#include "images.h" uint8 l_border[MT9V03X_H];//左线数组 uint8 r_border[MT9V03X_H];//右线数组 uint8 center_line[MT9V03X_H];//中线数组 /*变量声明*/ //uint8 original_image[MT9V03X_H][MT9V03X_W]; uint8 bin_image[MT9V03X_H][MT9V03X_W];//图像数组 uint8 image_thereshold_last = 0;// uint8 image_thereshold;//图像分割阈值 //------------------------------------------------------------------------------------------------------------------ // @函数功能 求绝对值 // @函数返回 绝对值 //------------------------------------------------------------------------------------------------------------------ int my_abs(int value) { if(value>=0) return value; else return -value; } //数值范围限制 int16 limit_a_b(int16 x, int a, int b) { if(x<a) x = a; if(x>b) x = b; return x; } //------------------------------------------------------------------------------------------------------------------ // @函数功能 求x,y中的最小值 // @函数返回 两值中的最小值 //------------------------------------------------------------------------------------------------------------------ int16 limit1(int16 x, int16 y) { if (x > y) return y; else if (x < -y) return -y; else return x; } //------------------------------------------------------------------------------------------------------------------ // @函数功能 获得一副灰度图像 // @函数返回 灰度图像数组original_image //------------------------------------------------------------------------------------------------------------------ void Get_image(uint8(*mt9v03x_image)[MT9V03X_W]) { uint8 i = 0, j = 0; for (i = 0; i < MT9V03X_H; i += 1) { for (j = 0; j <MT9V03X_W; j += 1) { bin_image[i][j] = mt9v03x_image[i][j]; } } } //将原始图像复制到bin_image数组 //------------------------------------------------------------------------------------------------------------------ // @函数功能 大津法求动态阈值 // @函数返回 动态阈值Threshold //------------------------------------------------------------------------------------------------------------------ uint8 OtsuThreshold(uint8 *image) { uint8 Pixel_Max = 0; uint8 Pixel_Min = 255; //uint16 width = MT9V03X_W / use_num; //uint16 height = MT9V03X_H / use_num; int pixelCount[GrayScale]; //各像素GrayScale的个数pixelCount 一维数组 float pixelPro[GrayScale]; //各像素GrayScale所占百分比pixelPro 一维数组 int16 i = 0; int16 j = 0; int16 pixelSum = MT9V03X_W * MT9V03X_H / 4; //pixelSum是获取总的图像像素个数的1/4,相应下面轮询时高和宽都是以2为单位自增 uint8 threshold = 0; uint8* data = image; //指向像素数据的指针 for(i = 0;i < GrayScale;i++) { pixelCount[i] = 0; pixelPro[i] = 0; } uint32 gray_sum = 0; //统计灰度图中每个像素在整幅图像中的个数 for(i = 0;i < MT9V03X_H;i += 2) { for(j = 0;j < MT9V03X_W; j += 2) { pixelCount[(int)data[i * MT9V03X_W + j]]++; //将当前的点的像素值作为计数数组的下标 gray_sum += (int)data[i * MT9V03X_W + j]; //灰度值总和 if(data[i * MT9V03X_W + j] > Pixel_Max) { Pixel_Max = data[i * MT9V03X_W + j]; } if(data[i * MT9V03X_W + j] < Pixel_Min) { Pixel_Min = data[i * MT9V03X_W + j]; } } } //计算每个像素值的点在整幅图像中的比例 for(i = Pixel_Min;i < Pixel_Max;i++) { pixelPro[i] = (float)pixelCount[i] / pixelSum; } //遍历灰度值 float w0,w1,u0tmp,u1tmp,u0,u1,deltaTmp,deltaMax = 0; w0 = w1 = u0tmp = u1tmp = u0 = u1 = deltaTmp = 0; for(j = Pixel_Min;j < Pixel_Max;j++) { w0 += pixelPro[j]; //背景部分每个灰度值的像素点所占比例之和 即背景部分的比例 u0tmp += j * pixelPro[j]; //背景部分 每个灰度值的点的比例 *灰度值 w1 = 1 - w0; u1tmp = gray_sum / pixelSum-u0tmp; u0 = u0tmp / w0; //背景平均灰度 u1 = u1tmp / w1; //前景平均灰度 deltaTmp = (float)(w0 * w1 * (u0 - u1) * (u0 - u1)); if(deltaTmp > deltaMax) { deltaMax = deltaTmp; threshold = (uint8)j; } if(deltaTmp < deltaMax) { break; } } //限幅 if(threshold > 25 && threshold < 235) { image_thereshold_last = threshold; } else { threshold = image_thereshold_last; } return threshold; } //------------------------------------------------------------------------------------------------------------------ // @函数功能 图像二值化,大津法 // @函数返回 二值化图像数组bin_image //------------------------------------------------------------------------------------------------------------------ void turn_to_bin(void) { uint8 i,j; image_thereshold = OtsuThreshold(bin_image[0]); //ips114_show_int(189,0,image_thereshold,5); for(i = 0;i < MT9V03X_H;i++) { for(j = 0;j < MT9V03X_W;j++) { if(bin_image[i][j] > image_thereshold) { bin_image[i][j] = 255; } else { bin_image[i][j] = 0; } } } /* for(i = 40;i < MT9V03X_H;i++) { for(j = 0;j < MT9V03X_W;j++) { if(bin_image[i][j] < image_thereshold) { bin_image[i][j] = 0; } else { bin_image[i][j] =255; } } }*/ } //------------------------------------------------------------------------------------------------------------------ // @函数功能 寻找两个边界的边界点作为八邻域循环的起始点 // @参数说明 输入任意行数 // @函数返回 无 //------------------------------------------------------------------------------------------------------------------ uint8 start_point_l[2] = { 0 };//左边起点的x,y值 uint8 start_point_r[2] = { 0 };//右边起点的x,y值 uint8 get_start_point(uint8 start_row) { uint8 i = 0,j = MT9V03X_W/2,l_found = 0,r_found = 0,num = 0; //清零 start_point_l[0] = 0;//左x start_point_l[1] = 0;//左y start_point_r[0] = 0;//右x start_point_r[1] = 0;//右y //大致定位白线 for(num = 0;num < MT9V03X_W/2 - 15;num = num + 10) { if(bin_image[start_row][j + num] == 255) { j = j + num; break; } if(bin_image[start_row][j - num] == 255) { j = j - num; break; } } //从中间往左边,先找起点 for (i = j; i > border_min; i--) { start_point_l[0] = i;//x start_point_l[1] = start_row;//y if (bin_image[start_row][i] == 255 && bin_image[start_row][i - 1] == 0) { //printf("找到左边起点image[%d][%d]\n", start_row,i); l_found = 1; break; } } for (i = j; i < border_max; i++) { start_point_r[0] = i;//x start_point_r[1] = start_row;//y if (bin_image[start_row][i] == 255 && bin_image[start_row][i + 1] == 0) { //printf("找到右边起点image[%d][%d]\n",start_row, i); r_found = 1; break; } } if(l_found&&r_found) { return 1; } else { //printf("未找到起点\n"); return 0; } } //----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- //----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- // @函数功能 八邻域正式开始找右边点的函数,左右线一次性找完。 Tip:特别注意,不要拿宏定义名字作为输入参数,否则数据可能无法传递过来 // @参数说明 // break_flag_r 最多需要循环的次数 // (*image)[image_w] 需要进行找点的图像数组,必须是二值图,填入数组名称即可 // *l_stastic 统计左边数据,用来输入初始数组成员的序号和取出循环次数 // *r_stastic 统计右边数据,用来输入初始数组成员的序号和取出循环次数 // l_start_x 左边起点横坐标 // l_start_y 左边起点纵坐标 // r_start_x 右边起点横坐标 // r_start_y 右边起点纵坐标 // hightest 循环结束所得到的最高高度 // @函数返回 无 // @备 注: //example:search_l_r((uint16)USE_num,image,&data_stastics_l, &data_stastics_r,start_point_l[0],start_point_l[1], start_point_r[0], start_point_r[1],&hightest); //----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- //----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- #define USE_num MT9V03X_H*3 //定义找点的数组成员个数按理说300个点能放下,但是有些特殊情况确实难顶,多定义了一点 //存放点的x,y坐标 uint16 points_l[(uint16)USE_num][2] = { { 0 } };//左线 uint16 points_r[(uint16)USE_num][2] = { { 0 } };//右线 uint16 dir_r[(uint16)USE_num] = { 0 };//用来存储右边生长方向 uint16 dir_l[(uint16)USE_num] = { 0 };//用来存储左边生长方向 uint16 data_stastics_l = 0;//统计左边找到点的个数 uint16 data_stastics_r = 0;//统计右边找到点的个数 uint8 hightest = 0;//最高点 void search_l_r(uint16 break_flag, uint8(*image)[MT9V03X_W], uint16 *l_stastic, uint16 *r_stastic, uint8 l_start_x, uint8 l_start_y, uint8 r_start_x, uint8 r_start_y, uint8*hightest) { uint8 i = 0, j = 0; //左边变量 uint8 search_filds_l[8][2] = { { 0 } }; uint8 index_l = 0; uint8 temp_l[8][2] = { { 0 } }; uint8 center_point_l[2] = { 0 }; uint16 l_data_statics;//统计左边 //定义八个邻域 static int8 seeds_l[8][2] = {{0,1},{-1,1},{-1,0},{-1,-1},{0,-1},{1,-1},{1,0},{1,1},}; //{-1,-1} {0,-1} {+1,-1} //{-1, 0} {+1, 0} //{-1,+1} {0,+1} {+1,+1} //顺时针 //右边变量 uint8 search_filds_r[8][2] = { { 0 } }; uint8 center_point_r[2] = { 0 };//中心坐标点 uint8 index_r = 0;//索引下标 uint8 temp_r[8][2] = { { 0 } }; uint16 r_data_statics;//统计右边 //定义八个邻域 static int8 seeds_r[8][2] = { {0,1},{1,1},{1,0}, {1,-1},{0,-1},{-1,-1}, {-1,0},{-1,1}, }; //{-1,-1} {0,-1} {+1,-1}, //{-1, 0} {+1, 0} //{-1,+1} {0,+1} {+1,+1} //这个是逆时针 l_data_statics = *l_stastic;//统计找到了多少个点,方便后续把点全部画出来 r_data_statics = *r_stastic;//统计找到了多少个点,方便后续把点全部画出来 //第一次更新坐标点 将找到的起点值传进来 center_point_l[0] = l_start_x;//x center_point_l[1] = l_start_y;//y center_point_r[0] = r_start_x;//x center_point_r[1] = r_start_y;//y //开启邻域循环 while (break_flag--) { //左边 for (i = 0; i < 8; i++)//传递8F坐标 { search_filds_l[i][0] = center_point_l[0] + seeds_l[i][0];//x search_filds_l[i][1] = center_point_l[1] + seeds_l[i][1];//y } //中心坐标点填充到已经找到的点内 points_l[l_data_statics][0] = center_point_l[0];//x points_l[l_data_statics][1] = center_point_l[1];//y l_data_statics++;//索引加一 //右边 for (i = 0; i < 8; i++)//传递8F坐标 { search_filds_r[i][0] = center_point_r[0] + seeds_r[i][0];//x search_filds_r[i][1] = center_point_r[1] + seeds_r[i][1];//y } //中心坐标点填充到已经找到的点内 points_r[r_data_statics][0] = center_point_r[0];//x points_r[r_data_statics][1] = center_point_r[1];//y index_l = 0;//先清零,后使用 for (i = 0; i < 8; i++) { temp_l[i][0] = 0;//先清零,后使用 temp_l[i][1] = 0;//先清零,后使用 } //左边判断 for (i = 0; i < 8; i++) { if (image[search_filds_l[i][1]][search_filds_l[i][0]] == 0 && image[search_filds_l[(i + 1) & 7][1]][search_filds_l[(i + 1) & 7][0]] == 255) { temp_l[index_l][0] = search_filds_l[(i)][0]; temp_l[index_l][1] = search_filds_l[(i)][1]; index_l++; dir_l[l_data_statics - 1] = (i);//记录生长方向 } if (index_l) { //更新坐标点 center_point_l[0] = temp_l[0][0];//x center_point_l[1] = temp_l[0][1];//y for (j = 0; j < index_l; j++) { if (center_point_l[1] > temp_l[j][1]) { center_point_l[0] = temp_l[j][0];//x center_point_l[1] = temp_l[j][1];//y } } } } if ((points_r[r_data_statics][0]== points_r[r_data_statics-1][0]&& points_r[r_data_statics][0] == points_r[r_data_statics - 2][0] && points_r[r_data_statics][1] == points_r[r_data_statics - 1][1] && points_r[r_data_statics][1] == points_r[r_data_statics - 2][1]) ||(points_l[l_data_statics-1][0] == points_l[l_data_statics - 2][0] && points_l[l_data_statics-1][0] == points_l[l_data_statics - 3][0] && points_l[l_data_statics-1][1] == points_l[l_data_statics - 2][1] && points_l[l_data_statics-1][1] == points_l[l_data_statics - 3][1])) { //printf("三次进入同一个点,退出\n"); break; } if (my_abs(points_r[r_data_statics][0] - points_l[l_data_statics - 1][0]) < 2 && my_abs(points_r[r_data_statics][1] - points_l[l_data_statics - 1][1] < 2)) { //printf("\n左右相遇退出\n"); *hightest = (points_r[r_data_statics][1] + points_l[l_data_statics - 1][1]) >> 1;//取出最高点 //printf("\n在y=%d处退出\n",*hightest); break; } if ((points_r[r_data_statics][1] < points_l[l_data_statics - 1][1])) { //printf("\n如果左边比右边高了,左边等待右边\n"); continue;//如果左边比右边高了,左边等待右边 } if (dir_l[l_data_statics - 1] == 7 && (points_r[r_data_statics][1] > points_l[l_data_statics - 1][1]))//左边比右边高且已经向下生长了 { //printf("\n左边开始向下了,等待右边,等待中... \n"); center_point_l[0] = points_l[l_data_statics - 1][0];//x center_point_l[1] = points_l[l_data_statics - 1][1];//y l_data_statics--; } r_data_statics++;//索引加一 index_r = 0;//先清零,后使用 for (i = 0; i < 8; i++) { temp_r[i][0] = 0;//先清零,后使用 temp_r[i][1] = 0;//先清零,后使用 } //右边判断 for (i = 0; i < 8; i++) { if (image[search_filds_r[i][1]][search_filds_r[i][0]] == 0 && image[search_filds_r[(i + 1) & 7][1]][search_filds_r[(i + 1) & 7][0]] == 255) { temp_r[index_r][0] = search_filds_r[(i)][0]; temp_r[index_r][1] = search_filds_r[(i)][1]; index_r++;//索引加一 dir_r[r_data_statics - 1] = (i);//记录生长方向 //printf("dir[%d]:%d\n", r_data_statics - 1, dir_r[r_data_statics - 1]); } if (index_r) { //更新坐标点 center_point_r[0] = temp_r[0][0];//x center_point_r[1] = temp_r[0][1];//y for (j = 0; j < index_r; j++) { if (center_point_r[1] > temp_r[j][1]) { center_point_r[0] = temp_r[j][0];//x center_point_r[1] = temp_r[j][1];//y } } } } } //取出循环次数 *l_stastic = l_data_statics; *r_stastic = r_data_statics; } //------------------------------------------------------------------------------------------------------------------ // @函数功能 从八邻域边界里提取需要的左边线 // @参数说明 total_L :找到的点的总数 // @函数返回 左边线数组l_border //------------------------------------------------------------------------------------------------------------------ uint16 border_to_edge_l[MT9V03X_H];//存放左边border和edge的映射关系的数组 void get_left(uint16 total_L) { uint8 i = 0; uint16 j = 0; uint8 h = 0; //初始化 for (i = 0;i<MT9V03X_H;i++) { l_border[i] = border_min; } h = MT9V03X_H - 2; //左边 for (j = 0; j < total_L; j++) { //printf("%d\n", j); if (points_l[j][1] == h) { l_border[h] = points_l[j][0]+1; border_to_edge_l[h] = j; } else continue; //每行只取一个点,没到下一行就不记录 h--; if (h == 0) { break;//到最后一行退出 } } } //------------------------------------------------------------------------------------------------------------------ // @函数功能 从八邻域边界里提取需要的右边线 // @参数说明 total_R :找到的点的总数 // @函数返回 右边线数组r_border //------------------------------------------------------------------------------------------------------------------ uint16 border_to_edge_r[MT9V03X_H];//存放右边border和edge的映射关系的数组 void get_right(uint16 total_R) { uint8 i = 0; uint16 j = 0; uint8 h = 0; for (i = 0; i < MT9V03X_H; i++) { r_border[i] = border_max;//右边线初始化放到最右边,左边线放到最左边,这样八邻域闭合区域外的中线就会在中间,不会干扰得到的数据 } h = MT9V03X_H - 2; //右边 for (j = 0; j < total_R; j++) { if (points_r[j][1] == h) { r_border[h] = points_r[j][0] - 1; border_to_edge_r[h] = j; } else continue;//每行只取一个点,没到下一行就不记录 h--; if (h == 0)break;//到最后一行退出 } } //------------------------------------------------------------------------------------------------------------------ // @函数功能 滤波减少噪声 // @函数返回 经过滤波的图像数组bin_image //------------------------------------------------------------------------------------------------------------------ #define threshold_max 255*5//定义膨胀的阈值区间 #define threshold_min 255*2//定义腐蚀的阈值区间 void image_filter(uint8(*bin_image)[MT9V03X_W])//形态学滤波,膨胀和腐蚀 { uint16 i, j; uint32 num = 0; for (i = 1; i < MT9V03X_H - 1; i++) { for (j = 1; j < (MT9V03X_W - 1); j++) { //统计八个方向的像素值 num = bin_image[i - 1][j - 1] + bin_image[i - 1][j] + bin_image[i - 1][j + 1] + bin_image[i][j - 1] + bin_image[i][j + 1] + bin_image[i + 1][j - 1] + bin_image[i + 1][j] + bin_image[i + 1][j + 1]; if (num >= threshold_max && bin_image[i][j] == 0) { bin_image[i][j] = 255;//白 } if (num <= threshold_min && bin_image[i][j] == 255) { bin_image[i][j] = 0;//黑 } } } } //------------------------------------------------------------------------------------------------------------------ // @函数功能 给图像画一个黑框 // @函数返回 带有黑框的图像数组bin_image //------------------------------------------------------------------------------------------------------------------ void image_draw_rectan(uint8(*image)[MT9V03X_W]) { uint8 i = 0; for (i = 0; i < MT9V03X_H; i++) { image[i][0] = 0; image[i][1] = 0; image[i][MT9V03X_W - 1] = 0; image[i][MT9V03X_W - 2] = 0; } for (i = 0; i < MT9V03X_W; i++) { image[0][i] = 0; image[1][i] = 0; //image[image_h-1][i] = 0; } } //----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- //----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- // @函数功能 环岛元素识别处理 // @函数返回 无 //----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- //----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- //全局状态变量 IslandState current_state = NORMAL; uint8_t island_type = 0; // 0:未确定 1:左环岛 2:右环岛 uint8 target_h = 0;//存放断裂点行数 uint16 A_edge = 0; uint16 V_edge = 0; uint8 A_point = 0; uint8 P_point = 0; uint8 V_point = 0; //------------------------------------------------------------------------------------------------------------------ // @函数功能 边界连续性判断 // @参数说明 需要寻找的边线 // @函数返回 有断裂返回0,无断裂返回1 //------------------------------------------------------------------------------------------------------------------ uint8 border_continuous(uint8 *border) { for(uint8 i = MT9V03X_H-1;i > 0;i--) { int8 diff = border[i] - border[i - 1]; if(diff < -4 || diff > 4) { target_h = i; return 0;//有断裂 } } return 1;//无断裂 } //------------------------------------------------------------------------------------------------------------------ // @函数功能 寻找A点 // @函数返回 A点 //------------------------------------------------------------------------------------------------------------------ //左圆环时寻找左边界A点 uint8 find_point_A_l(void) { uint16 j = border_to_edge_l[target_h];//映射 int16 search_min = j - search_range;//遍历点的最小编号 int16 search_max = j + search_range;//遍历点的最大编号 //限定查找区间 if(search_min < 3) { search_min = 3; } if(search_max > data_stastics_l - 2) { search_max = data_stastics_l - 2; } //遍历寻找A点 for(j = search_min;j <= search_max;j++) { if(points_l[j+2][0]<points_l[j][0] && points_l[j+2][1]<points_l[j][1] && points_l[j-2][1] < points_l[j][1]) { A_edge = j; return 1;//找到A点 } } return 0;//未找到A点 } //右圆环时寻找右边界A点 uint8 find_point_A_r(void) { uint16 j = border_to_edge_r[target_h];//映射 int16 search_min = j - search_range;//遍历点的最小编号 int16 search_max = j + search_range;//遍历点的最大编号 //限定查找区间 if(search_min < 3) { search_min = 3; } if(search_max > data_stastics_r - 2) { search_max = data_stastics_r - 2; } //遍历寻找A点 for(j = search_min;j <= search_max;j++) { if(points_l[j+2][0]>points_l[j][0] && points_l[j+2][1]<points_l[j][1] && points_l[j-2][1] < points_l[j][1]) { A_edge = j; return 1;//找到A点 } } return 0;//未找到A点 } //------------------------------------------------------------------------------------------------------------------ // @函数功能 寻找P点 // @函数返回 P点 //------------------------------------------------------------------------------------------------------------------ //左圆环时寻找左边界P点 uint8 find_point_P_l(void) { for(uint8 i = MT9V03X_H - 2;i > 1;i++) { if(l_border[i-2] < l_border[i] && l_border[i+2] < l_border[i]) { P_point = i; return 1;//找到P点 } } return 0;//未找到P点 } //右圆环时寻找左边界P点 uint8 find_point_P_r(void) { for(uint8 i = MT9V03X_H - 2;i > 1;i++) { if(l_border[i-2] > l_border[i] && l_border[i+2] > l_border[i]) { P_point = i; return 1;//找到P点 } } return 0;//未找到P点 } //------------------------------------------------------------------------------------------------------------------ // @函数功能 寻找V点 // @函数返回 V点 //------------------------------------------------------------------------------------------------------------------ //左边V点 uint8 find_point_V_l(void) { uint16 j = border_to_edge_l[target_h];//映射 int16 search_min = j - search_range;//遍历点的最小编号 int16 search_max = j + search_range;//遍历点的最大编号 //限定查找区间 if(search_min < 3) { search_min = 3; } if(search_max > data_stastics_l - 2) { search_max = data_stastics_l - 2; } //遍历寻找V点 for(j = search_min;j <= search_max;j++) { if(points_l[j+2][1]<points_l[j][1] && points_l[j-2][1] < points_l[j][1]) { V_edge = j; return 1;//找到V点 } } return 0;//未找到V点 } //右边V点 uint8 find_point_V_r(void) { uint16 j = border_to_edge_r[target_h];//映射 int16 search_min = j - search_range;//遍历点的最小编号 int16 search_max = j + search_range;//遍历点的最大编号 //限定查找区间 if(search_min < 3) { search_min = 3; } if(search_max > data_stastics_r - 2) { search_max = data_stastics_r - 2; } //遍历寻找V点 for(j = search_min;j <= search_max;j++) { if(points_l[j+2][1]<points_l[j][1] && points_l[j-2][1] < points_l[j][1]) { V_edge = j; return 1;//找到V点 } } return 0;//未找到V点 } //------------------------------------------------------------------------------------------------------------------ // @函数功能 补线 // @参数说明 m补线下方点,n补线上方点,border需要补线的边线数组,end_point需要补到的高度 // @函数返回 无 //------------------------------------------------------------------------------------------------------------------ void patching_line(uint8 m,uint8 n,uint8 *border,uint8 end_point) { float k = (float)( (m - n) / (border[n] - border[m]) ); for(uint8 h = m - 1;h > end_point;h--) { border[h] = (uint8)(border[m] + (m - h) / k); } } //----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- //----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- // @函数功能 总环岛识别处理函数 // @函数返回 无 //----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- //----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- void island_handler(void) { switch(current_state) { case NORMAL: //判断初见环岛条件 if(border_continuous(r_border) && !border_continuous(l_border) && find_point_A_l() && find_point_P_l())//判断是否为左环岛 { current_state = SEE_ISLAND; island_type = 1;//左环岛 } if(!border_continuous(r_border) && border_continuous(l_border) && find_point_A_r() && find_point_P_r())//判断是否为右环岛 { current_state = SEE_ISLAND; island_type = 2;//右环岛 } break; case SEE_ISLAND://初见环岛 if(island_type == 1)//左环岛 { //找A,P点 border_continuous(l_border); find_point_A_l(); find_point_P_l(); //补线 A_point = points_l[A_edge][1]; l_border[A_point] = points_l[A_edge][0]; patching_line(A_point,P_point,l_border,P_point); //判断初入环岛条件 if(l_border[MT9V03X_H-1] == border_min && l_border[MT9V03X_H-2] == border_min) { current_state = ENTER_ISLAND; } } if(island_type == 2)//右环岛 { //找A,P点 border_continuous(r_border); find_point_A_r(); find_point_P_r(); //补线 A_point = points_r[A_edge][1]; r_border[A_point] = points_r[A_edge][0]; patching_line(A_point,P_point,r_border,P_point); //判断初入环岛条件 if(r_border[MT9V03X_H-1] == border_max && r_border[MT9V03X_H-2] == border_max) { current_state = ENTER_ISLAND; } } break; case ENTER_ISLAND://初入环岛 if(island_type == 1)//左环岛 { //找P点 find_point_P_l(); //补线 A_point = MT9V03X_H-1; patching_line(A_point,P_point,l_border,P_point); //判断第一次到环岛出口条件 if(!border_continuous(l_border) && border_continuous(r_border) && find_point_V_l()) { current_state = EXIT_ISLAND1; } } if(island_type == 2)//右环岛 { //找P点 find_point_P_r(); //补线 A_point = MT9V03X_H-1; patching_line(A_point,P_point,r_border,P_point); //判断第一次到环岛出口条件 if(border_continuous(l_border) && !border_continuous(r_border) && find_point_V_r()) { current_state = EXIT_ISLAND1; } } break; case EXIT_ISLAND1://第一次到环岛出口 if(island_type == 1)//左环岛 { //找V点 border_continuous(l_border); find_point_V_l(); //补线 V_point = points_l[V_edge][1]; r_border[V_point] = points_l[A_edge][0]; patching_line(119,V_point,r_border,0); //判断即将入环条件 if(!border_continuous(r_border) && find_point_V_r()) { current_state = IN_ISLAND; } } if(island_type == 2)//右环岛 { //找V点 border_continuous(r_border); find_point_V_r(); //补线 V_point = points_r[V_edge][1]; l_border[V_point] = points_r[A_edge][0]; patching_line(119,V_point,l_border,0); //判断即将入环条件 if(!border_continuous(l_border) && find_point_V_l()) { current_state = IN_ISLAND; } } break; case PRE_ENTER://即将入环 if(island_type == 1)//左环岛 { //找V点 border_continuous(r_border); find_point_V_r(); //补线 V_point = points_r[V_edge][1]; r_border[V_point] = points_r[A_edge][0]; patching_line(119,V_point,r_border,0); //判断完全入环条件 if(border_continuous(r_border) && border_continuous(l_border)) { current_state = IN_ISLAND; } } if(island_type == 2)//右环岛 { //找V点 border_continuous(l_border); find_point_V_l(); //补线 V_point = points_l[V_edge][1]; l_border[V_point] = points_l[A_edge][0]; patching_line(119,V_point,l_border,0); //判断完全入环条件 if(border_continuous(r_border) && border_continuous(l_border)) { current_state = IN_ISLAND; } } break; case IN_ISLAND://完全入环 if(island_type == 1)//左环岛 { //条件补线 if(!border_continuous(r_border) && border_continuous(l_border)) { r_border[0] = border_min; patching_line(target_h,0,r_border,0); } //判断第二次到环岛出口条件 if( l_border[MT9V03X_H-1]>border_min && l_border[MT9V03X_H-2]>border_min && r_border[MT9V03X_H-1]==border_max && r_border[MT9V03X_H-1]==border_max) { current_state = EXIT_ISLAND2; } } if(island_type == 2)//右环岛 { //条件补线 if(!border_continuous(l_border) && border_continuous(r_border)) { l_border[0] = border_max; patching_line(target_h,0,l_border,0); } //判断第二次到环岛出口条件 if( l_border[MT9V03X_H-1]==border_min && l_border[MT9V03X_H-2]==border_min && r_border[MT9V03X_H-1]<border_max && r_border[MT9V03X_H-1]<border_max) { current_state = EXIT_ISLAND2; } } break; case EXIT_ISLAND2://第二次到环岛出口 if(island_type == 1)//左环岛 { //判断最终出环条件 if(!border_continuous(l_border) && border_continuous(r_border)) { current_state = FINAL_EXIT; } } if(island_type == 2)//右环岛 { //判断最终出环条件 if(border_continuous(l_border) && !border_continuous(r_border)) { current_state = FINAL_EXIT; } } break; case FINAL_EXIT://最终出环 if(island_type == 1)//左环岛 { //补线 border_continuous(l_border); patching_line(119,target_h,l_border,target_h); //结束条件 if(border_continuous(l_border) && border_continuous(r_border)) { current_state = NORMAL; island_type = 0; } } if(island_type == 2)//右环岛 { //补线 border_continuous(r_border); patching_line(119,target_h,r_border,target_h); //结束条件 if(border_continuous(l_border) && border_continuous(r_border)) { current_state = NORMAL; island_type = 0; } } break; } } //----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- //----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- // @函数功能 获取车身偏差 // @函数返回 车身偏差error //----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- //----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- int16 error = 1000; //误差100 int16 error_last = 0; //上次误差 void car_error(void) { uint8 i = 0; int32 num = 0; //int16 num = 0 for(i = 1;i < MT9V03X_H;i++) { num += (center_line[i] - (MT9V03X_W / 2)); } error_last = error; error = num; } //----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- //----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- // @函数功能 最终处理函数 // @函数返回 无 //----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- //----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- uint8 change = 0; uint8 change_last = 0; void image_process(void) { uint16 i; uint8 hightest = 0;//定义一个最高行,tip:这里的最高指的是y值的最小 Get_image(mt9v03x_image);//获得一副灰度图像 turn_to_bin();//大津法二值化。 //提取赛道边界 image_filter(bin_image);//滤波减少噪声 image_draw_rectan(bin_image);//给图像画黑框为八领域做准备 //清零 data_stastics_l = 0; data_stastics_r = 0; if (get_start_point(MT9V03X_H - 2))//找到起点了,再执行八领域,没找到就一直找 { navigation_flag = 0; //判断直角弯 uint8 m = 0,n = 0, j = 0; for(j = 1;j < MT9V03X_W;j++) { if(bin_image[60][j] == 255) { break; } if(bin_image[62][j] == 255) { break; } } if(j == MT9V03X_W) { for(j = 119;j > 55;j--) { if(bin_image[j][5] == 255 && bin_image[j][7] == 255) { m = 1; } if(bin_image[j][115] == 255 && bin_image[j][113] == 255) { n = 1; } } } if(m == 1 && n == 0) { navigation_flag = 1; } if(m == 0 && n == 1) { navigation_flag = 2; } //八领域处理 search_l_r((uint16)USE_num, bin_image, &data_stastics_l, &data_stastics_r, start_point_l[0], start_point_l[1], start_point_r[0], start_point_r[1], &hightest); // 从爬取的边界线内提取边线 , 这个才是最终有用的边线 get_left(data_stastics_l); get_right(data_stastics_r); //处理函数 island_handler();//环岛元素识别处理 } else { navigation_flag = 3; } for (i = hightest; i < MT9V03X_H-1; i++) { center_line[i] = (l_border[i] + r_border[i]) >> 1;//求中线 } if(bin_image[118][8] == 0 && bin_image[118][40] == 255 && bin_image[118][100] == 255 && bin_image[118][148] == 255 && bin_image[118][180] == 0 && bin_image[118][94] == 255) { change_last = change; change = 1; } else { change = 0; } if(change == 1 && change_last == 0) { stop++; } 以上代码是否可通过调节参数来减少曝光问题,如若可以该调节哪个部分或需添加什么代码

时间: 2025-05-27 14:55:06 浏览: 24
<think>好的,用户的问题是关于如何调整代码中的参数或添加代码来解决图像处理中的曝光问题,特别是在灰度图像获取和二值化部分的优化。首先,我需要回想一下常见的图像处理中曝光问题的解决方法。通常,曝光过度或不足会导致图像细节丢失,影响后续处理,比如二值化时的阈值选择困难。用户提到了灰度图像获取和二值化部分的优化。根据引用内容,用户之前可能使用了大津法(Otsu)进行二值化,但遇到光照不均匀时效果不好,转而尝试了Sobel边缘检测。这说明用户对不同的预处理方法有一定了解,但需要具体调整参数来优化曝光问题。 首先,针对灰度图像获取,可能需要检查图像采集时的曝光参数设置,比如相机的曝光时间、增益等。如果这些参数无法通过硬件调整,可能需要在软件层面进行预处理。例如,应用直方图均衡化来增强对比度,或者使用自适应阈值处理来应对光照变化。 在二值化部分,大津法在光照均匀时效果好,但不均匀时容易失效。用户已经尝试了Sobel算子,但可能还需要调整相关参数,比如高斯模糊的核大小,Canny算法的高低阈值,或者Sobel算子的孔径大小和阈值。此外,可以考虑使用自适应二值化方法,比如局部阈值处理,根据图像不同区域的亮度动态调整阈值,这样可以有效应对曝光不均的问题。 另外,引用中提到用户尝试了Sobel边缘检测,效果不错但移植困难。可能需要优化代码,比如使用积分图像加速局部计算,或者调整高斯模糊的参数以减少噪声影响,同时保持边缘清晰。例如,增大高斯核的大小可以更好地平滑图像,减少噪声,但过度模糊会导致边缘丢失,需要平衡。 用户还提到在省赛中通过设置均匀光照解决了问题,但实际应用中可能无法控制光照条件。因此,软件上的自适应方法更为重要。可能需要结合多种方法,比如先进行直方图均衡化,再进行自适应二值化,或者结合边缘检测和区域分割来处理不同曝光区域。 在代码调整方面,可能需要修改高斯模糊的参数,调整Canny的高低阈值,或者更换二值化方法为自适应阈值。例如,在OpenCV中,可以使用adaptiveThreshold函数代替全局阈值方法。同时,可能需要添加直方图均衡化的步骤,如使用equalizeHist函数,或者更高级的CLAHE(限制对比度的自适应直方图均衡化)来改善图像对比度。还需要考虑图像采集阶段的曝光控制,如果可能的话,自动调整相机曝光参数以避免过曝或欠曝。如果硬件支持,可以在代码中添加曝光调整的指令,比如通过V4L2接口设置相机的曝光时间。总结一下,可能的调整方向包括:1.预处理阶段:直方图均衡化、CLAHE。2.二值化方法:改用自适应阈值,调整参数。3.边缘检测:优化Sobel参数,结合其他方法。 4.高斯模糊:调整核大小和标准差。 5.硬件调整:自动或手动设置相机曝光参数。需要根据用户的具体代码和环境来具体实施这些调整,比如查看用户现有的图像处理流程,确定在哪个环节添加或修改参数。同时,测试不同参数组合的效果,找到最适合当前场景的配置。</think>### 图像曝光问题优化方法 #### 1. 灰度图像预处理优化 **直方图均衡化**可增强图像对比度: ```python import cv2 # 读取图像后添加直方图均衡化 gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) gray_eq = cv2.equalizeHist(gray) # 全局均衡化[^1] ``` 更推荐**CLAHE**(限制对比度自适应直方图均衡化): ```python clahe = cv2.createCLAHE(clipLimit=2.0, tileGridSize=(8,8)) gray_clahe = clahe.apply(gray) ``` #### 2. 自适应二值化改造 将固定阈值替换为**自适应阈值算法**: ```python # 原大津法代码 _, binary = cv2.threshold(gray, 0, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU) # 改为自适应阈值(块大小需为奇数) binary_adapt = cv2.adaptiveThreshold(gray, 255, cv2.ADAPTIVE_THRESH_GAUSSIAN_C, cv2.THRESH_BINARY, 11, 2) ``` #### 3. 混合处理策略 结合边缘检测与动态阈值: ```python # 先进行高斯模糊(调整核大小) gray_blur = cv2.GaussianBlur(gray, (5,5), 0) # 核大小可改为7x7 # Sobel边缘检测(调整阈值) sobelx = cv2.Sobel(gray_blur, cv2.CV_64F, 1, 0, ksize=3) sobely = cv2.Sobel(gray_blur, cv2.CV_64F, 0, 1, ksize=3) edge_map = np.sqrt(sobelx**2 + sobely**2) edge_map = np.uint8(edge_map * 255 / np.max(edge_map)) _, edges = cv2.threshold(edge_map, 30, 255, cv2.THRESH_BINARY) # 阈值从30开始调整 ``` #### 4. 参数调整建议 | 参数类型 | 推荐范围 | 调节效果 | |------------------|----------------|-----------------------------------| | CLAHE clipLimit | 1.0-3.0 | 值越大对比度越强 | | 高斯模糊核大小 | 5x5 至 9x9 | 奇数核,越大去噪效果越好 | | 自适应阈值块大小 | 11-31 | 根据图像分辨率调整 | | Sobel阈值 | 20-50 | 值越小保留边缘越多 | #### 5. 曝光补偿算法 针对过曝区域进行修复: ```python # 过曝区域检测(假设8位图像) overexposed = gray > 240 # 阈值可调整 # 邻域像素补偿 kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (3,3)) dilated = cv2.dilate(gray, kernel) gray_fixed = np.where(overexposed, dilated, gray) ``` ###
阅读全文

相关推荐

#ifndef CODE_MA_H_ #define CODE_MA_H_ #include "zf_common_headfile.h" #define jidian_search_line 120 //基点搜索行 #define search_start_line 120 #define search_end_line 30 #define left_line_right_scarch 10 #define left_line_left_scarch 5 #define right_line_left_scarch 10 #define right_line_right_scarch 5 #define MID_W 93 extern uint8 base_image[MT9V03X_H][MT9V03X_W]; extern uint8 left_jidian; extern uint8 right_jidian; extern uint8 image[MT9V03X_H][MT9V03X_W];//二值化图像 extern uint8 left_line_list[MT9V03X_H];//左边线数组 extern uint8 right_line_list[MT9V03X_H];//右边线数组 extern uint8 mid_line_list[MT9V03X_H]; extern uint8 img_threshold; uint8 Ostu(uint8 index[MT9V03X_H][MT9V03X_W]); void set_image_twovalues(uint8 value); void find_jidian(uint8_t index[MT9V03X_H][MT9V03X_W]); void image_deal(uint8_t index[MT9V03X_H][MT9V03X_W]); uint8_t Limit_uint8_t(uint8_t a,uint8_t b,uint8_t c); void draw_line(void); #endif /* CODE_MA_H_ */ #include "ma.h" #include "zf_common_headfile.h" uint8_t Limit_uint8_t(uint8_t a,uint8_t b,uint8_t c) { if((b>=a) && (b<=c)) { return b; } else if(b>a) { return a; } else if(b>c) { return c; } return 0; } void draw_line(void) { for(uint8_t i=MT9V03X_H-1;i>search_end_line;i--) { tft180_draw_line(0, 0, 10, 10,RGB565_RED); tft180_draw_line(0, 0, 10, 10,RGB565_RED); tft180_draw_line(0, 0, 10, 10,RGB565_RED); } } #ifndef CODE_IMAGE_C_ #define CODE_IMAGE_C_ #include "ma.h" #include "zf_common_headfile.h" #endif /* CODE_IMAGE_C_ */ void find_jidian(uint8_t index[MT9V03X_H][MT9V03X_W]) { //判断二分之一点是否是白点 if(index[jidian_search_line - 1][MT9V03X_W/2]==255 && index[jidian_search_line-1][MT9V03X_W/2+1]==255 && index[jidian_search_line-1][MT9V03X_W/2-1] == 255 ) { //寻找左边界基点 for(uint8_t j=MT9V03X_W/2;j>0;j--) { if(index[jidian_search_line-1][j-1]==0 && index[jidian_search_line-1][j]==255 && index[jidian_

#include "images.h" uint8 l_border[MT9V03X_H];//左线数组 uint8 r_border[MT9V03X_H];//右线数组 uint8 center_line[MT9V03X_H];//中线数组 /*变量声明*/ //uint8 original_image[MT9V03X_H][MT9V03X_W]; uint8 bin_image[MT9V03X_H][MT9V03X_W];//图像数组 uint8 image_thereshold_last = 0;// uint8 image_thereshold;//图像分割阈值 //------------------------------------------------------------------------------------------------------------------ // @函数功能 求绝对值 // @函数返回 绝对值 //------------------------------------------------------------------------------------------------------------------ int my_abs(int value) { if(value>=0) return value; else return -value; } //数值范围限制 int16 limit_a_b(int16 x, int a, int b) { if(x<a) x = a; if(x>b) x = b; return x; } //------------------------------------------------------------------------------------------------------------------ // @函数功能 求x,y中的最小值 // @函数返回 两值中的最小值 //------------------------------------------------------------------------------------------------------------------ int16 limit1(int16 x, int16 y) { if (x > y) return y; else if (x < -y) return -y; else return x; } //------------------------------------------------------------------------------------------------------------------ // @函数功能 获得一副灰度图像 // @函数返回 灰度图像数组original_image //------------------------------------------------------------------------------------------------------------------ void Get_image(uint8(*mt9v03x_image)[MT9V03X_W]) { uint8 i = 0, j = 0; for (i = 0; i < MT9V03X_H; i += 1) { for (j = 0; j <MT9V03X_W; j += 1) { bin_image[i][j] = mt9v03x_image[i][j]; } } } //将原始图像复制到bin_image数组 /*void gamma_correction(uint8(*image)[MT9V03X_W], float gamma)//(自己添加部分) { for(int i=0; i<MT9V03X_H; i++) { for(int j=0; j<MT9V03X_W; j++) { float normalized = image[i][j]/255; image[i][j] = pow(normalized, gamma) * 255; } } }*/ //------------------------------------------------------------------------------------------------------------------ // @函数功能 大津法求动态阈值 // @函数返回 动态阈值Threshold //------------------------------------------------------------------------------------------------------------------ uint8 OtsuThreshold(uint8 *image) { uint8 Pixel_Max = 0; uint8 Pixel_Min = 255; //uint16 width = MT9V03X_W / use_num; //uint16 height = MT9V03X_H / use_num; int pixelCount[GrayScale]; //各像素GrayScale的个数pixelCount 一维数组 float pixelPro[GrayScale]; //各像素GrayScale所占百分比pixelPro 一维数组 int16 i = 0; int16 j = 0; int16 pixelSum = MT9V03X_W * MT9V03X_H / 4; //pixelSum是获取总的图像像素个数的1/4,相应下面轮询时高和宽都是以2为单位自增 uint8 threshold = 0; uint8* data = image; //指向像素数据的指针 for(i = 0;i < GrayScale;i++) { pixelCount[i] = 0; pixelPro[i] = 0; } uint32 gray_sum = 0; //统计灰度图中每个像素在整幅图像中的个数 for(i = 0;i < MT9V03X_H;i += 2) { for(j = 0;j < MT9V03X_W; j += 2) { pixelCount[(int)data[i * MT9V03X_W + j]]++; //将当前的点的像素值作为计数数组的下标 gray_sum += (int)data[i * MT9V03X_W + j]; //灰度值总和 if(data[i * MT9V03X_W + j] > Pixel_Max) { Pixel_Max = data[i * MT9V03X_W + j]; } if(data[i * MT9V03X_W + j] < Pixel_Min) { Pixel_Min = data[i * MT9V03X_W + j]; } } } //计算每个像素值的点在整幅图像中的比例 for(i = Pixel_Min;i < Pixel_Max;i++) { pixelPro[i] = (float)pixelCount[i] / pixelSum; } //遍历灰度值 float w0,w1,u0tmp,u1tmp,u0,u1,deltaTmp,deltaMax = 0; w0 = w1 = u0tmp = u1tmp = u0 = u1 = deltaTmp = 0; for(j = Pixel_Min;j < Pixel_Max;j++) { w0 += pixelPro[j]; //背景部分每个灰度值的像素点所占比例之和 即背景部分的比例 u0tmp += j * pixelPro[j]; //背景部分 每个灰度值的点的比例 *灰度值 w1 = 1 - w0; u1tmp = gray_sum / pixelSum-u0tmp; u0 = u0tmp / w0; //背景平均灰度 u1 = u1tmp / w1; //前景平均灰度 deltaTmp = (float)(w0 * w1 * (u0 - u1) * (u0 - u1)); if(deltaTmp > deltaMax) { deltaMax = deltaTmp; threshold = (uint8)j; } if(deltaTmp < deltaMax) { break; } } //限幅 if(threshold > 25 && threshold < 235) { image_thereshold_last = threshold; } else { threshold = image_thereshold_last; } return threshold; } //------------------------------------------------------------------------------------------------------------------ // @函数功能 图像二值化,大津法 // @函数返回 二值化图像数组bin_image //------------------------------------------------------------------------------------------------------------------ void turn_to_bin(void) { uint8 i,j; image_thereshold = OtsuThreshold(bin_image[0]); //ips114_show_int(189,0,image_thereshold,5); for(i = 0;i < MT9V03X_H;i++) { for(j = 0;j < MT9V03X_W;j++) { if(bin_image[i][j] > image_thereshold) { bin_image[i][j] = 255; } else { bin_image[i][j] = 0; } } } /* for(i = 40;i < MT9V03X_H;i++) { for(j = 0;j < MT9V03X_W;j++) { if(bin_image[i][j] < image_thereshold) { bin_image[i][j] = 0; } else { bin_image[i][j] =255; } } }*/ } //------------------------------------------------------------------------------------------------------------------ // @函数功能 寻找两个边界的边界点作为八邻域循环的起始点 // @参数说明 输入任意行数 // @函数返回 无 //------------------------------------------------------------------------------------------------------------------ uint8 start_point_l[2] = { 0 };//左边起点的x,y值 uint8 start_point_r[2] = { 0 };//右边起点的x,y值 uint8 get_start_point(uint8 start_row) { uint8 i = 0,j = MT9V03X_W/2,l_found = 0,r_found = 0,num = 0; //清零 start_point_l[0] = 0;//左x start_point_l[1] = 0;//左y start_point_r[0] = 0;//右x start_point_r[1] = 0;//右y //大致定位白线 for(num = 0;num < MT9V03X_W/2 - 15;num = num + 10) { if(bin_image[start_row][j + num] == 255) { j = j + num; break; } if(bin_image[start_row][j - num] == 255) { j = j - num; break; } } //从中间往左边,先找起点 for (i = j; i > border_min; i--) { start_point_l[0] = i;//x start_point_l[1] = start_row;//y if (bin_image[start_row][i] == 255 && bin_image[start_row][i - 1] == 0) { //printf("找到左边起点image[%d][%d]\n", start_row,i); l_found = 1; break; } } for (i = j; i < border_max; i++) { start_point_r[0] = i;//x start_point_r[1] = start_row;//y if (bin_image[start_row][i] == 255 && bin_image[start_row][i + 1] == 0) { //printf("找到右边起点image[%d][%d]\n",start_row, i); r_found = 1; break; } } if(l_found&&r_found) { return 1; } else { //printf("未找到起点\n"); return 0; } } //----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- //----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- // @函数功能 八邻域正式开始找右边点的函数,左右线一次性找完。 Tip:特别注意,不要拿宏定义名字作为输入参数,否则数据可能无法传递过来 // @参数说明 // break_flag_r 最多需要循环的次数 // (*image)[image_w] 需要进行找点的图像数组,必须是二值图,填入数组名称即可 // *l_stastic 统计左边数据,用来输入初始数组成员的序号和取出循环次数 // *r_stastic 统计右边数据,用来输入初始数组成员的序号和取出循环次数 // l_start_x 左边起点横坐标 // l_start_y 左边起点纵坐标 // r_start_x 右边起点横坐标 // r_start_y 右边起点纵坐标 // hightest 循环结束所得到的最高高度 // @函数返回 无 // @备 注: //example:search_l_r((uint16)USE_num,image,&data_stastics_l, &data_stastics_r,start_point_l[0],start_point_l[1], start_point_r[0], start_point_r[1],&hightest); //----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- //----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- #define USE_num MT9V03X_H*3 //定义找点的数组成员个数按理说300个点能放下,但是有些特殊情况确实难顶,多定义了一点 //存放点的x,y坐标 uint16 points_l[(uint16)USE_num][2] = { { 0 } };//左线 uint16 points_r[(uint16)USE_num][2] = { { 0 } };//右线 uint16 dir_r[(uint16)USE_num] = { 0 };//用来存储右边生长方向 uint16 dir_l[(uint16)USE_num] = { 0 };//用来存储左边生长方向 uint16 data_stastics_l = 0;//统计左边找到点的个数 uint16 data_stastics_r = 0;//统计右边找到点的个数 uint8 hightest = 0;//最高点 void search_l_r(uint16 break_flag, uint8(*image)[MT9V03X_W], uint16 *l_stastic, uint16 *r_stastic, uint8 l_start_x, uint8 l_start_y, uint8 r_start_x, uint8 r_start_y, uint8*hightest) { uint8 i = 0, j = 0; //左边变量 uint8 search_filds_l[8][2] = { { 0 } }; uint8 index_l = 0; uint8 temp_l[8][2] = { { 0 } }; uint8 center_point_l[2] = { 0 }; uint16 l_data_statics;//统计左边 //定义八个邻域 static int8 seeds_l[8][2] = {{0,1},{-1,1},{-1,0},{-1,-1},{0,-1},{1,-1},{1,0},{1,1},}; //{-1,-1} {0,-1} {+1,-1} //{-1, 0} {+1, 0} //{-1,+1} {0,+1} {+1,+1} //顺时针 //右边变量 uint8 search_filds_r[8][2] = { { 0 } }; uint8 center_point_r[2] = { 0 };//中心坐标点 uint8 index_r = 0;//索引下标 uint8 temp_r[8][2] = { { 0 } }; uint16 r_data_statics;//统计右边 //定义八个邻域 static int8 seeds_r[8][2] = { {0,1},{1,1},{1,0}, {1,-1},{0,-1},{-1,-1}, {-1,0},{-1,1}, }; //{-1,-1} {0,-1} {+1,-1}, //{-1, 0} {+1, 0} //{-1,+1} {0,+1} {+1,+1} //这个是逆时针 l_data_statics = *l_stastic;//统计找到了多少个点,方便后续把点全部画出来 r_data_statics = *r_stastic;//统计找到了多少个点,方便后续把点全部画出来 //第一次更新坐标点 将找到的起点值传进来 center_point_l[0] = l_start_x;//x center_point_l[1] = l_start_y;//y center_point_r[0] = r_start_x;//x center_point_r[1] = r_start_y;//y //开启邻域循环 while (break_flag--) { //左边 for (i = 0; i < 8; i++)//传递8F坐标 { search_filds_l[i][0] = center_point_l[0] + seeds_l[i][0];//x search_filds_l[i][1] = center_point_l[1] + seeds_l[i][1];//y } //中心坐标点填充到已经找到的点内 points_l[l_data_statics][0] = center_point_l[0];//x points_l[l_data_statics][1] = center_point_l[1];//y l_data_statics++;//索引加一 //右边 for (i = 0; i < 8; i++)//传递8F坐标 { search_filds_r[i][0] = center_point_r[0] + seeds_r[i][0];//x search_filds_r[i][1] = center_point_r[1] + seeds_r[i][1];//y } //中心坐标点填充到已经找到的点内 points_r[r_data_statics][0] = center_point_r[0];//x points_r[r_data_statics][1] = center_point_r[1];//y index_l = 0;//先清零,后使用 for (i = 0; i < 8; i++) { temp_l[i][0] = 0;//先清零,后使用 temp_l[i][1] = 0;//先清零,后使用 } //左边判断 for (i = 0; i < 8; i++) { if (image[search_filds_l[i][1]][search_filds_l[i][0]] == 0 && image[search_filds_l[(i + 1) & 7][1]][search_filds_l[(i + 1) & 7][0]] == 255) { temp_l[index_l][0] = search_filds_l[(i)][0]; temp_l[index_l][1] = search_filds_l[(i)][1]; index_l++; dir_l[l_data_statics - 1] = (i);//记录生长方向 } if (index_l) { //更新坐标点 center_point_l[0] = temp_l[0][0];//x center_point_l[1] = temp_l[0][1];//y for (j = 0; j < index_l; j++) { if (center_point_l[1] > temp_l[j][1]) { center_point_l[0] = temp_l[j][0];//x center_point_l[1] = temp_l[j][1];//y } } } } if ((points_r[r_data_statics][0]== points_r[r_data_statics-1][0]&& points_r[r_data_statics][0] == points_r[r_data_statics - 2][0] && points_r[r_data_statics][1] == points_r[r_data_statics - 1][1] && points_r[r_data_statics][1] == points_r[r_data_statics - 2][1]) ||(points_l[l_data_statics-1][0] == points_l[l_data_statics - 2][0] && points_l[l_data_statics-1][0] == points_l[l_data_statics - 3][0] && points_l[l_data_statics-1][1] == points_l[l_data_statics - 2][1] && points_l[l_data_statics-1][1] == points_l[l_data_statics - 3][1])) { //printf("三次进入同一个点,退出\n"); break; } if (my_abs(points_r[r_data_statics][0] - points_l[l_data_statics - 1][0]) < 2 && my_abs(points_r[r_data_statics][1] - points_l[l_data_statics - 1][1] < 2)) { //printf("\n左右相遇退出\n"); *hightest = (points_r[r_data_statics][1] + points_l[l_data_statics - 1][1]) >> 1;//取出最高点 //printf("\n在y=%d处退出\n",*hightest); break; } if ((points_r[r_data_statics][1] < points_l[l_data_statics - 1][1])) { //printf("\n如果左边比右边高了,左边等待右边\n"); continue;//如果左边比右边高了,左边等待右边 } if (dir_l[l_data_statics - 1] == 7 && (points_r[r_data_statics][1] > points_l[l_data_statics - 1][1]))//左边比右边高且已经向下生长了 { //printf("\n左边开始向下了,等待右边,等待中... \n"); center_point_l[0] = points_l[l_data_statics - 1][0];//x center_point_l[1] = points_l[l_data_statics - 1][1];//y l_data_statics--; } r_data_statics++;//索引加一 index_r = 0;//先清零,后使用 for (i = 0; i < 8; i++) { temp_r[i][0] = 0;//先清零,后使用 temp_r[i][1] = 0;//先清零,后使用 } //右边判断 for (i = 0; i < 8; i++) { if (image[search_filds_r[i][1]][search_filds_r[i][0]] == 0 && image[search_filds_r[(i + 1) & 7][1]][search_filds_r[(i + 1) & 7][0]] == 255) { temp_r[index_r][0] = search_filds_r[(i)][0]; temp_r[index_r][1] = search_filds_r[(i)][1]; index_r++;//索引加一 dir_r[r_data_statics - 1] = (i);//记录生长方向 //printf("dir[%d]:%d\n", r_data_statics - 1, dir_r[r_data_statics - 1]); } if (index_r) { //更新坐标点 center_point_r[0] = temp_r[0][0];//x center_point_r[1] = temp_r[0][1];//y for (j = 0; j < index_r; j++) { if (center_point_r[1] > temp_r[j][1]) { center_point_r[0] = temp_r[j][0];//x center_point_r[1] = temp_r[j][1];//y } } } } } //取出循环次数 *l_stastic = l_data_statics; *r_stastic = r_data_statics; } //------------------------------------------------------------------------------------------------------------------ // @函数功能 从八邻域边界里提取需要的左边线 // @参数说明 total_L :找到的点的总数 // @函数返回 左边线数组l_border //------------------------------------------------------------------------------------------------------------------ uint16 border_to_edge_l[MT9V03X_H];//存放左边border和edge的映射关系的数组 void get_left(uint16 total_L) { uint8 i = 0; uint16 j = 0; uint8 h = 0; //初始化 for (i = 0;i<MT9V03X_H;i++) { l_border[i] = border_min; } h = MT9V03X_H - 2; //左边 for (j = 0; j < total_L; j++) { //printf("%d\n", j); if (points_l[j][1] == h) { l_border[h] = points_l[j][0]+1; border_to_edge_l[h] = j; } else continue; //每行只取一个点,没到下一行就不记录 h--; if (h == 0) { break;//到最后一行退出 } } } //------------------------------------------------------------------------------------------------------------------ // @函数功能 从八邻域边界里提取需要的右边线 // @参数说明 total_R :找到的点的总数 // @函数返回 右边线数组r_border //------------------------------------------------------------------------------------------------------------------ uint16 border_to_edge_r[MT9V03X_H];//存放右边border和edge的映射关系的数组 void get_right(uint16 total_R) { uint8 i = 0; uint16 j = 0; uint8 h = 0; for (i = 0; i < MT9V03X_H; i++) { r_border[i] = border_max;//右边线初始化放到最右边,左边线放到最左边,这样八邻域闭合区域外的中线就会在中间,不会干扰得到的数据 } h = MT9V03X_H - 2; //右边 for (j = 0; j < total_R; j++) { if (points_r[j][1] == h) { r_border[h] = points_r[j][0] - 1; border_to_edge_r[h] = j; } else continue;//每行只取一个点,没到下一行就不记录 h--; if (h == 0)break;//到最后一行退出 } } //------------------------------------------------------------------------------------------------------------------ // @函数功能 滤波减少噪声 // @函数返回 经过滤波的图像数组bin_image //------------------------------------------------------------------------------------------------------------------ /* #define NEIGHBORS 8 // 8邻域 // 动态阈值结构体(存储计算参数) typedef struct { uint32_t threshold_max; uint32_t threshold_min; float max_coeff; // 最大阈值系数(默认0.75) float min_coeff; // 最小阈值系数(默认0.35) } DynamicThreshold; // 形态学控制参数 typedef struct { uint8_t erosion_iter; // 腐蚀迭代次数 uint8_t dilation_iter; // 膨胀迭代次数 uint8_t enable_diagonal_weight; // 对角线加权使能 } MorphControl; // 亮度补偿参数 typedef struct { uint16_t avg_brightness; float exposure_factor; uint16_t ref_brightness; // 参考亮度(默认128) } BrightnessComp; // 主处理函数 void morphological_filter(uint8_t bin_image[MT9V03X_H][MT9V03X_W]) { // 初始化控制参数 DynamicThreshold dyn_thresh = {0, 0, 0.75f, 0.35f}; MorphControl morph_ctrl = {1, 1, 1}; // 默认迭代1次,启用对角线加权 BrightnessComp bright_comp = {0, 1.0f, 128}; // 计算全局亮度(下采样加速) for(int i = 0; i < MT9V03X_H; i += 2) { for(int j = 0; j < MT9V03X_W; j += 2) { bright_comp.avg_brightness += bin_image[i][j]; } } bright_comp.avg_brightness /= (MT9V03X_H * MT9V03X_W / 4); bright_comp.exposure_factor = (float)bright_comp.avg_brightness / bright_comp.ref_brightness; // 动态调整阈值系数(根据曝光情况) if (bright_comp.exposure_factor > 1.2f) // 过曝场景 { dyn_thresh.max_coeff = 0.80f; // 降低膨胀阈值(降低 max_coeff(0.6-0.7)抑制白色扩张) dyn_thresh.min_coeff = 0.40f; //(提高 min_coeff(0.4-0.45)减少黑色噪点) morph_ctrl.dilation_iter = 0; // 禁用膨胀 morph_ctrl.erosion_iter = 2; // 增强腐蚀 } else if (bright_comp.exposure_factor < 0.8f) // 欠曝场景 { dyn_thresh.max_coeff = 0.80f; dyn_thresh.min_coeff = 0.45f; // 提高腐蚀阈值 morph_ctrl.erosion_iter = 0; // 禁用腐蚀 morph_ctrl.dilation_iter = 2; // 增强膨胀 } // 计算动态阈值 dyn_thresh.threshold_max = (uint32_t)(255 * NEIGHBORS * dyn_thresh.max_coeff); dyn_thresh.threshold_min = (uint32_t)(255 * NEIGHBORS * dyn_thresh.min_coeff); // 形态学滤波主循环 for (int i = 1; i < MT9V03X_H - 1; i++) { for (int j = 1; j < MT9V03X_W - 1; j++) { uint32_t num = 0; // 加权邻域计算(对角线权重2倍,正交方向1.5倍) if (morph_ctrl.enable_diagonal_weight) { num = bin_image[i-1][j-1]*2 + bin_image[i-1][j]*1.5 + bin_image[i-1][j+1]*2 + bin_image[i][j-1]*1.5 + bin_image[i][j+1]*1.5 + bin_image[i+1][j-1]*2 + bin_image[i+1][j]*1.5 + bin_image[i+1][j+1]*2; }else { // 标准8邻域计算(无加权) for (int di = -1; di <= 1; di++) { for (int dj = -1; dj <= 1; dj++) { if (di == 0 && dj == 0) continue; num += bin_image[i+di][j+dj]; } } } // 可控膨胀(抑制过曝白区) if (num >= dyn_thresh.threshold_max && bin_image[i][j] == 0) { uint8_t iter = morph_ctrl.dilation_iter; while (iter-- > 0) { bin_image[i][j] = 255; } } // 可控腐蚀(填充欠曝黑点) else if (num <= dyn_thresh.threshold_min && bin_image[i][j] == 255) { uint8_t iter = morph_ctrl.erosion_iter; while (iter-- > 0) { bin_image[i][j] = 0; } } } } } */ // 改进建议(根据曝光程度动态调整) /*#define neighbors 8 #define dynamic_threshold_max (uint32)(255 * neighbors * 0.75) // 原255 * 6=1530调整为可变参数 #define dynamic_threshold_min (uint32)(255 * neighbors * 0.35) // 原255 * 3=765调整为可变参数*/ #define threshold_max 255*4//定义膨胀的阈值区间(255*5) #define threshold_min 255*3//定义腐蚀的阈值区间(255*2) void image_filter(uint8(*bin_image)[MT9V03X_W])//形态学滤波,膨胀和腐蚀 { uint16 i, j; uint32 num = 0; for (i = 1; i < MT9V03X_H - 1; i++) { for (j = 1; j < (MT9V03X_W - 1); j++) { //统计八个方向的像素值 num = bin_image[i - 1][j - 1] + bin_image[i - 1][j] + bin_image[i - 1][j + 1] + bin_image[i][j - 1] + bin_image[i][j + 1] + bin_image[i + 1][j - 1] + bin_image[i + 1][j] + bin_image[i + 1][j + 1]; if (num >= threshold_max && bin_image[i][j] == 0) { bin_image[i][j] = 255;//白(膨胀) } if (num <= threshold_min && bin_image[i][j] == 255) { bin_image[i][j] = 0;//黑(腐蚀) } } } } /* 曝光问题调节:若图像过曝(白色区域过多),可减少 neighbors 值(如改用4邻域),从而降低threshold_max,增强腐蚀操作以消除白色噪点。 抗噪需求:若图像欠曝(黑色噪点多),可增加 neighbors 值(如8邻域),提高threshold_min,避免过度腐蚀。 */ //------------------------------------------------------------------------------------------------------------------ // @函数功能 给图像画一个黑框 // @函数返回 带有黑框的图像数组bin_image //------------------------------------------------------------------------------------------------------------------ void image_draw_rectan(uint8(*image)[MT9V03X_W]) { uint8 i = 0; for (i = 0; i < MT9V03X_H; i++) { image[i][0] = 0; image[i][1] = 0; image[i][MT9V03X_W - 1] = 0; image[i][MT9V03X_W - 2] = 0; } for (i = 0; i < MT9V03X_W; i++) { image[0][i] = 0; image[1][i] = 0; //image[image_h-1][i] = 0; } } //----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- //----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- // @函数功能 环岛元素识别处理 // @函数返回 无 //----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- //----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- //全局状态变量 IslandState current_state = NORMAL; uint8_t island_type = 0; // 0:未确定 1:左环岛 2:右环岛 uint8 target_h = 0;//存放断裂点行数 uint16 A_edge = 0; uint16 V_edge = 0; uint8 A_point = 0; uint8 P_point = 0; uint8 V_point = 0; //------------------------------------------------------------------------------------------------------------------ // @函数功能 边界连续性判断 // @参数说明 需要寻找的边线 // @函数返回 有断裂返回0,无断裂返回1 //------------------------------------------------------------------------------------------------------------------ uint8 border_continuous(uint8 *border) { for(uint8 i = MT9V03X_H-1;i > 0;i--) { int8 diff = border[i] - border[i - 1]; if(diff < -4 || diff > 4) { target_h = i; return 0;//有断裂 } } return 1;//无断裂 } //------------------------------------------------------------------------------------------------------------------ // @函数功能 寻找A点 // @函数返回 A点 //------------------------------------------------------------------------------------------------------------------ //左圆环时寻找左边界A点 uint8 find_point_A_l(void) { uint16 j = border_to_edge_l[target_h];//映射 int16 search_min = j - search_range;//遍历点的最小编号 int16 search_max = j + search_range;//遍历点的最大编号 //限定查找区间 if(search_min < 3) { search_min = 3; } if(search_max > data_stastics_l - 2) { search_max = data_stastics_l - 2; } //遍历寻找A点 for(j = search_min;j <= search_max;j++) { if(points_l[j+2][0] data_stastics_r - 2) { search_max = data_stastics_r - 2; } //遍历寻找A点 for(j = search_min;j <= search_max;j++) { if(points_l[j+2][0]>points_l[j][0] && points_l[j+2][1] 1;i++) { if(l_border[i-2] < l_border[i] && l_border[i+2] < l_border[i]) { P_point = i; return 1;//找到P点 } } return 0;//未找到P点 } //右圆环时寻找左边界P点 uint8 find_point_P_r(void) { for(uint8 i = MT9V03X_H - 2;i > 1;i++) { if(l_border[i-2] > l_border[i] && l_border[i+2] > l_border[i]) { P_point = i; return 1;//找到P点 } } return 0;//未找到P点 } //------------------------------------------------------------------------------------------------------------------ // @函数功能 寻找V点 // @函数返回 V点 //------------------------------------------------------------------------------------------------------------------ //左边V点 uint8 find_point_V_l(void) { uint16 j = border_to_edge_l[target_h];//映射 int16 search_min = j - search_range;//遍历点的最小编号 int16 search_max = j + search_range;//遍历点的最大编号 //限定查找区间 if(search_min < 3) { search_min = 3; } if(search_max > data_stastics_l - 2) { search_max = data_stastics_l - 2; } //遍历寻找V点 for(j = search_min;j <= search_max;j++) { if(points_l[j+2][1] data_stastics_r - 2) { search_max = data_stastics_r - 2; } //遍历寻找V点 for(j = search_min;j <= search_max;j++) { if(points_l[j+2][1] end_point;h--) { border[h] = (uint8)(border[m] + (m - h) / k); } } //----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- //----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- // @函数功能 总环岛识别处理函数 // @函数返回 无 //----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- //----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- void island_handler(void) { switch(current_state) { case NORMAL: //判断初见环岛条件 if(border_continuous(r_border) && !border_continuous(l_border) && find_point_A_l() && find_point_P_l())//判断是否为左环岛 { current_state = SEE_ISLAND; island_type = 1;//左环岛 } if(!border_continuous(r_border) && border_continuous(l_border) && find_point_A_r() && find_point_P_r())//判断是否为右环岛 { current_state = SEE_ISLAND; island_type = 2;//右环岛 } break; case SEE_ISLAND://初见环岛 if(island_type == 1)//左环岛 { //找A,P点 border_continuous(l_border); find_point_A_l(); find_point_P_l(); //补线 A_point = points_l[A_edge][1]; l_border[A_point] = points_l[A_edge][0]; patching_line(A_point,P_point,l_border,P_point); //判断初入环岛条件 if(l_border[MT9V03X_H-1] == border_min && l_border[MT9V03X_H-2] == border_min) { current_state = ENTER_ISLAND; } } if(island_type == 2)//右环岛 { //找A,P点 border_continuous(r_border); find_point_A_r(); find_point_P_r(); //补线 A_point = points_r[A_edge][1]; r_border[A_point] = points_r[A_edge][0]; patching_line(A_point,P_point,r_border,P_point); //判断初入环岛条件 if(r_border[MT9V03X_H-1] == border_max && r_border[MT9V03X_H-2] == border_max) { current_state = ENTER_ISLAND; } } break; case ENTER_ISLAND://初入环岛 if(island_type == 1)//左环岛 { //找P点 find_point_P_l(); //补线 A_point = MT9V03X_H-1; patching_line(A_point,P_point,l_border,P_point); //判断第一次到环岛出口条件 if(!border_continuous(l_border) && border_continuous(r_border) && find_point_V_l()) { current_state = EXIT_ISLAND1; } } if(island_type == 2)//右环岛 { //找P点 find_point_P_r(); //补线 A_point = MT9V03X_H-1; patching_line(A_point,P_point,r_border,P_point); //判断第一次到环岛出口条件 if(border_continuous(l_border) && !border_continuous(r_border) && find_point_V_r()) { current_state = EXIT_ISLAND1; } } break; case EXIT_ISLAND1://第一次到环岛出口 if(island_type == 1)//左环岛 { //找V点 border_continuous(l_border); find_point_V_l(); //补线 V_point = points_l[V_edge][1]; r_border[V_point] = points_l[A_edge][0]; patching_line(119,V_point,r_border,0); //判断即将入环条件 if(!border_continuous(r_border) && find_point_V_r()) { current_state = IN_ISLAND; } } if(island_type == 2)//右环岛 { //找V点 border_continuous(r_border); find_point_V_r(); //补线 V_point = points_r[V_edge][1]; l_border[V_point] = points_r[A_edge][0]; patching_line(119,V_point,l_border,0); //判断即将入环条件 if(!border_continuous(l_border) && find_point_V_l()) { current_state = IN_ISLAND; } } break; case PRE_ENTER://即将入环 if(island_type == 1)//左环岛 { //找V点 border_continuous(r_border); find_point_V_r(); //补线 V_point = points_r[V_edge][1]; r_border[V_point] = points_r[A_edge][0]; patching_line(119,V_point,r_border,0); //判断完全入环条件 if(border_continuous(r_border) && border_continuous(l_border)) { current_state = IN_ISLAND; } } if(island_type == 2)//右环岛 { //找V点 border_continuous(l_border); find_point_V_l(); //补线 V_point = points_l[V_edge][1]; l_border[V_point] = points_l[A_edge][0]; patching_line(119,V_point,l_border,0); //判断完全入环条件 if(border_continuous(r_border) && border_continuous(l_border)) { current_state = IN_ISLAND; } } break; case IN_ISLAND://完全入环 if(island_type == 1)//左环岛 { //条件补线 if(!border_continuous(r_border) && border_continuous(l_border)) { r_border[0] = border_min; patching_line(target_h,0,r_border,0); } //判断第二次到环岛出口条件 if( l_border[MT9V03X_H-1]>border_min && l_border[MT9V03X_H-2]>border_min && r_border[MT9V03X_H-1]==border_max && r_border[MT9V03X_H-1]==border_max) { current_state = EXIT_ISLAND2; } } if(island_type == 2)//右环岛 { //条件补线 if(!border_continuous(l_border) && border_continuous(r_border)) { l_border[0] = border_max; patching_line(target_h,0,l_border,0); } //判断第二次到环岛出口条件 if( l_border[MT9V03X_H-1]==border_min && l_border[MT9V03X_H-2]==border_min && r_border[MT9V03X_H-1]<border_max && r_border[MT9V03X_H-1]<border_max) { current_state = EXIT_ISLAND2; } } break; case EXIT_ISLAND2://第二次到环岛出口 if(island_type == 1)//左环岛 { //判断最终出环条件 if(!border_continuous(l_border) && border_continuous(r_border)) { current_state = FINAL_EXIT; } } if(island_type == 2)//右环岛 { //判断最终出环条件 if(border_continuous(l_border) && !border_continuous(r_border)) { current_state = FINAL_EXIT; } } break; case FINAL_EXIT://最终出环 if(island_type == 1)//左环岛 { //补线 border_continuous(l_border); patching_line(119,target_h,l_border,target_h); //结束条件 if(border_continuous(l_border) && border_continuous(r_border)) { current_state = NORMAL; island_type = 0; } } if(island_type == 2)//右环岛 { //补线 border_continuous(r_border); patching_line(119,target_h,r_border,target_h); //结束条件 if(border_continuous(l_border) && border_continuous(r_border)) { current_state = NORMAL; island_type = 0; } } break; } } //----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- //----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- // @函数功能 获取车身偏差 // @函数返回 车身偏差error //----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- //----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- int16 error = 1000; //误差100 int16 error_last = 0; //上次误差 void car_error(void) { uint8 i = 0; int32 num = 0; //int16 num = 0 for(i = 1;i < MT9V03X_H;i++) { num += (center_line[i] - (MT9V03X_W / 2)); } error_last = error; error = num; } //----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- //----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- // @函数功能 最终处理函数 // @函数返回 无 //----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- //----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- uint8 change = 0; uint8 change_last = 0; void image_process(void) { uint16 i; uint8 hightest = 0;//定义一个最高行,tip:这里的最高指的是y值的最小 Get_image(mt9v03x_image);//获得一副灰度图像 turn_to_bin();//大津法二值化。 //提取赛道边界 image_filter(bin_image);//滤波减少噪声 //morphological_filter(bin_image); //(自己添加部分) image_draw_rectan(bin_image);//给图像画黑框为八领域做准备 //清零 data_stastics_l = 0; data_stastics_r = 0; if (get_start_point(MT9V03X_H - 2))//找到起点了,再执行八领域,没找到就一直找 { navigation_flag = 0; //判断直角弯 uint8 m = 0,n = 0, j = 0; for(j = 1;j < MT9V03X_W;j++) { if(bin_image[60][j] == 255) { break; } if(bin_image[62][j] == 255) { break; } } if(j == MT9V03X_W) { for(j = 119;j > 55;j--) { if(bin_image[j][5] == 255 && bin_image[j][7] == 255) { m = 1; } if(bin_image[j][115] == 255 && bin_image[j][113] == 255) { n = 1; } } } if(m == 1 && n == 0) { navigation_flag = 1; } if(m == 0 && n == 1) { navigation_flag = 2; } //八领域处理 search_l_r((uint16)USE_num, bin_image, &data_stastics_l, &data_stastics_r, start_point_l[0], start_point_l[1], start_point_r[0], start_point_r[1], &hightest); // 从爬取的边界线内提取边线 , 这个才是最终有用的边线 get_left(data_stastics_l); get_right(data_stastics_r); //处理函数 island_handler();//环岛元素识别处理 } else { navigation_flag = 3; } for (i = hightest; i < MT9V03X_H-1; i++) { center_line[i] = (l_border[i] + r_border[i]) >> 1;//求中线 } if(bin_image[118][8] == 0 && bin_image[118][40] == 255 && bin_image[118][100] == 255 && bin_image[118][148] == 255 && bin_image[118][180] == 0 && bin_image[118][94] == 255) { change_last = change; change = 1; } else { change = 0; } if(change == 1 && change_last == 0) { stop++; } //显示图像 后期关掉 ips114_displayimage03x(bin_image[0], MT9V03X_W, MT9V03X_H); for (i = hightest; i < MT9V03X_H-1; i++) { ips114_draw_point(center_line[i], i, uesr_RED);//显示起点 显示中线 ips114_draw_point(l_border[i], i, uesr_GREEN);//显示起点 显示左边线 ips114_draw_point(r_border[i], i, uesr_BLUE);//显示起点 显示右边线 } ips114_show_int(189,0,stop,5); ips114_show_int(189,15,change,5); ips114_show_int(189,30,change_last,5); //获取车身偏差error car_error(); if(navigation_flag == 1) { error = -2000; } if(navigation_flag == 2) { error = 2000; } } 根据以上代码添加一份优化曝光问题的直方图均衡化、伽马校正或Retinex算法的代码方案

头文件代码如下: #ifndef _SERVO_CONTROL_H_ #define _SERVO_CONTROL_H_ #include "stm32f4xx_hal.h" #include <stdbool.h> #include <stdint.h> #include "usart.h" #define FRAME_HEADER 0x55 //帧头 #define CMD_SERVO_MOVE 0x03 //舵机移动指令 #define CMD_ACTION_GROUP_RUN 0x06 //运行动作组指令 #define CMD_ACTION_GROUP_STOP 0x07 //停止动作组指令 #define CMD_ACTION_GROUP_SPEED 0x0B //设置动作组运行速度 #define CMD_GET_BATTERY_VOLTAGE 0x0F //获取电池电压指令 extern bool isUartRxCompleted; extern uint8_t LobotRxBuf[16]; extern uint16_t batteryVolt; extern void receiveHandle(void); typedef struct _servo_ { uint8_t ID; uint16_t Position; } servo; void moveServo(uint8_t servoID, uint16_t Position, uint16_t Time); void moveServosByArray(servo servos[], uint8_t Num, uint16_t Time); void moveServos(uint8_t Num, uint16_t Time, ...); void runActionGroup(uint8_t numOfAction, uint16_t Times); void stopActionGroup(void); void setActionGroupSpeed(uint8_t numOfAction, uint16_t Speed); void setAllActionGroupSpeed(uint16_t Speed); #endif 报错: *** Using Compiler 'V5.06 update 7 (build 960)', folder: 'C:\Keil\MDK536\ARM\ARMCC\Bin' compiling ServoControl.c... ..\Drivers\ServoControl\Include\ServoControl.h(16): error: #130: expected a "{" extern bool isUartRxCompleted; ..\Drivers\ServoControl\Include\ServoControl.h(21): warning: #12-D: parsing restarts here after previous syntax error typedef struct _servo_ { ..\Drivers\ServoControl\Include\ServoControl.h(22): warning: #177-D: variable "ID" was declared but never referenced uint8_t ID; ..\Drivers\ServoControl\Include\ServoControl.h(23): warning: #177-D: variable "Position" was declared but never referenced uint16_t Position; ..\Drivers\ServoControl\Include\ServoControl.h(24): error: #77-D: this declaration has no storage class or type specifier } servo; ..\Drivers\ServoControl\Include\ServoControl.h(27): error: #757: variable "servo" is not a type name void moveServosByArray(servo servos[], uint8_t Num, uint16_t Time); ..\Drivers\ServoControl\Include\ServoControl.h(33): warning: #1-D: last line of file ends without a newline #endif ..\Drivers\ServoControl\Source\ServoControl.c(50): error: #757: variable "servo" is not a type name void moveServosByArray(servo servos[], uint8_t Num, uint16_t Time) ..\Drivers\ServoControl\Source\ServoControl.c: 4 warnings, 4 errors "..\Drivers\ServoControl\Source\ServoControl.c" - 4 Error(s), 4 Warning(s).

/********************************************************************************************************************* * @file main.c * @brief 摄像头图像屏幕显示例程 * @author lemon * @version 1.0 * @Target core CH32V307VCT6 * @date 2022-3-2 * ********************************************************************************************************************/ /* 用户头文件 */ #include "main.h" #include "headfile.h" #include "HF_MT9V03X.h" #include "car_motion.h" /* 全局变量声明 */ /* 主函数 */ int main(void) { /* 此处声明需要用到的局部变量 */ // uint8_t display_compressed = 1; /* 智能车初始化 */ car_init(); /* 此处编写单次运行的代码(例如:初始化代码等) */ ips114_init(); //初始化屏幕 // ips114_show_string(0,0,"CAM-IPS"); ips114_show_string(0,20,"NB-666"); mt9v03x_init_dvp(); Delay_Ms(100); while(1) { /* 此处编写需要循环执行的代码 */ if(mt9v03x_finish_flag_dvp) { mt9v03x_finish_flag_dvp = 0; compressimage(); //压缩图像 //根据原始图像大小,显示原始图像 ips114_displayimage032(mt9v03x_image_dvp[0], MT9V03X_DVP_W, MT9V03X_DVP_H); } } } //图像压缩... //void compressimage(void) //{ // char i,j; // uint8_t row,line; // const float div_h = MT9V03X_DVP_H, div_w = MT9V03X_DVP_W; // for (i = 0; i < MT9V03X_DVP_H; i++) // { // row = i * div_h + 0.5; // for (j = 0; j < MT9V03X_DVP_W; j++) // { // line = j * div_w + 0.5; // mt9v03x_image_dvp[i][j] = mt9v03x_image_dvp[row][line]; // } // } //} void compressimage(void) { const uint16_t W = 60; const uint16_t H = 80; // 计算缩放因子 const float scale_x = (float)MT9V03X_DVP_W / W; const float scale_y = (float)MT9V03X_DVP_H / H; for (uint16_t y = 0; y < H; y++) { // 计算源图像中的行位置 uint16_t src_y = (uint16_t)(y * scale_y); // 防止越界 if (src_y >= MT9V03X_DVP_H) src_y = MT9V03X_DVP_H - 1; for (uint16_t x = 0; x < W; x++) { // 计算源图像中的列位置 uint16_t src_x = (uint16_t )(x * scale_x); // 防止越界 if (src_x >= MT9V03X_DVP_W) src_x = MT9V03X_DVP_W - 1; mt9v03x_image_dvp[y][x] = mt9v03x_image_dvp[src_y][src_x]; } } }

#include "stm32f10x.h" // Device header #include "Delay.h" #include "ADC.h" #include "DMA.h" #include "OLED.h" // 统一 ARR 数组类型为 uint16_t uint16_t ARR[2]; int main(void) { OLED_Init(); AD_Init(); MyDMA_Init(); while (1) { // 配置通道 5 并进行转换 AD_ChannelConfig(ADC_Channel_5); DMA_Transfer(); // 配置通道 6 并进行转换 AD_ChannelConfig(ADC_Channel_6); DMA_Transfer(); // 显示转换结果 OLED_ShowNum(2, 1, ARR[0], 4); OLED_ShowNum(2, 6, ARR[1], 4); } } #include "stm32f10x.h" // Device header #include "OLED.h" extern uint16_t ARR[2]; void MyDMA_Init(void) { RCC_AHBPeriphClockCmd(RCC_AHBPeriph_DMA1, ENABLE); DMA_InitTypeDef DMA_InitStructure; DMA_InitStructure.DMA_BufferSize = 2; // 数据从外设(ADC 的数据寄存器)传输到内存(ARR 数组) DMA_InitStructure.DMA_DIR = DMA_DIR_PeripheralSRC; DMA_InitStructure.DMA_M2M = DMA_M2M_Disable; DMA_InitStructure.DMA_MemoryBaseAddr = (uint32_t)ARR; DMA_InitStructure.DMA_MemoryDataSize = DMA_MemoryDataSize_HalfWord; // 改为半字(16 位) DMA_InitStructure.DMA_MemoryInc = ENABLE; DMA_InitStructure.DMA_Mode = DMA_Mode_Normal; DMA_InitStructure.DMA_PeripheralBaseAddr = (uint32_t)&ADC1->DR; DMA_InitStructure.DMA_PeripheralDataSize = DMA_PeripheralDataSize_HalfWord; // 改为半字(16 位) DMA_InitStructure.DMA_PeripheralInc = DISABLE; DMA_InitStructure.DMA_Priority = DMA_Priority_Medium; DMA_Init(DMA1_Channel1, &DMA_InitStructure); DMA_Cmd(DMA1_Channel1, DISABLE); ADC_DMACmd(ADC1, DISABLE); } void DMA_Transfer(void) { DMA_SetCurrDataCounter(DMA1_Channel1, 2); // 设置传输数据数量为 2 DMA_Cmd(DMA1_Channel1, ENABLE); ADC_SoftwareStartConvCmd(ADC1, ENABLE); while (DMA_GetFlagStatus(DMA1_FLAG_TC1) == RESET); DMA_ClearFlag(DMA1_FLAG_TC1); } #include "stm32f10x.h" // Device header extern uint16_t ARR[2]; void AD_Init(void) { RCC_APB2PeriphClockCmd(RCC_APB2Periph_ADC1, ENABLE); RCC_ADC

大家在看

recommend-type

公开公开公开公开-openprotocol_specification 2.7

LY-WCS-2012-01-06-01 V 1.0 公开公开公开公开 产品名称:产品名称:产品名称:产品名称: WCS 系统简介系统简介系统简介系统简介-公开版公开版公开版公开版 共共共共 13 页页页页 WCSWCSWCSWCS 系统简介系统简介系统简介系统简介 ((((客户交流用客户交流用客户交流用客户交流用)))) 文文文文 档档档档 作作作作 者:者:者:者: 王 超 日期:日期:日期:日期:2012/01/06 开发开发开发开发/测试经理:测试经理:测试经理:测试经理: 程 达 日期:日期:日期:日期:2012/01/06 项项项项 目目目目 经经经经 理:理:理:理: 程 达 日期:日期:日期:日期:2012/01/06 文文文文 档档档档 编编编编 号:号:号:号: ___________ ___ LY-WCS-2012-01-06-01______________ 上海朗因智能科技有限公司上海朗因智能科技有限公司上海朗因智能科技有限公司上海朗因智能科技有限公司 版权所有版权所有版权所有版权所有 不得复制不得复制不得复制不得复制
recommend-type

中国联通OSS系统总体框架

中国联通OSS系统总体框架。中国联通OSS系统总体框架。
recommend-type

基于 ADS9110的隔离式数据采集 (DAQ) 系统方案(待编辑)-电路方案

描述 该“可实现最大 SNR 和采样率的 18 位 2Msps 隔离式数据采集参考设计”演示了如何应对隔离式数据采集系统设计中的典型性能限制挑战: 通过将数字隔离器引入的传播延迟降至最低,使采样率达到最大 通过有效地减轻数字隔离器引入的 ADC 采样时钟抖动,使高频交流信号链性能 (SNR) 达到最大 特性 18 位、2Msps、1 通道、差分输入、隔离式数据采集 (DAQ) 系统 利用 ADS9110 的 multiSPI:trade_mark: 数字接口实现 2MSPS 采样率,同时保持低 SPI 数据速率 源同步 SPI 数据传输模式,可将隔离器传播延迟降至最低并提高采样率 可降低隔离器引入的抖动的技术,能够将 SNR 提高 12dB(100kHz Fin,2MSPS) 经测试的设计包含理论和计算、组件选择、PCB 设计和测量结果 原理图 附件文档: 方案相关器件: ISO1541:低功耗、双向 I2C 隔离器 ISO7840:高性能 5.7kVRMS 增强型四通道数字隔离器 ISO7842:高性能 5.7kVRMS 增强型四通道数字隔离器
recommend-type

自动化图书管理系统 v7.0

自动化图书馆管理系统包含了目前图书馆管理业务的每个环节,能同时管理图书和期刊,能打印条码、书标,并制作借书证,最大藏书量在300万册以上。系统采用CNMARC标准及中图法第四版分类,具有Web检索与发布功能,条码扫描,支持一卡通,支持触摸屏。系统包括系统管理、读者管理、编目、流通、统计、查询等功能。能够在一个界面下实现图书、音像、期刊的管理,设置假期、设置暂离锁(提高安全性)、暂停某些读者的借阅权、导入导出读者、交换MARC数据、升级辅助编目库等。安装本系统前请先安装SQL 2000SQL 下载地址 http://pan.baidu.com/s/145vkr安装过程如有问题可咨询: TEL 13851381727  QQ 306404635
recommend-type

MOXA UPort1110drvUSB转串口驱动

MOXA UPort1110drvUSB转串口驱动,解决没有com口的烦恼

最新推荐

recommend-type

浅谈int8_t int64_t size_t ssize_t的相关问题(详解)

同样,`uint8_t`、`uint16_t`、`uint32_t`和`uint64_t`是对应的无符号整数类型,它们的位宽与有符号类型相同,但不包含负值。 `size_t`是一个无符号整型,通常用来表示内存对象的大小。在32位系统上,它通常是`...
recommend-type

500强企业管理表格模板大全

在当今商业环境中,管理表格作为企业运营和管理的重要工具,是确保组织高效运作的关键。世界500强企业在管理层面的成功,很大程度上得益于它们的规范化和精细化管理。本文件介绍的“世界500强企业管理表格经典”,是一份集合了多种管理表格模板的资源,能够帮助管理者们更有效地进行企业规划、执行和监控。 首先,“管理表格”这个概念在企业中通常指的是用于记录、分析、决策和沟通的各种文档和图表。这些表格不仅仅局限于纸质形式,更多地是以电子形式存在,如Excel、Word、PDF等文件格式。它们帮助企业管理者收集和整理数据,以及可视化信息,从而做出更加精准的决策。管理表格可以应用于多个领域,例如人力资源管理、财务预算、项目管理、销售统计等。 标题中提及的“世界500强”,即指那些在全球范围内运营且在《财富》杂志每年公布的全球500强企业排行榜上出现的大型公司。这些企业通常具备较为成熟和先进的管理理念,其管理表格往往经过长时间的实践检验,并且能够有效地提高工作效率和决策质量。 描述中提到的“规范化”是企业管理中的一个核心概念。规范化指的是制定明确的标准和流程,以确保各项管理活动的一致性和可预测性。管理表格的使用能够帮助实现管理规范化,使得管理工作有据可依、有章可循,减少因个人经验和随意性带来的风险和不确定性。规范化管理不仅提高了企业的透明度,还有利于培养员工的规则意识,加强团队之间的协调与合作。 “经典”一词在这里强调的是,这些管理表格模板是经过实践验证,能够适用于大多数管理场景的基本模式。由于它们的普适性和高效性,这些表格模板被广泛应用于不同行业和不同规模的企业之中。一个典型的例子是SWOT分析表,它可以帮助企业识别内部的优势(Strengths)、弱点(Weaknesses)以及外部的机会(Opportunities)和威胁(Threats)。SWOT分析表就是一个在世界500强企业中普遍使用的管理表格。 标签中的“表格模板”则是对上述管理工具的具体描述。这些模板通常是预先设计好的,能够帮助企业管理者快速开始工作,无需从零开始制作新的表格。它们包含了一些必备的字段和格式,用户可以根据自己的具体需求对模板进行调整和填充。 文件名称列表中的“index.html”可能是压缩包内的一个网页文件,用于展示管理表格的索引或介绍。如果这是一个在线资源,它将允许用户通过网页界面访问和下载各种表格模板。而“menu”可能是一个导航文件,用来帮助用户在多个表格模板之间进行选择。“data”文件夹可能包含了实际的表格模板文件,它们可能以Excel、Word等格式存在。 总的来说,管理表格是企业成功管理不可或缺的工具。通过使用世界500强企业所采纳的管理表格模板,其他企业可以借鉴这些顶级企业的管理经验,帮助自己在管理实践中达到更高的效率和质量。通过规范化和模板化的管理表格,企业可以确保其管理活动的一致性和标准化,这对于保持竞争力和实现长期发展至关重要。
recommend-type

YOLOv8目标检测算法深度剖析:从零开始构建高效检测系统(10大秘诀)

# 1. YOLOv8目标检测算法概述 ## 1.1 YOLOv8的简介与定位 YOLOv8(You Only Look Once version 8)作为一种前沿的目标检测算法,是由YOLO系列算法演化而来。该算法特别强调快速与准确的平衡,它被设计用于实时图像识别
recommend-type

mclmcrrt9_8.dll下载

<think>我们正在处理用户关于"mclmcrrt9_8.dll"文件的下载请求。根据引用内容,这个文件是MATLAB运行时库的一部分,通常与特定版本的MATLABRuntime相关联。用户需求:下载mclmcrrt9_8.dll的官方版本。分析:1.根据引用[2]和[3],mclmcrrt9_0_1.dll和mclmcrrt9_13.dll都是MATLABRuntime的文件,版本号对应MATLAB的版本(如9_0对应R2016a,9_13对应2022b)。2.因此,mclmcrrt9_8.dll应该对应于某个特定版本的MATLAB(可能是R2016b?因为9.8版本通常对应MATLABR
recommend-type

林锐博士C++编程指南与心得:初学者快速提能

首先,这份文件的核心在于学习和提高C++编程能力,特别是针对初学者。在这个过程中,需要掌握的不仅仅是编程语法和基本结构,更多的是理解和运用这些知识来解决实际问题。下面将详细解释一些重要的知识点。 ### 1. 学习C++基础知识 - **基本数据类型**: 在C++中,需要熟悉整型、浮点型、字符型等数据类型,以及它们的使用和相互转换。 - **变量与常量**: 学习如何声明变量和常量,并理解它们在程序中的作用。 - **控制结构**: 包括条件语句(if-else)、循环语句(for、while、do-while),它们是构成程序逻辑的关键。 - **函数**: 理解函数定义、声明、调用和参数传递机制,是组织代码的重要手段。 - **数组和指针**: 学习如何使用数组存储数据,以及指针的声明、初始化和运算,这是C++中的高级话题。 ### 2. 林锐博士的《高质量的C++编程指南》 林锐博士的著作《高质量的C++编程指南》是C++学习者的重要参考资料。这本书主要覆盖了以下内容: - **编码规范**: 包括命名规则、注释习惯、文件结构等,这些都是编写可读性和可维护性代码的基础。 - **设计模式**: 在C++中合理使用设计模式可以提高代码的复用性和可维护性。 - **性能优化**: 学习如何编写效率更高、资源占用更少的代码。 - **错误处理**: 包括异常处理和错误检测机制,这对于提高程序的鲁棒性至关重要。 - **资源管理**: 学习如何在C++中管理资源,避免内存泄漏等常见错误。 ### 3. 答题与测试 - **C++C试题**: 通过阅读并回答相关试题,可以帮助读者巩固所学知识,并且学会如何将理论应用到实际问题中。 - **答案与评分标准**: 提供答案和评分标准,使读者能够自我评估学习成果,了解哪些方面需要进一步加强。 ### 4. 心得体会与实践 - **实践**: 理论知识需要通过大量编程实践来加深理解,动手编写代码,解决问题,是学习编程的重要方式。 - **阅读源码**: 阅读其他人的高质量代码,可以学习到许多编程技巧和最佳实践。 - **学习社区**: 参与C++相关社区,比如Stack Overflow、C++论坛等,可以帮助解答疑惑,交流心得。 ### 5. 拓展知识 - **C++标准库**: 学习C++标准模板库(STL),包括vector、map、list、algorithm等常用组件,是构建复杂数据结构和算法的基础。 - **面向对象编程**: C++是一种面向对象的编程语言,理解类、对象、继承、多态等概念对于写出优雅的C++代码至关重要。 - **跨平台编程**: 了解不同操作系统(如Windows、Linux)上的C++编程差异,学习如何编写跨平台的应用程序。 - **现代C++特性**: 学习C++11、C++14、C++17甚至C++20中的新特性,如智能指针、lambda表达式、自动类型推导等,可以提高开发效率和代码质量。 ### 总结 学习C++是一个系统工程,需要从基础语法开始,逐步深入到设计思想、性能优化、跨平台编程等领域。通过不断的学习和实践,初学者可以逐步成长为一个具有高代码质量意识的C++程序员。而通过阅读经典指南书籍,参与测试与评估,以及反思和总结实践经验,读者将更加扎实地掌握C++编程技术。此外,还需注意编程社区的交流和现代C++的发展趋势,这些都对于保持编程技能的前沿性和实用性是必不可少的。
recommend-type

线性代数方程组求解全攻略:直接法vs迭代法,一文搞懂

# 摘要 线性代数方程组求解是数学和工程领域中的基础而重要的问题。本文首先介绍了线性方程组求解的基础知识,然后详细阐述了直接法和迭代法两种主要的求解策略。直接法包括高斯消元法和LU分解方法,本文探讨了其理论基础、实践应用以及算法优化。迭代法则聚焦于雅可比和高斯-赛德尔方法,分析了其原理、实践应用和收敛性。通过比较分析,本文讨论了两种方法在
recommend-type

怎么下载mysql8.0.33版本

<think>我们正在处理用户关于下载并安装MySQL8.0.33版本的问题。根据引用[1]和引用[2],我们可以提供两种方法:一种是使用RPM包在CentOS上安装,另一种是使用ZIP包在Windows上安装。另外,引用[3]提到了安装过程中需要注意Python环境,但根据MySQL官方文档,Python并不是必须的,除非使用某些特定功能(如MySQLShell的Python模式)。因此,我们主要关注下载和安装步骤。用户没有明确操作系统,因此我们将分别介绍Windows和CentOS(Linux)下的安装方法。步骤概述:1.下载MySQL8.0.332.安装(根据系统不同步骤不同)3.初始化
recommend-type

C#学籍管理系统开发完成,信管专业的福音

标题中提到的“C#设计的学籍系统”涉及到几个重要的知识点。首先是“C#”,这是微软公司开发的一种面向对象的、运行在.NET框架上的高级编程语言。C#语言广泛用于开发Windows应用程序、游戏开发、分布式组件和客户端服务器应用程序等。在该标题中,它被用于构建一个学籍系统,这意味着系统的核心逻辑和功能是通过C#语言实现的。 其次是“学籍系统”,这通常是指用于管理学生个人信息、成绩、课程和学籍状态等数据的软件应用系统。学籍系统能够帮助教育机构高效地维护和更新学生档案,实现学生信息的电子化管理。它通常包括学生信息管理、成绩管理、课程安排、毕业资格审核等功能。 从描述中我们可以得知,这个学籍系统是“专门为信管打造”的。这里的“信管”很可能是对“信息管理”或者“信息系统管理”专业的简称。信息管理是一个跨学科领域,涉及信息技术在收集、存储、保护、处理、传输和安全地管理和开发信息资源方面的应用。这个系统可能是针对该专业学生的实际需求来定制开发的,包括一些特有的功能或者界面设计,以便更好地满足专业学习和实践操作的需要。 描述中还提到“请大家积极下载”,这可能意味着该学籍系统是一个开源项目,或者至少是一个允许公众访问的软件资源。由于开发者提出了“如有不足之处请大家多多包涵”,我们可以推断这个系统可能还处于测试或早期使用阶段,因此可能还不是完全成熟的版本,或者可能需要使用者反馈意见以便进行后续改进。 标签中的“C#的啊,大家注意,嘻嘻哈哈”表达了开发者轻松的态度和对C#语言的特定提及。这个标签可能是在一个非正式的交流环境中发布的,所以用词带有一定的随意性。尽管如此,它还是说明了该学籍系统是基于C#语言开发的,并提醒用户对这一点给予关注。 关于压缩包子文件的文件名称列表中,“学生成绩管理系统”直接指出了这个软件系统的主要功能之一,即管理学生的成绩。这通常包括录入成绩、查询成绩、统计分析成绩、成绩报告等功能。一个优秀的学生成绩管理系统可以让教师和学校管理人员更加高效地处理学生的成绩数据,同时也能让学生本人了解自己的学业进展。 综合以上信息,我们可以提炼出以下知识点: 1. C#语言:是一种面向对象的编程语言,适用于.NET框架,用于开发各种类型的应用程序。 2. 学籍系统:是管理学生基本信息、成绩、课程和学籍状态的软件应用系统,目的是实现学生信息的电子化管理。 3. 信息系统管理专业:该系统可能是针对信息系统管理专业的学生或教师的需求设计和开发的。 4. 开源项目或公众访问资源:鼓励用户下载使用,并接受用户的反馈和建议。 5. 学生成绩管理系统:是学籍系统的一个重要组成部分,专注于管理学生的成绩数据。 在开发一个C#设计的学籍系统时,开发者需要考虑的因素很多,比如系统的用户界面设计、数据库设计、数据安全、网络通信等。此外,系统还应该有良好的扩展性和易用性,以便未来可以根据用户反馈和新需求进行升级和优化。
recommend-type

特征值与特征向量速成课:理论精讲与7种高效算法

# 摘要 本文系统地介绍了特征值与特征向量的基本概念、理论深度剖析、高效特征值算法以及这些数学工具在实际问题中的应用。首先从定义与性质出发,详细解释了特征值与特征向量的
recommend-type

嵌入式Linux读写硬盘数据错误CF2 13473a 13433a 1342b2 13473a解决方案

<think>嗯,用户这次提出的问题很专业,是关于嵌入式Linux系统硬盘读写错误的解决方案。从错误代码CF2、13473a等来看,这应该是特定硬盘控制器或文件系统的错误码,需要结合硬件和系统环境分析。用户可能正在调试一个嵌入式设备,遇到了硬盘读写不稳定问题。这类错误通常涉及硬件连接、驱动兼容性、文件系统损坏等多个层面。用户提供的错误码格式看起来像十六进制值,可能是控制器寄存器状态或SCSI检测码。考虑到嵌入式系统的特殊性,需要从底层开始排查。首先应该检查物理连接,因为振动或接触不良在嵌入式环境中很常见。然后是驱动兼容性,嵌入式Linux常使用定制内核,驱动版本匹配很重要。另外,用户没有说明文