces.Box(
low=-np.inf,
high=np.inf,
shape=(correct_dimension,), # 需与实际数据维度一致
dtype=np.float32
)
```
**完整修复示例**:
```python
def _get_obs(self):
data_list = []
# 原始数据收集逻辑...
# 对可能包含字符串的数据进行转换
raw_data = get_raw_sensor_data() # 假设返回 ['value1', 'rlcc_flag:1001', '0.5']
for item in raw_data:
if 'rlcc_flag' in item:
# 提取数值部分
value = float(item.split(':')[-1])
data_list.append(value)
else:
try:
data_list.append(float(item))
except ValueError:
# 处理无效数据
data_list.append(0.0) # 或使用合理默认值
return np.array(data_list, dtype=np.float32)
```
**验证方法**:
1. 在转换前打印`data_list`内容
2. 检查观察空间维度是否与数据长度一致
3. 确保所有环境交互返回纯数值数据
建议先运行简化测试用例验证数据流水线,再执行完整训练流程。如果问题仍然存在,可以检查自定义环境中的其他数据收集点是否混入了非数值数据。
阅读全文
相关推荐







