python numpy数组保存为csv,保留小数点后4位,并设置第一行

时间: 2025-06-24 13:43:25 浏览: 18
### 将 NumPy 数组保存为 CSV 文件并设置小数点后四位精度和自定义表头 为了满足需求,可以通过 `numpy.savetxt` 方法将 NumPy 数组保存为 CSV 文件,并通过参数控制小数点精度。同时,利用 Python 的标准库模块 `csv` 或者手动拼接字符串的方式添加自定义的第一行表头[^1]。 以下是完整的解决方案: #### 实现代码 ```python import numpy as np import csv # 定义 NumPy 数组 data = np.array([ [0.123456, 1.234567], [2.345678, 3.456789], [4.567890, 5.678901] ]) # 自定义表头 header = ['Column1', 'Column2'] # 设置文件名 filename = 'output.csv' # 使用 numpy.savetxt 写入数据部分,保留小数点后 4 位 np.savetxt(filename, data, fmt='%.4f', delimiter=',', header=','.join(header), comments='') # 如果需要更复杂的表头处理,可以使用 csv 模块追加修改 with open(filename, mode='r+', newline='', encoding='utf-8') as f: content = f.readlines() # 插入表头到第一行 if not content[0].startswith(','.join(header)): content.insert(0, ','.join(header) + '\n') # 清空原有内容重新写入 f.seek(0) f.writelines(content) print(f"已成功将数据保存至 {filename} 并设置了小数点后 4 位精度及自定义表头.") ``` #### 解析 1. **创建数组**: 构建一个二维 NumPy 数组用于演示。 2. **定义表头**: 列出所需字段名称作为表头。 3. **保存数据**: 调用 `numpy.savetxt` 函数,其中 `fmt='%.4f'` 参数确保每项数值都以小数点后 4 位的形式存储[^1]。另外,`delimiter=','` 设定逗号分隔符,而 `header=','.join(header)` 和 `comments=''` 组合则负责在文件顶部加入表头而不被当作注释忽略[^2]。 4. **修正表头**: 若发现某些情况下表头未正常附加,则借助额外的文件操作补充完善。 --- ### 注意事项 尽管上述方法能达成目标,但在实际项目中推荐优先考虑 Pandas 库完成类似任务,因其提供了更为简洁高效的接口支持复杂场景下的数据帧管理和导出功能[^3]。
阅读全文

相关推荐

用Python帮我写一个程序:后缀为csv的波士顿房价数据文件存放在文件夹路径csv_file_dir中。按下列考试要求进行数据处理: 1.读取数据文件中的所有数据为DataFrame格式,保留第0行的表头作为列名。获得样本列名为y_target列赋值给y,除此之外的13列赋值给X; 2.使用sklearn中的sklearn.feature_selection.VarianceThreshold定义基于方差的筛选模型,方差阈值threshold设置为10,其他参数保持默认值; 3.使用fit_transform训练2定义的筛选模型返回选出的新的特征X_new; 4.将第3步得到的特征数据X_new与y按列合并处理成新的DataFrame,按student_answer_path生成csv文件并保存,编码方式采用‘UTF-8’,所有值保留3位小数,小数点后尾部的0无需保存,如:0.200直接保存成0.2,不保留列名及行索引。 提示 df = pd.read_csv(filepath,header) # filepath相对路径,header默认为0,header=None时,表头读为表的信息不做列名 sklearn.feature_selection.VarianceThreshold(threshold) # 定义筛选模型 fit_transform(X, y) # 训练模型 np.concatenate((arr1, arr2), axis=1) # ndarray 拼接 np.round(x, 3) # 对x保留3位小数 df.to_csv(savepath, index=False, encoding='UTF-8') # index参数表示保存为.csv文件是否保留index 输出示例 0.00632,18.0,2.31,65.2,1.0,296.0,396.9,4.98,24.0 0.02731,0.0,7.07,78.9,2.0,242.0,396.9,9.14,21.6 0.02729,0.0,7.07,61.1,2.0,242.0,392.83,4.03,34.7;import os os.chdir(os.path.dirname(__file__)) import pandas as pd import numpy as np from sklearn.feature_selection import VarianceThreshold csv_file_dir='./data' student_answer_path='./csv_answer.csv'

任务描述 本关任务:以澳大利亚信贷批准数据集为本关数据集,划分前600为训练数据集,后90数据为测试数据集,利用逻辑回归模型预测及输出准确率。 相关知识 为了完成本关任务,你需要掌握:1.如何读取数据集,2.如何准确划分训练和测试数据集,3.如何利用逻辑回归进行预测及准确率的输出。 读取数据集 读取数据集是个基本功,导入pandas包,进行数据读取 示例如下: import pandas as pd df=pd.read_excel('数据集') 划分训练和测试数据集 划分数据集,就是将数据集分成两部分,我们可以考虑用切片实现数据集的划分。需要注意的是数据的划分需要分开特征数据和预测变量。列如,训练用的特征数据集用x表示,预测数据用y表示,测试数据则用x1,y1。 示例如下: x=df.iloc[:600,:15].values y=df.iloc[:600,15].values x1=df.iloc[600:,:15].values y1=df.iloc[600:,15].values 如何利用逻辑回归模型预测及准确率分析 1.导入逻辑回归模型板块命名为LR 2.利用逻辑回归模型创建对象lr 3.调用对象中的fit()的方法将训练数据的特征数据和预测变量进行拟合 4.调用对象中的score()方法返回模型准确率。 5.调用对象中的predict()方法,对测试样本进行预测,获得预测结果。 #导入逻辑回归模型 from sklearn.linear_model import LogisticRegression as LR lr = LR() lr.fit(训练的特征数据,训练的预测变量) r=lr.score(训练的特征数据,训练的预测变量) R=lr.predict(预测的特征数据) Z=R-预测的预测变量 Rs=len(Z[Z==0])/len(Z) print('模型准确率为:',r) print('预测准确率为:',Rs) 编程要求 根据提示,在右侧编辑器完善代码,得到结果。#********** Begin **********# #在上一关基础,对经过缺失值填充、数值变量标准化后的数据集,取前600条记录作为训练数据,后90条记录作为测试数据 #构逻辑回归模型,返回计算结果模型准确率rv和预测准确率r def return_values(): import numpy as np X1=np.load('X1.npy') #经过缺失值填充、数值变量标准化后的数据集,numpy数组690*15 Y=np.load('Y.npy') #因变量,numpy数组,690个元素 return(rv,r) #********** End **********#

import pandas as pd from sklearn.experimental import enable_iterative_imputer from sklearn.impute import IterativeImputer from sklearn.preprocessing import LabelEncoder # 读取数据(示例路径需替换为实际路径) df = pd.read_csv(r"C:\Users\29930\Desktop\文本数据.csv", na_values='#N/A', encoding='gbk') # 复制原始数据用于恢复分类变量 df_original = df.copy() # 处理分类变量编码 le = LabelEncoder() categorical_cols = ['慢阻肺', '性别'] for col in categorical_cols: df[col] = le.fit_transform(df[col].astype(str)) df[col] = df[col].astype('category') # 划分变量类型 numeric_cols = [col for col in df.columns if col not in categorical_cols] # 创建插补器 imp = IterativeImputer(max_iter=10, random_state=0) # 执行插补(保留分类变量类型) df_imputed = df.copy() df_imputed[numeric_cols] = imp.fit_transform(df[numeric_cols]) # 恢复分类变量原始标签 for col in categorical_cols: df_imputed[col] = le.inverse_transform(df_imputed[col].astype(int)) # 保存结果 df_imputed.to_csv(r"C:\Users\29930\Desktop\插补数据.csv", index=False, encoding='gbk')Traceback (most recent call last): File "D:/正式建模/多重插补法.py", line 27, in <module> df_imputed[numeric_cols] = imp.fit_transform(df[numeric_cols]) File "C:\Users\29930\AppData\Local\Programs\Python\Python311\Lib\site-packages\sklearn\utils\_set_output.py", line 319, in wrapped data_to_wrap = f(self, X, *args, **kwargs) File "C:\Users\29930\AppData\Local\Programs\Python\Python311\Lib\site-packages\sklearn\base.py", line 1389, in wrapper return fit_method(estimator, *args, **kwargs) File "C:\Users\29930\AppData\Local\Programs\Python\Python311\Lib\site-packages\sklearn\impute\_iterative.py", line 801, in fit_transform X, Xt, mask_missing_values, complete_mask = self._initial_imputation( File "C:\Users\29930\AppData\Local\Programs\Python\Python311\Lib\site-packages\sklearn\impute\_iterative.py", line 627, in _initial_imputation X = validate_data( File "C:\Users\29930\AppData\Local\Programs\Python\Python311\Lib\site-packages\sklearn\utils\validation.py", line 2944, in validate_data out = check_array(X, input_name="X", **check_params) File "C:\Users\29930\AppData\Local\Programs\Python\Python311\Lib\site-packages\sklearn\utils\validation.py", line 1055, in check_array array = _asarray_with_order(array, order=order, dtype=dtype, xp=xp) File "C:\Users\29930\AppData\Local\Programs\Python\Python311\Lib\site-packages\sklearn\utils\_array_api.py", line 839, in _asarray_with_order array = numpy.asarray(array, order=order, dtype=dtype) File "C:\Users\29930\AppData\Local\Programs\Python\Python311\Lib\site-packages\pandas\core\generic.py", line 2153, in __array__ arr = np.asarray(values, dtype=dtype) ValueError: could not convert string to float: '21,79'

大家在看

recommend-type

FloodRouting:使用python进行洪水常规调度

洪水调洪常规调度计算方法 使用python语言进行洪水常规调度计算。 数据来自汉江某水库的计算值。
recommend-type

Industrial Society and Its Future.pdf

作者:Theodore Kaczyns 卡辛斯基 题名:Industrial Society and Its Future 《论工业社会及其未来》
recommend-type

C语言流程图生成工具

AutoFlowChart 自动生成流程图 AutoFlowchart 是一个极佳的根据源码生成流程图的工具 它生成的流程图支持展开 合拢 并且可以预定义流程图块的大小和间隔 移动和缩放流程图也很方便 你还可以把它导出到WORD文档或BMP文件 它可以帮助程序员更好地理解程序 制作文档和可视化代码 支持C C++ VC++ Visual C++ NET Delphi Object Pascal 主要功能 根据源程序生成流程图 导出流程图到WORD文档中 展开 合拢流程图 自动生成一个 TreeView显示所有函数 过程 同步显示对应块的源程序和流程图 自定义流程图的配色方案 自定义流程图的大小和间距 根据格式自动排列程序 自由缩小 放大 移动流程图 显示程序行号 支持清除当前流程图 导出流程图到 bmp文件 发展前瞻 ① 支持各种语言 已经完成Pascal C 待完成:Java FoxPro Basic Fortan等; ② 支持反向操作 可以动态修改流程图 并可根据流程图生成相应的语言代码; ③ 结合Delphi专家 嵌入IDE直接运行 已经完成详见主页 操作说明 ① 打开一个或多个文件; ② 双击一个If For While Case Repeat Try begin的起始行 你就可以看到流程图; ③ 双击流程图中相应的框 可以同步显示程序块位置;">AutoFlowChart 自动生成流程图 AutoFlowchart 是一个极佳的根据源码生成流程图的工具 它生成的流程图支持展开 合拢 并且可以预定义流程图块的大小和间隔 移动和缩放流程图也很方便 你还可以把它导出到WORD文档或BMP文件 [更多]
recommend-type

dhtmlxGantt_v4.0.0

甘特图(dhtmlxgantt)的资源文件,具体代码请访问https://blog.csdn.net/qq_27339781/article/details/79869584
recommend-type

数字图像处理 冈萨雷斯 第三版 课后答案绝对完整

数字图像处理 冈萨雷斯 第三版 课后答案绝对完整

最新推荐

recommend-type

(完整版)基因工程药物干扰素的制备.ppt

(完整版)基因工程药物干扰素的制备.ppt
recommend-type

建施-拓力泰-施工图.dwg

建施-拓力泰-施工图.dwg
recommend-type

(完整word版)基于STC89C52单片机的数字时钟设计.doc

(完整word版)基于STC89C52单片机的数字时钟设计.doc
recommend-type

no-client子项目的资源文件

包含 element-plus-2.4.2.css 文件,element-plus-2.4.2.js 文件和 vue-3.3.7.js 文件
recommend-type

(完整版)房建项目进度网络图.xls

(完整版)房建项目进度网络图.xls
recommend-type

Web2.0新特征图解解析

Web2.0是互联网发展的一个阶段,相对于早期的Web1.0时代,Web2.0具有以下显著特征和知识点: ### Web2.0的定义与特点 1. **用户参与内容生产**: - Web2.0的一个核心特征是用户不再是被动接收信息的消费者,而是成为了内容的生产者。这标志着“读写网络”的开始,用户可以在网络上发布信息、评论、博客、视频等内容。 2. **信息个性化定制**: - Web2.0时代,用户可以根据自己的喜好对信息进行个性化定制,例如通过RSS阅读器订阅感兴趣的新闻源,或者通过社交网络筛选自己感兴趣的话题和内容。 3. **网页技术的革新**: - 随着技术的发展,如Ajax、XML、JSON等技术的出现和应用,使得网页可以更加动态地与用户交互,无需重新加载整个页面即可更新数据,提高了用户体验。 4. **长尾效应**: - 在Web2.0时代,即使是小型或专业化的内容提供者也有机会通过互联网获得关注,这体现了长尾理论,即在网络环境下,非主流的小众产品也有机会与主流产品并存。 5. **社交网络的兴起**: - Web2.0推动了社交网络的发展,如Facebook、Twitter、微博等平台兴起,促进了信息的快速传播和人际交流方式的变革。 6. **开放性和互操作性**: - Web2.0时代倡导开放API(应用程序编程接口),允许不同的网络服务和应用间能够相互通信和共享数据,提高了网络的互操作性。 ### Web2.0的关键技术和应用 1. **博客(Blog)**: - 博客是Web2.0的代表之一,它支持用户以日记形式定期更新内容,并允许其他用户进行评论。 2. **维基(Wiki)**: - 维基是另一种形式的集体协作项目,如维基百科,任何用户都可以编辑网页内容,共同构建一个百科全书。 3. **社交网络服务(Social Networking Services)**: - 社交网络服务如Facebook、Twitter、LinkedIn等,促进了个人和组织之间的社交关系构建和信息分享。 4. **内容聚合器(RSS feeds)**: - RSS技术让用户可以通过阅读器软件快速浏览多个网站更新的内容摘要。 5. **标签(Tags)**: - 用户可以为自己的内容添加标签,便于其他用户搜索和组织信息。 6. **视频分享(Video Sharing)**: - 视频分享网站如YouTube,用户可以上传、分享和评论视频内容。 ### Web2.0与网络营销 1. **内容营销**: - Web2.0为内容营销提供了良好的平台,企业可以通过撰写博客文章、发布视频等内容吸引和维护用户。 2. **社交媒体营销**: - 社交网络的广泛使用,使得企业可以通过社交媒体进行品牌传播、产品推广和客户服务。 3. **口碑营销**: - 用户生成内容、评论和分享在Web2.0时代更易扩散,为口碑营销提供了土壤。 4. **搜索引擎优化(SEO)**: - 随着内容的多样化和个性化,SEO策略也必须适应Web2.0特点,注重社交信号和用户体验。 ### 总结 Web2.0是对互联网发展的一次深刻变革,它不仅仅是一个技术变革,更是人们使用互联网的习惯和方式的变革。Web2.0的时代特征与Web1.0相比,更加注重用户体验、社交互动和信息的个性化定制。这些变化为网络营销提供了新的思路和平台,也对企业的市场策略提出了新的要求。通过理解Web2.0的特点和应用,企业可以更好地适应互联网的发展趋势,实现与用户的深度互动和品牌的有效传播。
recommend-type

【C++编程新手必看】:一步步带你制作出风靡全球的“别踩白块儿”游戏

# 摘要 本文全面介绍C++编程在游戏开发中的应用,涵盖了从基础概念到具体实现的多个方面。首先,文章提供了游戏开发环境的搭建指南,包括编译器配置和开发工具的选择。随后,重点介绍了游戏主循环和基本框架的构建,强调了事件处理和渲染技术。在游戏逻辑和交互设计方面,本文阐述了界面布局、事件响应和游戏状态管理的核心实现。为了提升游戏体验,本文还探讨了添加音效和背景音乐以及开发高级游戏特性的方法。最后,文章介绍了性能优化和跨平台发布的过程,包括游戏的打包和针对不同平台的发布策略。本文旨在为C++游戏开发者提供一个实用的开发指南,帮助他们从零开始构建出性能优化、跨平台兼容的游戏。 # 关键字 C++编程;
recommend-type

使用scikit-learn训练模型来预测鸢尾花种类

<think>我们使用scikit-learn库来训练一个分类模型预测鸢尾花种类。鸢尾花数据集是scikit-learn内置的经典数据集,包含三种鸢尾花的四个特征(花萼长度、花萼宽度、花瓣长度、花瓣宽度)和对应的类别标签。步骤:1.导入必要的库和数据集2.数据探索(可选,但建议了解数据)3.数据预处理(如划分训练集和测试集、标准化等)4.选择模型(例如KNN、随机森林等)5.训练模型6.模型评估7.使用模型进行预测下面以KNN(K近邻)算法为例,展示完整流程。</think>### 使用 scikit-learn 训练鸢尾花分类模型 以下是基于 scikit-learn 训练鸢尾花分类模型的
recommend-type

WWF工作流设计器C#源码解析及演示

### WWF工作流设计器控件C#源码知识点 #### 1. WWF(Windows Workflow Foundation)概述 WWF是微软公司推出的一个工作流框架,作为.NET Framework的一部分。它提供了一套丰富的API,用于设计、执行和管理工作流。工作流可以用于各种应用程序,包括Web应用、服务和桌面应用,使得开发者能够将复杂的业务逻辑以工作流的形式表现出来,简化业务流程自动化和管理。 #### 2. 工作流设计器控件(Workflow Designer Control) 工作流设计器控件是WWF中的一个组件,主要用于提供可视化设计工作流的能力。它允许用户通过拖放的方式在界面上添加、配置和连接工作流活动,从而构建出复杂的工作流应用。控件的使用大大降低了工作流设计的难度,并使得设计工作流变得直观和用户友好。 #### 3. C#源码分析 在提供的文件描述中提到了两个工程项目,它们均使用C#编写。下面分别对这两个工程进行介绍: - **WorkflowDesignerControl** - 该工程是工作流设计器控件的核心实现。它封装了设计工作流所需的用户界面和逻辑代码。开发者可以在自己的应用程序中嵌入这个控件,为最终用户提供一个设计工作流的界面。 - 重点分析:控件如何加载和显示不同的工作流活动、控件如何响应用户的交互、控件状态的保存和加载机制等。 - **WorkflowDesignerExample** - 这个工程是演示如何使用WorkflowDesignerControl的示例项目。它不仅展示了如何在用户界面中嵌入工作流设计器控件,还展示了如何处理用户的交互事件,比如如何在设计完工作流后进行保存、加载或执行等。 - 重点分析:实例程序如何响应工作流设计师的用户操作、示例程序中可能包含的事件处理逻辑、以及工作流的实例化和运行等。 #### 4. 使用Visual Studio 2008编译 文件描述中提到使用Visual Studio 2008进行编译通过。Visual Studio 2008是微软在2008年发布的集成开发环境,它支持.NET Framework 3.5,而WWF正是作为.NET 3.5的一部分。开发者需要使用Visual Studio 2008(或更新版本)来加载和编译这些代码,确保所有必要的项目引用、依赖和.NET 3.5的特性均得到支持。 #### 5. 关键技术点 - **工作流活动(Workflow Activities)**:WWF中的工作流由一系列的活动组成,每个活动代表了一个可以执行的工作单元。在工作流设计器控件中,需要能够显示和操作这些活动。 - **活动编辑(Activity Editing)**:能够编辑活动的属性是工作流设计器控件的重要功能,这对于构建复杂的工作流逻辑至关重要。 - **状态管理(State Management)**:工作流设计过程中可能涉及保存和加载状态,例如保存当前的工作流设计、加载已保存的工作流设计等。 - **事件处理(Event Handling)**:处理用户交互事件,例如拖放活动到设计面板、双击活动编辑属性等。 #### 6. 文件名称列表解释 - **WorkflowDesignerControl.sln**:解决方案文件,包含了WorkflowDesignerControl和WorkflowDesignerExample两个项目。 - **WorkflowDesignerControl.suo**:Visual Studio解决方案用户选项文件,该文件包含了开发者特有的个性化设置,比如窗口布局、断点位置等。 - **Thumbs.db**:缩略图缓存文件,由Windows自动生成,用于存储文件夹中的图片缩略图,与WWF工作流设计器控件功能无关。 - **WorkflowDesignerExample**:可能是一个文件夹,包含了示例工程相关的所有文件,或者是示例工程的可执行文件。 - **EULA.txt**:最终用户许可协议文本文件,通常说明了软件的版权和使用许可条件。 综上所述,该文件集包含了WWF工作流设计器控件的完整C#源码以及相应的Visual Studio项目文件,开发者可以利用这些资源深入理解WWF工作流设计器控件的工作机制,并将其应用于实际的项目开发中,实现工作流的设计和管理功能。
recommend-type

CAD数据在ANSA中:完美修复几何数据的策略与方法

# 摘要 CAD数据的准确性和几何完整性对于产品设计和工程分析至关重要。本文首先强调了CAD数据和几何修复的重要性,随后介绍了ANSA软件在处理CAD数据中的角色。通过详细的分析,本文探讨了几何数据的常见问题,以及有效的手动和自动修复技术。文中还提供了几何修复在实际应用中的案例分析,并讨论了行业未来对几何修复技术的需求和新兴技术趋势。文章旨在为CAD数据几何修复提供全面的理论知识、诊断方法和修复策略,并