PyTorch 在 PyCharm 中实现采用卷积神经网络分类 MNIST 数据集
时间: 2025-01-23 13:15:46 浏览: 44
在PyCharm中使用PyTorch实现卷积神经网络(CNN)来分类MNIST数据集的步骤如下:
1. **安装必要的库**:
确保你已经安装了PyTorch和PyCharm。如果没有安装,可以使用以下命令安装PyTorch:
```bash
pip install torch torchvision
```
2. **导入库**:
在PyCharm中创建一个新的Python文件,并导入必要的库。
```python
import torch
import torch.nn as nn
import torch.optim as optim
import torch.nn.functional as F
from torchvision import datasets, transforms
```
3. **定义超参数**:
定义一些超参数,如学习率、批量大小、训练轮数等。
```python
batch_size = 64
learning_rate = 0.01
num_epochs = 5
```
4. **数据预处理**:
使用`transforms`对数据进行预处理,并将数据加载到`DataLoader`中。
```python
transform = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.1307,), (0.3081,))
])
train_dataset = datasets.MNIST(root='./data', train=True, transform=transform, download=True)
test_dataset = datasets.MNIST(root='./data', train=False, transform=transform, download=True)
train_loader = torch.utils.data.DataLoader(dataset=train_dataset, batch_size=batch_size, shuffle=True)
test_loader = torch.utils.data.DataLoader(dataset=test_dataset, batch_size=batch_size, shuffle=False)
```
5. **定义卷积神经网络模型**:
定义一个简单的CNN模型。
```python
class CNN(nn.Module):
def __init__(self):
super(CNN, self).__init__()
self.conv1 = nn.Conv2d(1, 10, kernel_size=5)
self.conv2 = nn.Conv2d(10, 20, kernel_size=5)
self.fc1 = nn.Linear(320, 50)
self.fc2 = nn.Linear(50, 10)
def forward(self, x):
x = F.relu(F.max_pool2d(self.conv1(x), 2))
x = F.relu(F.max_pool2d(self.conv2(x), 2))
x = x.view(-1, 320)
x = F.relu(self.fc1(x))
x = self.fc2(x)
return F.log_softmax(x, dim=1)
model = CNN()
```
6. **定义损失函数和优化器**:
定义损失函数和优化器。
```python
criterion = nn.CrossEntropyLoss()
optimizer = optim.SGD(model.parameters(), lr=learning_rate)
```
7. **训练模型**:
训练模型并进行验证。
```python
for epoch in range(num_epochs):
for batch_idx, (data, target) in enumerate(train_loader):
optimizer.zero_grad()
output = model(data)
loss = criterion(output, target)
loss.backward()
optimizer.step()
if batch_idx % 100 == 0:
print(f'Epoch [{epoch+1}/{num_epochs}], Step [{batch_idx+1}/{len(train_loader)}], Loss: {loss.item():.4f}')
```
8. **测试模型**:
测试模型的准确率。
```python
correct = 0
total = 0
with torch.no_grad():
for data, target in test_loader:
output = model(data)
_, predicted = torch.max(output.data, 1)
total += target.size(0)
correct += (predicted == target).sum().item()
print(f'Accuracy of the model on the 10000 test images: {100 * correct / total:.2f}%')
```
通过以上步骤,你可以在PyCharm中使用PyTorch实现一个简单的卷积神经网络来分类MNIST数据集。
阅读全文
相关推荐

















