Unet遥感语义分割
时间: 2025-05-02 09:46:12 浏览: 37
### 基于 U-Net 网络的遥感图像语义分割实现
#### 背景介绍
U-Net 是一种经典的卷积神经网络架构,最初设计用于生物医学图像分割任务。它通过编码器-解码器结构以及跳跃连接实现了高分辨率特征图的重建[^2]。在遥感图像领域,U-Net 同样被广泛应用于地物分类、目标检测和语义分割等任务。
以下是基于 PyTorch 和 TensorFlow 实现 U-Net 进行遥感图像语义分割的具体方法:
---
#### 使用 PyTorch 实现 U-Net 遥感图像语义分割
以下是一个简单的 PyTorch 版本的 U-Net 架构实现代码示例:
```python
import torch
import torch.nn as nn
class DoubleConv(nn.Module):
"""(convolution => [BN] => ReLU) * 2"""
def __init__(self, in_channels, out_channels):
super().__init__()
self.double_conv = nn.Sequential(
nn.Conv2d(in_channels, out_channels, kernel_size=3, padding=1),
nn.BatchNorm2d(out_channels),
nn.ReLU(inplace=True),
nn.Conv2d(out_channels, out_channels, kernel_size=3, padding=1),
nn.BatchNorm2d(out_channels),
nn.ReLU(inplace=True)
)
def forward(self, x):
return self.double_conv(x)
class UNet(nn.Module):
def __init__(self, n_channels, n_classes):
super(UNet, self).__init__()
self.inc = DoubleConv(n_channels, 64)
self.down1 = Down(64, 128)
self.down2 = Down(128, 256)
self.down3 = Down(256, 512)
factor = 2 if torch.cuda.is_available() else 1
self.down4 = Down(512, 1024 // factor)
self.up1 = Up(1024, 512 // factor)
self.up2 = Up(512, 256 // factor)
self.up3 = Up(256, 128 // factor)
self.up4 = Up(128, 64)
self.outc = OutConv(64, n_classes)
def forward(self, x):
x1 = self.inc(x)
x2 = self.down1(x1)
x3 = self.down2(x2)
x4 = self.down3(x3)
x5 = self.down4(x4)
x = self.up1(x5, x4)
x = self.up2(x, x3)
x = self.up3(x, x2)
x = self.up4(x, x1)
logits = self.outc(x)
return logits
class Down(nn.Module):
"""Downscaling with maxpool then double conv"""
def __init__(self, in_channels, out_channels):
super().__init__()
self.maxpool_conv = nn.Sequential(
nn.MaxPool2d(2),
DoubleConv(in_channels, out_channels)
)
def forward(self, x):
return self.maxpool_conv(x)
class Up(nn.Module):
"""Upscaling then double conv"""
def __init__(self, in_channels, out_channels, bilinear=True):
super().__init__()
# if bilinear, use the normal convolutions to reduce the number of channels
if bilinear:
self.up = nn.Upsample(scale_factor=2, mode='bilinear', align_corners=True)
self.conv = DoubleConv(in_channels, out_channels, in_channels // 2)
else:
self.up = nn.ConvTranspose2d(in_channels , in_channels // 2, kernel_size=2, stride=2)
self.conv = DoubleConv(in_channels, out_channels)
def forward(self, x1, x2):
x1 = self.up(x1)
diffY = x2.size()[2] - x1.size()[2]
diffX = x2.size()[3] - x1.size()[3]
x1 = nn.functional.pad(x1, [diffX // 2, diffX - diffX // 2,
diffY // 2, diffY - diffY // 2])
x = torch.cat([x2, x1], dim=1)
return self.conv(x)
class OutConv(nn.Module):
def __init__(self, in_channels, out_channels):
super(OutConv, self).__init__()
self.conv = nn.Conv2d(in_channels, out_channels, kernel_size=1)
def forward(self, x):
return self.conv(x)
```
上述代码定义了一个标准的 U-Net 结构,适用于遥感图像语义分割任务。可以通过调整输入通道数 `n_channels` 和类别数 `n_classes` 来适配不同的数据集需求[^1]。
---
#### 使用 TensorFlow 实现 U-Net 遥感图像语义分割
对于 TensorFlow 用户,可以利用 Keras API 快速搭建 U-Net 模型:
```python
from tensorflow.keras.models import Model
from tensorflow.keras.layers import Input, Conv2D, MaxPooling2D, Dropout, concatenate, UpSampling2D
def unet(input_shape=(256, 256, 3), num_classes=1):
inputs = Input(shape=input_shape)
c1 = Conv2D(64, (3, 3), activation='relu', kernel_initializer='he_normal', padding='same')(inputs)
c1 = Dropout(0.1)(c1)
c1 = Conv2D(64, (3, 3), activation='relu', kernel_initializer='he_normal', padding='same')(c1)
p1 = MaxPooling2D((2, 2))(c1)
c2 = Conv2D(128, (3, 3), activation='relu', kernel_initializer='he_normal', padding='same')(p1)
c2 = Dropout(0.1)(c2)
c2 = Conv2D(128, (3, 3), activation='relu', kernel_initializer='he_normal', padding='same')(c2)
p2 = MaxPooling2D((2, 2))(c2)
c3 = Conv2D(256, (3, 3), activation='relu', kernel_initializer='he_normal', padding='same')(p2)
c3 = Dropout(0.2)(c3)
c3 = Conv2D(256, (3, 3), activation='relu', kernel_initializer='he_normal', padding='same')(c3)
p3 = MaxPooling2D((2, 2))(c3)
c4 = Conv2D(512, (3, 3), activation='relu', kernel_initializer='he_normal', padding='same')(p3)
c4 = Dropout(0.2)(c4)
c4 = Conv2D(512, (3, 3), activation='relu', kernel_initializer='he_normal', padding='same')(c4)
p4 = MaxPooling2D(pool_size=(2, 2))(c4)
c5 = Conv2D(1024, (3, 3), activation='relu', kernel_initializer='he_normal', padding='same')(p4)
c5 = Dropout(0.3)(c5)
c5 = Conv2D(1024, (3, 3), activation='relu', kernel_initializer='he_normal', padding='same')(c5)
u6 = Conv2DTranspose(512, (2, 2), strides=(2, 2), padding='same')(c5)
u6 = concatenate([u6, c4])
c6 = Conv2D(512, (3, 3), activation='relu', kernel_initializer='he_normal', padding='same')(u6)
c6 = Dropout(0.2)(c6)
c6 = Conv2D(512, (3, 3), activation='relu', kernel_initializer='he_normal', padding='same')(c6)
u7 = Conv2DTranspose(256, (2, 2), strides=(2, 2), padding='same')(c6)
u7 = concatenate([u7, c3])
c7 = Conv2D(256, (3, 3), activation='relu', kernel_initializer='he_normal', padding='same')(u7)
c7 = Dropout(0.2)(c7)
c7 = Conv2D(256, (3, 3), activation='relu', kernel_initializer='he_normal', padding='same')(c7)
u8 = Conv2DTranspose(128, (2, 2), strides=(2, 2), padding='same')(c7)
u8 = concatenate([u8, c2])
c8 = Conv2D(128, (3, 3), activation='relu', kernel_initializer='he_normal', padding='same')(u8)
c8 = Dropout(0.1)(c8)
c8 = Conv2D(128, (3, 3), activation='relu', kernel_initializer='he_normal', padding='same')(c8)
u9 = Conv2DTranspose(64, (2, 2), strides=(2, 2), padding='same')(c8)
u9 = concatenate([u9, c1], axis=3)
c9 = Conv2D(64, (3, 3), activation='relu', kernel_initializer='he_normal', padding='same')(u9)
c9 = Dropout(0.1)(c9)
c9 = Conv2D(64, (3, 3), activation='relu', kernel_initializer='he_normal', padding='same')(c9)
outputs = Conv2D(num_classes, (1, 1), activation='sigmoid')(c9)
model = Model(inputs=[inputs], outputs=[outputs])
return model
```
此代码片段展示了如何使用 TensorFlow/Keras 定义一个完整的 U-Net 模型,并支持多类别的语义分割任务[^3]。
---
#### 数据预处理与训练流程
无论是 PyTorch 还是 TensorFlow,在实际应用中都需要完成以下几个步骤:
1. **数据准备**:加载并预处理遥感图像及其对应的标注掩膜。
2. **模型编译**:配置损失函数(如 Dice Loss 或 Cross Entropy)、优化器(Adam 或 SGD)和评估指标。
3. **模型训练**:划分训练集和验证集,设置合适的批量大小和迭代次数进行训练。
4. **性能评估**:测试模型在独立测试集上的表现,计算 IoU、Precision、Recall 等评价指标。
---
阅读全文
相关推荐


















