ARCFACE人脸识别代码
时间: 2025-04-19 11:50:34 浏览: 23
### ARCFACE 人脸识别算法实现代码示例
#### 使用 Python 和 TensorFlow 实现 ArcFace 算法
下面展示了一个简单的基于 TensorFlow 2.x 的 ArcFace 实现,适用于人脸识别任务。此代码片段来源于一个开源项目[^4]。
```python
import tensorflow as tf
from tensorflow.keras import layers
class ArcFaceLayer(layers.Layer):
def __init__(self, n_classes=10, s=30.0, m=0.50, easy_margin=False, **kwargs):
super(ArcFaceLayer, self).__init__(**kwargs)
self.n_classes = n_classes
self.s = s
self.m = m
self.easy_margin = easy_margin
self.cos_m = tf.math.cos(m)
self.sin_m = tf.math.sin(m)
def build(self, input_shape):
super(ArcFaceLayer, self).build(input_shape[0])
embd_dim = input_shape[0][-1]
self.W = self.add_weight(
name='W',
shape=(embd_dim, self.n_classes),
initializer='glorot_uniform',
trainable=True,
dtype=self.dtype
)
def call(self, inputs):
embeddings, labels = inputs
norm_embeddings = tf.nn.l2_normalize(embeddings, axis=1)
norm_W = tf.nn.l2_normalize(self.W, axis=0)
cos_t = tf.matmul(norm_embeddings, norm_W, name='cos_t')
sin_t = tf.sqrt(1. - cos_t * cos_t + 1e-8)
cos_mt = (cos_t * self.cos_m) - (sin_t * self.sin_m)
if self.easy_margin:
cond_v = tf.cast(tf.greater(cos_t, 0.), 'float32')
keep_val = 1. - self.m
else:
cond_v = tf.cast(tf.greater(cos_t, self.cos_m), 'float32')
keep_val = cos_t - self.m
cos_mt_temp = cond_v * cos_mt + (1-cond_v) * keep_val
mask = tf.one_hot(labels, depth=self.n_classes, on_value=1., off_value=0.)
inv_mask = tf.subtract(1., mask)
logit = self.s * ((mask * cos_mt_temp) + (inv_mask * cos_t))
return logit
```
上述 `ArcFaceLayer` 类定义了 ArcFace 损失函数的核心逻辑,并将其封装成 Keras 自定义层的形式以便于集成到更复杂的神经网络结构中去。
为了完成整个识别过程,还需要构建基础的卷积神经网络来提取人脸图像特征向量,之后再连接这个自定义损失层来进行分类训练:
```python
def create_model(n_classes):
base_model = tf.keras.applications.ResNet50(weights=None, include_top=False, pooling='avg', input_tensor=tf.keras.Input(shape=(112, 112, 3)))
x = base_model.output
model_output = ArcFaceLayer(n_classes=n_classes)([x, tf.keras.layers.Input(shape=[], dtype=tf.int32)])
final_model = tf.keras.models.Model(inputs=[base_model.input], outputs=model_output)
return final_model
```
通过这种方式可以快速搭建起一套支持 ArcFace 训练模式的基础框架。
阅读全文
相关推荐


















