/* USER CODE BEGIN 0 */ #define ADS1115_DEV_ADDR_GND 0x90//ADDR接GND,ADS1115地址 #define ADS1115_DEV_ADDR_VDD 0x92//ADDR接VDD,ADS1115地址 #define ADS1115_DEV_ADDR_SDA 0x94//ADDR接SDA,ADS1115地址 #define ADS1115_DEV_ADDR_SCL 0x96//ADDR接SCL,ADS1115地址 #define ADS1115_DEV_ADDR 0x90//ADDR接GND决定ADS1115的7位地址,如果是写命令就是0x90,读命令就是0x91 #define ADS1115_Conversion 0x00 //转换寄存器地址 #define ADS1115_Config 0x01 //配置寄存器地址 uint8_t BYTE_BUF[2];//读取转换寄存器的数组值 /********************************************************************************* 描述:配置01H寄存器,实现单次转换,读取00H寄存器,实现电压采样,并转换成电压值 输入: channel:需要采集的通道号,ADS1115是4通道,所以是0~3,分别代表A0~A3通道 返回: 浮点数,对应通道采集到的电压值,单位V https://gzwelink.taobao.com **********************************************************************************/ float ADS1115_Read_ADC(uint8_t channel)//多通道的单次转换 { uint8_t ConfigBuff[2]; uint8_t PGA; int16_t tempData; float voltage;//实际电压值 P

时间: 2025-04-25 11:06:42 浏览: 43
<think>好的,我现在需要解决用户在STM32F1项目中遇到的Error_Handler未定义链接错误,以及配置ADS1115寄存器实现电压采样的问题。首先,我得回顾之前的对话,确保不重复信息,同时补充新的内容。 首先,关于链接错误L6218E,用户之前已经得到了一些解决方案,比如检查Error_Handler的实现、函数声明和工程配置。现在可能需要更深入的原因分析,或者用户可能在实施这些步骤时遇到了问题。例如,用户可能已经添加了Error_Handler函数,但可能放错了位置,或者声明不一致。这时候需要更详细的步骤,比如确认函数是否在正确的文件中,或者在头文件中是否有正确的声明。 其次,用户提到的ADS1115配置和电压采样。这部分需要我提供如何通过I2C配置ADS1115的寄存器,特别是设置采样率、输入通道和转换模式等。可能需要具体的寄存器配置示例,比如写入配置寄存器的值,以及如何读取转换结果。同时,结合LMT70温度传感器,可能需要说明如何将ADC的电压值转换为温度。 另外,用户可能在使用HAL库或者LL库,需要确认相关的I2C函数调用是否正确,比如HAL_I2C_Mem_Write是否正确使用,地址是否正确(考虑ADS1115的地址引脚设置)。还要注意I2C的时钟配置是否正确,是否与ADS1115的规格匹配。 还需要考虑Error_Handler在I2C通信中的调用点,比如当HAL_I2C函数返回错误时是否调用了Error_Handler,这时候如果Error_Handler未定义就会导致链接错误。因此,需要检查所有调用Error_Handler的地方,并确保函数存在。 可能用户的问题中还涉及到工程结构的配置,比如是否遗漏了包含Error_Handler的文件,或者编译选项是否正确。比如在Keil中,是否将包含Error_Handler的源文件添加到了项目中,或者是否有条件编译导致该函数未被编译。 在电压采样部分,需要详细说明ADS1115的工作模式,比如单次转换还是连续转换,如何触发转换,以及如何读取结果。还要考虑数据格式,ADS1115的输出是16位补码,需要正确转换为电压值。同时,LMT70的电压与温度的关系式需要给出,可能是一个线性公式或者查表法。 此外,可能存在的常见错误点包括I2C地址错误(比如ADS1115的地址是否考虑了A0引脚的电平),I2C时钟速度是否过高,导致通信失败,或者GPIO引脚配置是否正确(比如开漏输出,上拉电阻等)。这些都需要在回答中提及,帮助用户排查问题。 最后,确保回答结构清晰,分步骤解决Error_Handler的问题,然后详细说明ADS1115的配置和采样过程,结合代码示例和配置要点,确保用户能够逐步实施。</think>### 全面解决方案:STM32F1 ADS1115 LMT70 链接错误修复与电压采样配置 --- ### 一、Error_Handler未定义链接错误深度修复 #### 1. 核心错误分析 - **错误现象**:`L6218E: Undefined symbol Error_Handler` - **根本原因**:I2C驱动(`i2c.o`)调用了一个未实现的函数 - **关键检查点**: - 项目中是否缺少`Error_Handler`函数体 - 函数声明是否与调用处匹配(C语言需显式声明) - STM32CubeMX生成的`stm32f1xx_it.c`是否被正确包含[^1] #### 2. 分步修复指南 **步骤1:实现Error_Handler** 在`main.c`或专用错误处理文件中添加以下代码(推荐与用户LED联动): ```c // 在main.c顶部声明 void Error_Handler(void); // 在文件底部实现(示例带LED指示) void Error_Handler(void) { HAL_GPIO_WritePin(GPIOC, GPIO_PIN_13, GPIO_PIN_RESET); // 点亮板载LED while(1) { HAL_Delay(500); HAL_GPIO_TogglePin(GPIOC, GPIO_PIN_13); // 错误时LED闪烁 } } ``` **步骤2:验证工程包含关系** - 在Keil MDK中: 1. 右键工程 -> `Manage Project Items` 2. 检查`Application/User`组是否包含`stm32f1xx_it.c` 3. 确认`stm32f1xx_it.c`中存在非弱符号实现的`Error_Handler` **步骤3:排查I2C初始化代码** 在`i2c.c`中检查HAL状态检测: ```c if (HAL_I2C_Init(&hi2c1) != HAL_OK) { Error_Handler(); // 此调用必须对应有效实现 } ``` **步骤4:链接器映射验证** 编译后查看生成的`.map`文件,搜索`Error_Handler`确认地址非`0x00000000` --- ### 二、ADS1115寄存器配置与电压采样详解 #### 1. ADS1115基础配置 - **硬件连接**: - ADDR引脚接地 → I2C地址:`0x48` (7位地址) - A0接LMT70输出,A1-A3接地 - **关键寄存器**: | 寄存器 | 地址 | 功能说明 | |--------|------|----------| | Config | 0x01 | 设置工作模式、增益、采样率 | | Conversion | 0x00 | 读取转换结果 | #### 2. 配置寄存器(0x01)参数设计 - **单次转换模式示例**: ```c // 配置值:0x8483 对应二进制 10000100 10000011 // 分解说明: // OS[15] = 1 : 启动单次转换 // MUX[14:12] = 000 : AIN0 vs GND // PGA[11:9] = 100 : FS=±0.512V (LMT70适用) // MODE[8] = 1 : 单次转换模式 // DR[7:5] = 000 : 128SPS uint8_t config_data[3] = {0x01, 0x84, 0x83}; // 寄存器地址 + 高字节 + 低字节 ``` #### 3. 完整电压采样流程(代码示例) ```c // 步骤1:发送配置命令 HAL_I2C_Mem_Write(&hi2c1, 0x48<<1, 0x01, I2C_MEMADD_SIZE_8BIT, config_data, 2, 100); // 步骤2:等待转换完成(可优化为中断方式) HAL_Delay(10); // 根据采样率调整,128SPS时约8ms // 步骤3:读取转换结果 uint8_t raw_data[2]; HAL_I2C_Mem_Read(&hi2c1, 0x48<<1, 0x00, I2C_MEMADD_SIZE_8BIT, raw_data, 2, 100); // 步骤4:数据转换 int16_t adc_value = (raw_data[0] << 8) | raw_data[1]; float voltage = (adc_value * 0.512f) / 32768.0f; // 根据PGA计算实际电压 ``` #### 4. LMT70温度转换公式 $$ T(^{\circ}C) = \frac{V_{out} - 0.5}{0.01} $$ - 需注意非线性误差补偿(精度要求高时查表) --- ### 三、I2C外设关键配置验证 #### 1. STM32CubeMX配置检查 - **模式**:I2C标准模式(100kHz)或快速模式(400kHz) - **引脚配置**: - SDA/SCL设置为开漏输出(Alternate Function Open Drain) - 使能GPIO上拉电阻(4.7kΩ外接或内部弱上拉) #### 2. 代码层配置验证 ```c // 检查hi2c1初始化参数是否匹配硬件 I2C_HandleTypeDef hi2c1 = { .Instance = I2C1, .Init.ClockSpeed = 100000, // 100kHz标准模式 .Init.DutyCycle = I2C_DUTYCYCLE_2, .Init.OwnAddress1 = 0, .Init.AddressingMode = I2C_ADDRESSINGMODE_7BIT, .Init.DualAddressMode = I2C_DUALADDRESS_DISABLE, .Init.GeneralCallMode = I2C_GENERALCALL_DISABLE, .Init.NoStretchMode = I2C_NOSTRETCH_DISABLE, }; ``` --- ### 四、进阶调试技巧 1. **逻辑分析仪抓包**: - 使用Saleae或PulseView验证I2C时序 - 检查Start信号、地址ACK、数据波形 2. **HAL库错误回调**: ```c void HAL_I2C_ErrorCallback(I2C_HandleTypeDef *hi2c) { Error_Handler(); // 捕获I2C通信错误 } ``` 3. **ADS1115状态检测**: ```c // 读取Config寄存器的OS位判断转换状态 uint8_t status_reg[2]; HAL_I2C_Mem_Read(&hi2c1, 0x48<<1, 0x01, I2C_MEMADD_SIZE_8BIT, status_reg, 2, 100); if (!(status_reg[0] & 0x80)) { // 转换未完成 } ``` --- ### 五、常见问题排查表 | 现象 | 可能原因 | 解决方案 | |------|----------|----------| | I2C通信超时 | 1. 物理线路断开<br>2. 从机地址错误<br>3. 时钟速度过高 | 1. 检查接线<br>2. 确认ADS1115地址<br>3. 降低I2C时钟至100kHz | | 采样值跳动大 | 1. 电源噪声<br>2. PGA设置不当 | 1. 添加去耦电容<br>2. 调整PGA为±0.512V | | 温度读数偏差 | LMT70非线性误差 | 使用校准公式:$T_{cal} = T_{read} - 0.0176 \times T_{read}^2$ | --- ### 相关问题 1. 如何通过DMA优化ADS1115的连续采样? 2. STM32硬件I2C与软件模拟I2C在噪声环境下的稳定性对比? 3. LMT70在高温环境下如何进行温度补偿? 4. 如何通过STM32内部基准电压提高ADS1115测量精度? [^1]: STM32CubeMX生成的中间件代码通常将错误处理函数放在`stm32f1xx_it.c` [^2]: ADS1115数据手册建议在VDD引脚并联10μF+0.1μF电容以降低噪声
阅读全文

相关推荐

/* USER CODE BEGIN Header */ /** ****************************************************************************** * @file : main.c * @brief : Main program body ****************************************************************************** * @attention * *
© Copyright (c) 2025 STMicroelectronics. * All rights reserved.
* * This software component is licensed by ST under BSD 3-Clause license, * the "License"; You may not use this file except in compliance with the * License. You may obtain a copy of the License at: * opensource.org/licenses/BSD-3-Clause * ****************************************************************************** */ /* USER CODE END Header */ /* Includes ------------------------------------------------------------------*/ #include "main.h" #include "i2c.h" #include "gpio.h" /* Private includes ----------------------------------------------------------*/ /* USER CODE BEGIN Includes */ #include "oled.h" #include "FDC2214.h" #define FDC2214_STATUS 0x18 #define FDC2214_STATUS_DRDY0 (1 << 12) // 通道0数据就绪标志 /* USER CODE END Includes */ /* Private typedef -----------------------------------------------------------*/ /* USER CODE BEGIN PTD */ /* USER CODE END PTD */ /* Private define ------------------------------------------------------------*/ /* USER CODE BEGIN PD */ /* USER CODE END PD */ /* Private macro -------------------------------------------------------------*/ /* USER CODE BEGIN PM */ /* USER CODE END PM */ /* Private variables ---------------------------------------------------------*/ /* USER CODE BEGIN PV */ /* USER CODE END PV */ /* Private function prototypes -----------------------------------------------*/ void SystemClock_Config(void); /* USER CODE BEGIN PFP */ /* USER CODE END PFP */ /* Private user code ---------------------------------------------------------*/ /* USER CODE BEGIN 0 */ /* USER CODE END 0 */ /** * @brief The application entry point. * @retval int */ int main(void) { /* USER CODE BEGIN 1 */ /* USER CODE END 1 */ /* MCU Configuration--------------------------------------------------------*/ /* Reset of all peripherals, Initializes the Flash interface and the Systick. */ HAL_Init(); /* USER CODE BEGIN Init */ /* USER CODE END Init */ /* Configure the system clock */ SystemClock_Config(); /* USER CODE BEGIN SysInit */ /* USER CODE END SysInit */ /* Initialize all configured peripherals */ MX_GPIO_Init(); MX_I2C1_Init(); MX_I2C2_Init(); FDC2214_Init(); /* USER CODE BEGIN 2 */ OLED_Init(); //OLED初始 OLED_Clear(); //清屏 float capacitance[4]; uint8_t res2[4]; uint8_t ch; /* USER CODE END 2 */ /* Infinite loop */ /* USER CODE BEGIN WHILE */ while (1) { OLED_ShowString ( 1, 1, "FDC2214 TEST"); ch=FDC2214_CheckStatus(); if(ch==0xFF) { while(1); } // 转换为电容值 capacitance[ch] = FDC2214_ReadChannel(ch); res2[0] = (uint8_t)((uint16_t)(capacitance[0] * 100) % 100); res2[1] = (uint8_t)((uint16_t)(capacitance[1] * 100) % 100); res2[2] = (uint8_t)((uint16_t)(capacitance[2] * 100) % 100); res2[3] = (uint8_t)((uint16_t)(capacitance[3] * 100) % 100); OLED_ShowNum ( 2, 1,(uint8_t)capacitance[0], 2 ); OLED_ShowString ( 2, 3,"."); OLED_ShowNum ( 2, 4,res2[0], 2); OLED_ShowNum ( 2, 9,(uint8_t)capacitance[1], 2 ); OLED_ShowString ( 2, 11,"."); OLED_ShowNum ( 2, 12,res2[1], 2); OLED_ShowNum ( 3, 1,(uint8_t)capacitance[2], 2 ); OLED_ShowString ( 3, 3,"."); OLED_ShowNum ( 3, 4,res2[2], 2); OLED_ShowNum ( 3, 9,(uint8_t)capacitance[3], 2 ); OLED_ShowString ( 3, 11,"."); OLED_ShowNum ( 3, 12,res2[3], 2); HAL_Delay(500); /* USER CODE END WHILE */ /* USER CODE BEGIN 3 */ } /* USER CODE END 3 */ } /** * @brief System Clock Configuration * @retval None */ void SystemClock_Config(void) { RCC_OscInitTypeDef RCC_OscInitStruct = {0}; RCC_ClkInitTypeDef RCC_ClkInitStruct = {0}; /** Initializes the CPU, AHB and APB busses clocks */ RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSI; RCC_OscInitStruct.HSIState = RCC_HSI_ON; RCC_OscInitStruct.HSICalibrationValue = RCC_HSICALIBRATION_DEFAULT; RCC_OscInitStruct.PLL.PLLState = RCC_PLL_NONE; if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK) { Error_Handler(); } /** Initializes the CPU, AHB and APB busses clocks */ RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK|RCC_CLOCKTYPE_SYSCLK |RCC_CLOCKTYPE_PCLK1|RCC_CLOCKTYPE_PCLK2; RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_HSI; RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1; RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV1; RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV1; if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_0) != HAL_OK) { Error_Handler(); } } /* USER CODE BEGIN 4 */ /* USER CODE END 4 */ /** * @brief This function is executed in case of error occurrence. * @retval None */ void Error_Handler(void) { /* USER CODE BEGIN Error_Handler_Debug */ /* User can add his own implementation to report the HAL error return state */ /* USER CODE END Error_Handler_Debug */ } #ifdef USE_FULL_ASSERT /** * @brief Reports the name of the source file and the source line number * where the assert_param error has occurred. * @param file: pointer to the source file name * @param line: assert_param error line source number * @retval None */ void assert_failed(uint8_t *file, uint32_t line) { /* USER CODE BEGIN 6 */ /* User can add his own implementation to report the file name and line number, tex: printf("Wrong parameters value: file %s on line %d\r\n", file, line) */ /* USER CODE END 6 */ } #endif /* USE_FULL_ASSERT */ /************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/ 这是main.c文件 #include "FDC2214.h" #include "i2c.h" #include <math.h> #include <stdio.h> #define M_PI 3.14159265358979323846f #define FDC2214_ADDR (0x2A << 1) // 7位地址左移1位 uint8_t FDC2214_CheckStatus(void) { uint16_t status; if(FDC2214_ReadReg(FDC2214_STATUS, &status) != HAL_OK) return 0xFF; // 通信错误 if(status & (1<<12)) return 1; // CH0数据就绪(bit12) if(status & (1<<13)) return 2; // CH1数据就绪(bit13) if(status & (1<<14)) return 3; // CH2数据就绪(bit14) if(status & (1<<15)) return 4; // CH3数据就绪(bit15) return 0; // 无数据就绪 } // 写入寄存器 HAL_StatusTypeDef FDC2214_WriteReg(uint8_t reg, uint16_t value) { uint8_t data[3] = {reg, (uint8_t)(value >> 8), (uint8_t)(value & 0xFF)}; return HAL_I2C_Master_Transmit(&hi2c2, FDC2214_ADDR, data, 3, HAL_MAX_DELAY); } // 读取寄存器 HAL_StatusTypeDef FDC2214_ReadReg(uint8_t reg, uint16_t *value) { uint8_t data[2]; HAL_StatusTypeDef status; status = HAL_I2C_Master_Transmit(&hi2c2, FDC2214_ADDR, ®, 1, HAL_MAX_DELAY); if(status != HAL_OK) return status; status = HAL_I2C_Master_Receive(&hi2c2, FDC2214_ADDR, data, 2, HAL_MAX_DELAY); if(status == HAL_OK) { *value = (data[0] << 8) | data[1]; } return status; } // 初始化FDC2214 void FDC2214_Init(void) { // 复位设备 FDC2214_WriteReg(FDC2214_RESET_DEV, 0x8000); HAL_Delay(50); // 配置通道0 FDC2214_WriteReg(FDC2214_RCOUNT_CH0, 0xFFFF); // 最大读取计数 FDC2214_WriteReg(FDC2214_SETTLECOUNT_CH0, 0x0FFF); // 稳定计数 FDC2214_WriteReg(FDC2214_CLOCK_DIVIDERS_CH0, 0x1001); // 时钟分频 // 配置通道1 FDC2214_WriteReg(FDC2214_RCOUNT_CH1, 0xFFFF); FDC2214_WriteReg(FDC2214_SETTLECOUNT_CH1, 0x0FFF); FDC2214_WriteReg(FDC2214_CLOCK_DIVIDERS_CH1, 0x1001); // 配置通道2 FDC2214_WriteReg(FDC2214_RCOUNT_CH2, 0xFFFF); FDC2214_WriteReg(FDC2214_SETTLECOUNT_CH2, 0x0FFF); FDC2214_WriteReg(FDC2214_CLOCK_DIVIDERS_CH2, 0x1001); // 配置通道3 FDC2214_WriteReg(FDC2214_RCOUNT_CH3, 0xFFFF); FDC2214_WriteReg(FDC2214_SETTLECOUNT_CH3, 0x0FFF); FDC2214_WriteReg(FDC2214_CLOCK_DIVIDERS_CH3, 0x1001); // 配置多路复用器 FDC2214_WriteReg(FDC2214_MUX_CONFIG, 0x020C); // 自动扫描所有通道 // 配置主寄存器 FDC2214_WriteReg(FDC2214_CONFIG, 0x1C01); // 激活4通道,外部参考时钟 } // 读取通道数据 float FDC2214_ReadChannel(uint8_t channel) { // 1. 确定寄存器地址 uint8_t msb_reg = FDC2214_DATA_CH0 + channel*2; uint8_t lsb_reg = msb_reg + 1; // 2. 读取原始数据(带重试机制) uint16_t msb, lsb; if(FDC2214_ReadReg(msb_reg, &msb) != HAL_OK) return 0; if(FDC2214_ReadReg(lsb_reg, &lsb) != HAL_OK) return 0; // 3. 组合28位数据(注意:DATA[27:0]有效) uint32_t data = ((uint32_t)(msb & 0x0FFF) << 16) | lsb; if(data == 0) return 0; // 防止除以零 // 4. 计算频率(单位Hz) const float f_ref = 12.0e6f; const float divider = 4.0f; // 分频系数 float freq = (f_ref / divider) * (data / powf(2, 28)); // 5. 计算电容(单位pF) const float L = 18.0e-6f; // 18μH电感 float capacitance = 1.0f / (4 * powf(M_PI, 2) * powf(freq, 2) * L) * 1e12f/10000; return capacitance; } 这是fdc2214.c文件,为什么我只有通道0显示数据,且电容数值与真实数值不一样

#include "stdlib.h" #include "oled.h" #include "oledfont.h" ////////////////////////////////////////////////////////////////////////////////// //±¾³ÌÐòÖ»¹©Ñ§Ï°Ê¹Óã¬Î´¾­×÷ÕßÐí¿É£¬²»µÃÓÃÓÚÆäËüÈκÎÓÃ; //ALIENTEKÕ½½¢STM32¿ª·¢°åV3 //SSD1306 OLED Çý¶¯ICÇý¶¯´úÂë //Çý¶¯·½Ê½:8080²¢¿Ú/4Ïß´®¿Ú //ÕýµãÔ­×Ó@ALIENTEK //¼¼ÊõÂÛ̳:www.openedv.com //´´½¨ÈÕÆÚ:2015/1/14 //°æ±¾£ºV1.0 //°æÈ¨ËùÓУ¬µÁ°æ±Ø¾¿¡£ //Copyright(C) ¹ãÖÝÊÐÐÇÒíµç×ӿƼ¼ÓÐÏÞ¹«Ë¾ 2009-2019 //All rights reserved ////////////////////////////////////////////////////////////////////////////////// //OLEDµÄÏÔ´æ //´æ·Å¸ñʽÈçÏÂ. //[0]0 1 2 3 ... 127 //[1]0 1 2 3 ... 127 //[2]0 1 2 3 ... 127 //[3]0 1 2 3 ... 127 //[4]0 1 2 3 ... 127 //[5]0 1 2 3 ... 127 //[6]0 1 2 3 ... 127 //[7]0 1 2 3 ... 127 unsigned char OLED_GRAM[128][8]; //¸üÐÂÏÔ´æµ½OLED extern void delay_ms(int32_t); void OLED_Refresh_Gram(void) { unsigned char i,n; for(i=0;i<8;i++) { OLED_WR_Byte (0xb0+i,OLED_CMD);//ÉèÖÃÒ³µØÖ·£¨0~7£© OLED_WR_Byte (0x00,OLED_CMD); //ÉèÖÃÏÔʾλÖáªÁе͵ØÖ· OLED_WR_Byte (0x10,OLED_CMD); //ÉèÖÃÏÔʾλÖáªÁиߵØÖ· for(n=0;n<128;n++)OLED_WR_Byte(OLED_GRAM[n][i],OLED_DATA); } } //ÏòSSD1306дÈëÒ»¸ö×Ö½Ú¡£ //dat:ҪдÈëµÄÊý¾Ý/ÃüÁî //cmd:Êý¾Ý/ÃüÁî±êÖ¾ 0,±íʾÃüÁî;1,±íʾÊý¾Ý; void OLED_WR_Byte(unsigned char dat,unsigned char cmd) { unsigned char i; //½ÓÊÕµÄÊý¾Ý SPI_CLK = 0; //¿ÕÏÐµçÆ½ SPI_CS = 0; //Ñ¡ÖÐ SPI_DC = cmd; //Ñ¡ÔñÊý¾Ý»òÕßÃüÁî for(i=0;i<8;i++) { SPI_CLK = 0; //¿ÕÏÐµçÆ½ if(dat & 0x80) SPI_MOSI = 1; else SPI_MOSI = 0; SPI_CLK = 1; //²úÉúÉÏÉýÑØ dat <<= 1; } SPI_CLK = 0; //¿ÕÏÐµçÆ½ SPI_CS = 1; //È¡ÏûÑ¡ÖÐ } void SPI_WriteRead_OneByte(unsigned char tx_data,unsigned char cmd) { unsigned char i; //½ÓÊÕµÄÊý¾Ý SPI_CLK = 0; //¿ÕÏÐµçÆ½ SPI_CS = 0; //Ñ¡ÖÐ SPI_DC = cmd; //Ñ¡ÔñÊý¾Ý»òÕßÃüÁî for(i=0;i<8;i++) { SPI_CLK = 0; //¿ÕÏÐµçÆ½ if(tx_data & 0x80) SPI_MOSI = 1; else SPI_MOSI = 0; SPI_CLK = 1; //²úÉúÉÏÉýÑØ tx_data <<= 1; } SPI_CLK = 0; //¿ÕÏÐµçÆ½ SPI_CS = 1; //È¡ÏûÑ¡ÖÐ } //¿ªÆôOLEDÏÔʾ void OLED_Display_On(void) { OLED_WR_Byte(0X8D,OLED_CMD); //SET DCDCÃüÁî OLED_WR_Byte(0X14,OLED_CMD); //DCDC ON OLED_WR_Byte(0XAF,OLED_CMD); //DISPLAY ON } //¹Ø±ÕOLEDÏÔʾ void OLED_Display_Off(void) { OLED_WR_Byte(0X8D,OLED_CMD); //SET DCDCÃüÁî OLED_WR_Byte(0X10,OLED_CMD); //DCDC OFF OLED_WR_Byte(0XAE,OLED_CMD); //DISPLAY OFF } //ÇåÆÁº¯Êý,ÇåÍêÆÁ,Õû¸öÆÁÄ»ÊǺÚÉ«µÄ!ºÍûµãÁÁÒ»Ñù!!! void OLED_Clear(void) { unsigned char i,n; for(i=0;i<8;i++)for(n=0;n<128;n++)OLED_GRAM[n][i]=0X00; OLED_Refresh_Gram(); //¸üÐÂÏÔʾ } //»­µã //x:0~127 //y:0~63 //t:1 Ìî³ä 0,Çå¿Õ void OLED_DrawPoint(unsigned char x,unsigned char y,unsigned char t) { unsigned char pos,bx,temp=0; if(x>127||y>63)return; //³¬³ö·¶Î§ÁË. pos=7-y/8; bx=y%8; temp=1<<(7-bx); if(t) OLED_GRAM[x][pos]|=temp; else OLED_GRAM[x][pos]&=~temp; } //x1,y1,x2,y2 Ìî³äÇøÓòµÄ¶Ô½Ç×ø±ê //È·±£x1<=x2;y1<=y2 0<=x1<=127 0<=y1<=63 //dot:0,Çå¿Õ;1,Ìî³ä void OLED_Fill(unsigned char x1,unsigned char y1,unsigned char x2,unsigned char y2,unsigned char dot) { unsigned char x,y; for(x=x1;x<=x2;x++) { for(y=y1;y<=y2;y++)OLED_DrawPoint(x,y,dot); } OLED_Refresh_Gram(); //¸üÐÂÏÔʾ } //ÔÚÖ¸¶¨Î»ÖÃÏÔʾһ¸ö×Ö·û,°üÀ¨²¿·Ö×Ö·û //x:0~127 //y:0~63 //mode:0,·´°×ÏÔʾ;1,Õý³£ÏÔʾ //size:Ñ¡Ôñ×ÖÌå 12/16/24 void OLED_ShowChar(unsigned char x,unsigned char y,unsigned char chr,unsigned char size,unsigned char mode) { unsigned char temp,t,t1; unsigned char y0=y; unsigned char csize=(size/8+((size%8)?1:0))*(size/2);//µÃµ½×ÖÌåÒ»¸ö×Ö·û¶ÔÓ¦µãÕó¼¯ËùÕ¼µÄ×Ö½ÚÊý chr=chr-' '; //µÃµ½Æ«ÒƺóµÄÖµ for(t=0;t<csize;t++) { if(size==12)temp=asc2_1206[chr][t]; //µ÷ÓÃ1206×ÖÌå else if(size==16)temp=asc2_1608[chr][t];//µ÷ÓÃ1608×ÖÌå else if(size==24)temp=asc2_2412[chr][t];//µ÷ÓÃ2412×ÖÌå else return; //ûÓеÄ×Ö¿â for(t1=0;t1<8;t1++) { if(temp&0x80) OLED_DrawPoint(x,y,mode); else OLED_DrawPoint(x,y,!mode); temp<<=1; y++; if((y-y0)==size) { y=y0; x++; break; } } } } //m^nº¯Êý unsigned int mypow(unsigned char m,unsigned char n) { unsigned int result=1; while(n--)result*=m; return result; } //ÏÔʾ2¸öÊý×Ö //x,y :Æðµã×ø±ê //len :Êý×ÖµÄλÊý //size:×ÖÌå´óС //mode:ģʽ 0,Ìî³äģʽ;1,µþ¼Óģʽ //num:ÊýÖµ(0~4294967295); void OLED_ShowNum(unsigned char x,unsigned char y,unsigned int num,unsigned char len,unsigned char size) { unsigned char t,temp; unsigned char enshow=0; for(t=0;t<len;t++) { temp=(num/mypow(10,len-t-1))%10; if(enshow==0&&t<(len-1)) { if(temp==0) { OLED_ShowChar(x+(size/2)*t,y,' ',size,1); continue; } else enshow=1; } OLED_ShowChar(x+(size/2)*t,y,temp+'0',size,1); } } //ÏÔʾ×Ö·û´® //x,y:Æðµã×ø±ê //size:×ÖÌå´óС //*p:×Ö·û´®ÆðʼµØÖ· void OLED_ShowString(unsigned char x,unsigned char y,const unsigned char *p,unsigned char size) { while((*p<='~')&&(*p>=' ')) //ÅжÏÊDz»ÊÇ·Ç·¨×Ö·û! { if(x>(128-(size/2))){x=0;y+=size;} if(y>(64-size)){y=x=0;OLED_Clear();} OLED_ShowChar(x,y,*p,size,1); x+=size/2; p++; } } //³õʼ»¯SSD1306 void OLED_Init(void) { GPIO_InitTypeDef GPIO_InitStructure; RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOB, ENABLE); //ʹÄÜGPIOB¶Ë¿ÚʱÖÓ GPIO_InitStructure.GPIO_Pin = GPIO_Pin_10|GPIO_Pin_11|GPIO_Pin_12|GPIO_Pin_13|GPIO_Pin_14;//PB10~PB14ÍÆÍìÊä³ö GPIO_InitStructure.GPIO_Mode = GPIO_Mode_Out_PP; //ÍÆÍìÊä³ö GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz; //ËÙ¶È50MHz GPIO_Init(GPIOB, &GPIO_InitStructure); //³õʼ»¯GPIOB GPIO_SetBits(GPIOB,GPIO_Pin_10|GPIO_Pin_11|GPIO_Pin_12|GPIO_Pin_13|GPIO_Pin_14);//PB10~PB14¾ùÊä³ö¸ß delay_ms(100); OLED_WR_Byte(0xAE,OLED_CMD); //ÃüÁîΪ¹Ø±ÕÏÔʾ OLED_WR_Byte(0xD5,OLED_CMD); //ÃüÁîΪºó½ÓµÄÃüÁîÊÇÉèÖÃʱÖÓ·ÖÆµÒò×ÓºÍÕñµ´ÆµÂÊ OLED_WR_Byte(80,OLED_CMD); //[3:0]ÊÇ·ÖÆµÒò×Ó£¨0¡¢²»·ÖƵ£©;[7:4]ÊÇÕñµ´ÆµÂÊ£¨8¡¢Ó븴λʱµÄÖµÒ»Ñù£© OLED_WR_Byte(0xA8,OLED_CMD); //ÉèÖÃÇý¶¯Â·Êý OLED_WR_Byte(0X3F,OLED_CMD); //ĬÈÏ0X3F(1/64) OLED_WR_Byte(0xD3,OLED_CMD); //ÉèÖÃÏÔÊ¾Æ«ÒÆ OLED_WR_Byte(0X00,OLED_CMD); //ĬÈÏΪ0 OLED_WR_Byte(0x40,OLED_CMD); //ÉèÖÃÏÔʾ¿ªÊ¼ÐÐ [5:0],ÐÐÊý. OLED_WR_Byte(0x8D,OLED_CMD); //µçºÉ±ÃÉèÖà OLED_WR_Byte(0x14,OLED_CMD); //bit2£¬¿ªÆô/¹Ø±Õ OLED_WR_Byte(0x20,OLED_CMD); //ÉèÖÃÄÚ´æµØÖ·Ä£Ê½ OLED_WR_Byte(0x02,OLED_CMD); //[1:0],00£¬ÁеØÖ·Ä£Ê½;01£¬ÐеØÖ·Ä£Ê½;10,Ò³µØÖ·Ä£Ê½;ĬÈÏ10; OLED_WR_Byte(0xA1,OLED_CMD); //¶ÎÖØ¶¨ÒåÉèÖÃ,bit0:0,0->0;1,0->127; OLED_WR_Byte(0xC0,OLED_CMD); //ÉèÖÃCOMɨÃè·½Ïò;bit3:0,ÆÕͨģʽ;1,ÖØ¶¨Òåģʽ COM[N-1]->COM0;N:Çý¶¯Â·Êý OLED_WR_Byte(0xDA,OLED_CMD); //ÉèÖÃCOMÓ²¼þÒý½ÅÅäÖà OLED_WR_Byte(0x12,OLED_CMD); //[5:4]ÅäÖà OLED_WR_Byte(0x81,OLED_CMD); //¶Ô±È¶ÈÉèÖà OLED_WR_Byte(0xEF,OLED_CMD); //1~255;ĬÈÏ0X7F (ÁÁ¶ÈÉèÖÃ,Ô½´óÔ½ÁÁ) OLED_WR_Byte(0xD9,OLED_CMD); //ÉèÖÃÔ¤³äµçÖÜÆÚ OLED_WR_Byte(0xf1,OLED_CMD); //[3:0],PHASE 1;[7:4],PHASE 2; OLED_WR_Byte(0xDB,OLED_CMD); //ÉèÖÃVCOMH µçѹ±¶ÂÊ OLED_WR_Byte(0x30,OLED_CMD); //[6:4] 000,0.65*vcc;001,0.77*vcc;011,0.83*vcc; OLED_WR_Byte(0xA4,OLED_CMD); //È«¾ÖÏÔʾ¿ªÆô;bit0:1,¿ªÆô;0,¹Ø±Õ;(°×ÆÁ/ºÚÆÁ) OLED_WR_Byte(0xA6,OLED_CMD); //ÉèÖÃÏÔʾ·½Ê½;bit0:1,·´ÏàÏÔʾ;0,Õý³£ÏÔʾ OLED_WR_Byte(0xAF,OLED_CMD); //¿ªÆôÏÔʾ OLED_Clear(); } #ifndef __OLED_H #define __OLED_H #include "stdlib.h" #include "stm32f10x.h" //λ´ø²Ù×÷,ʵÏÖ51ÀàËÆµÄGPIO¿ØÖƹ¦ÄÜ //¾ßÌåʵÏÖ˼Ïë,²Î¿¼<<CM3ȨÍþÖ¸ÄÏ>>µÚÎåÕÂ(87Ò³~92Ò³). //IO¿Ú²Ù×÷ºê¶¨Òå #define BITBAND(addr, bitnum) ((addr & 0xF0000000)+0x2000000+((addr &0xFFFFF)<<5)+(bitnum<<2)) #define MEM_ADDR(addr) *((volatile unsigned long *)(addr)) #define BIT_ADDR(addr, bitnum) MEM_ADDR(BITBAND(addr, bitnum)) //IO¿ÚµØÖ·Ó³Éä #define GPIOB_ODR_Addr (GPIOB_BASE+12) //0x40010C0C //IO¿Ú²Ù×÷,Ö»¶Ôµ¥Ò»µÄIO¿Ú! //È·±£nµÄֵСÓÚ16! #define PBout(n) BIT_ADDR(GPIOB_ODR_Addr,n) //Êä³ö ////////////////////////////////////////////////////////////////////////////////// //SSD1306 OLED Çý¶¯ICÇý¶¯´úÂë //Çý¶¯·½Ê½:4Ïß´®¿Ú ////////////////////////////////////////////////////////////////////////////////// //OLEDģʽ:4Ïß´®ÐÐģʽ //---------------------------OLED¶Ë¿Ú¶¨Òå-------------------------- #define SPI_CLK PBout(13) #define SPI_MOSI PBout(14) #define SPI_RES PBout(12) #define SPI_DC PBout(11) #define SPI_CS PBout(10) #define OLED_CMD 0 //дÃüÁî #define OLED_DATA 1 //дÊý¾Ý //OLED¿ØÖÆÓú¯Êý void OLED_WR_Byte(unsigned char dat,unsigned char cmd); void OLED_Display_On(void); void OLED_Display_Off(void); void OLED_Refresh_Gram(void); void OLED_Init(void); void OLED_Clear(void); void OLED_DrawPoint(unsigned char x,unsigned char y,unsigned char t); void OLED_Fill(unsigned char x1,unsigned char y1,unsigned char x2,unsigned char y2,unsigned char dot); void OLED_ShowChar(unsigned char x,unsigned char y,unsigned char chr,unsigned char size,unsigned char mode); void OLED_ShowNum(unsigned char x,unsigned char y,u32 num,unsigned char len,unsigned char size); void OLED_ShowString(unsigned char x,unsigned char y,const unsigned char *p,unsigned char size); #endif #ifndef __OLEDFONT_H #define __OLEDFONT_H //³£ÓÃASCII±í //Æ«ÒÆÁ¿32 //ASCII×Ö·û¼¯: !"#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_abcdefghijklmnopqrstuvwxyz{|}~ //PC2LCD2002ȡģ·½Ê½ÉèÖãºÒõÂë+ÖðÁÐʽ+˳Ïò+C51¸ñʽ //×ܹ²£º3¸ö×Ö·û¼¯£¨12*12¡¢16*16ºÍ24*24£©£¬Óû§¿ÉÒÔ×ÔÐÐÐÂÔöÆäËû·Ö±æÂʵÄ×Ö·û¼¯¡£ //ÿ¸ö×Ö·ûËùÕ¼ÓõÄ×Ö½ÚÊýΪ:(size/8+((size%8)?1:0))*(size/2),ÆäÖÐsize:ÊÇ×Ö¿âÉú³ÉʱµÄµãÕó´óС(12/16/24...) //12*6 ASCII×Ö·û¼¯µãÕó const unsigned char asc2_1206[95][12]={ {0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00},/*" ",0*/ {0x00,0x00,0x00,0x00,0x3F,0x40,0x00,0x00,0x00,0x00,0x00,0x00},/*"!",1*/ {0x00,0x00,0x30,0x00,0x40,0x00,0x30,0x00,0x40,0x00,0x00,0x00},/*""",2*/ {0x09,0x00,0x0B,0xC0,0x3D,0x00,0x0B,0xC0,0x3D,0x00,0x09,0x00},/*"#",3*/ {0x18,0xC0,0x24,0x40,0x7F,0xE0,0x22,0x40,0x31,0x80,0x00,0x00},/*"$",4*/ {0x18,0x00,0x24,0xC0,0x1B,0x00,0x0D,0x80,0x32,0x40,0x01,0x80},/*"%",5*/ {0x03,0x80,0x1C,0x40,0x27,0x40,0x1C,0x80,0x07,0x40,0x00,0x40},/*"&",6*/ {0x10,0x00,0x60,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00},/*"'",7*/ {0x00,0x00,0x00,0x00,0x00,0x00,0x1F,0x80,0x20,0x40,0x40,0x20},/*"(",8*/ {0x00,0x00,0x40,0x20,0x20,0x40,0x1F,0x80,0x00,0x00,0x00,0x00},/*")",9*/ {0x09,0x00,0x06,0x00,0x1F,0x80,0x06,0x00,0x09,0x00,0x00,0x00},/*"*",10*/ {0x04,0x00,0x04,0x00,0x3F,0x80,0x04,0x00,0x04,0x00,0x00,0x00},/*"+",11*/ {0x00,0x10,0x00,0x60,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00},/*",",12*/ {0x04,0x00,0x04,0x00,0x04,0x00,0x04,0x00,0x04,0x00,0x00,0x00},/*"-",13*/ {0x00,0x00,0x00,0x40,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00},/*".",14*/ {0x00,0x20,0x01,0xC0,0x06,0x00,0x38,0x00,0x40,0x00,0x00,0x00},/*"/",15*/ {0x1F,0x80,0x20,0x40,0x20,0x40,0x20,0x40,0x1F,0x80,0x00,0x00},/*"0",16*/ {0x00,0x00,0x10,0x40,0x3F,0xC0,0x00,0x40,0x00,0x00,0x00,0x00},/*"1",17*/ {0x18,0xC0,0x21,0x40,0x22,0x40,0x24,0x40,0x18,0x40,0x00,0x00},/*"2",18*/ {0x10,0x80,0x20,0x40,0x24,0x40,0x24,0x40,0x1B,0x80,0x00,0x00},/*"3",19*/ {0x02,0x00,0x0D,0x00,0x11,0x00,0x3F,0xC0,0x01,0x40,0x00,0x00},/*"4",20*/ {0x3C,0x80,0x24,0x40,0x24,0x40,0x24,0x40,0x23,0x80,0x00,0x00},/*"5",21*/ {0x1F,0x80,0x24,0x40,0x24,0x40,0x34,0x40,0x03,0x80,0x00,0x00},/*"6",22*/ {0x30,0x00,0x20,0x00,0x27,0xC0,0x38,0x00,0x20,0x00,0x00,0x00},/*"7",23*/ {0x1B,0x80,0x24,0x40,0x24,0x40,0x24,0x40,0x1B,0x80,0x00,0x00},/*"8",24*/ {0x1C,0x00,0x22,0xC0,0x22,0x40,0x22,0x40,0x1F,0x80,0x00,0x00},/*"9",25*/ {0x00,0x00,0x00,0x00,0x08,0x40,0x00,0x00,0x00,0x00,0x00,0x00},/*":",26*/ {0x00,0x00,0x00,0x00,0x04,0x60,0x00,0x00,0x00,0x00,0x00,0x00},/*";",27*/ {0x00,0x00,0x04,0x00,0x0A,0x00,0x11,0x00,0x20,0x80,0x40,0x40},/*"<",28*/ {0x09,0x00,0x09,0x00,0x09,0x00,0x09,0x00,0x09,0x00,0x00,0x00},/*"=",29*/ {0x00,0x00,0x40,0x40,0x20,0x80,0x11,0x00,0x0A,0x00,0x04,0x00},/*">",30*/ {0x18,0x00,0x20,0x00,0x23,0x40,0x24,0x00,0x18,0x00,0x00,0x00},/*"?",31*/ {0x1F,0x80,0x20,0x40,0x27,0x40,0x29,0x40,0x1F,0x40,0x00,0x00},/*"@",32*/ {0x00,0x40,0x07,0xC0,0x39,0x00,0x0F,0x00,0x01,0xC0,0x00,0x40},/*"A",33*/ {0x20,0x40,0x3F,0xC0,0x24,0x40,0x24,0x40,0x1B,0x80,0x00,0x00},/*"B",34*/ {0x1F,0x80,0x20,0x40,0x20,0x40,0x20,0x40,0x30,0x80,0x00,0x00},/*"C",35*/ {0x20,0x40,0x3F,0xC0,0x20,0x40,0x20,0x40,0x1F,0x80,0x00,0x00},/*"D",36*/ {0x20,0x40,0x3F,0xC0,0x24,0x40,0x2E,0x40,0x30,0xC0,0x00,0x00},/*"E",37*/ {0x20,0x40,0x3F,0xC0,0x24,0x40,0x2E,0x00,0x30,0x00,0x00,0x00},/*"F",38*/ {0x0F,0x00,0x10,0x80,0x20,0x40,0x22,0x40,0x33,0x80,0x02,0x00},/*"G",39*/ {0x20,0x40,0x3F,0xC0,0x04,0x00,0x04,0x00,0x3F,0xC0,0x20,0x40},/*"H",40*/ {0x20,0x40,0x20,0x40,0x3F,0xC0,0x20,0x40,0x20,0x40,0x00,0x00},/*"I",41*/ {0x00,0x60,0x20,0x20,0x20,0x20,0x3F,0xC0,0x20,0x00,0x20,0x00},/*"J",42*/ {0x20,0x40,0x3F,0xC0,0x24,0x40,0x0B,0x00,0x30,0xC0,0x20,0x40},/*"K",43*/ {0x20,0x40,0x3F,0xC0,0x20,0x40,0x00,0x40,0x00,0x40,0x00,0xC0},/*"L",44*/ {0x3F,0xC0,0x3C,0x00,0x03,0xC0,0x3C,0x00,0x3F,0xC0,0x00,0x00},/*"M",45*/ {0x20,0x40,0x3F,0xC0,0x0C,0x40,0x23,0x00,0x3F,0xC0,0x20,0x00},/*"N",46*/ {0x1F,0x80,0x20,0x40,0x20,0x40,0x20,0x40,0x1F,0x80,0x00,0x00},/*"O",47*/ {0x20,0x40,0x3F,0xC0,0x24,0x40,0x24,0x00,0x18,0x00,0x00,0x00},/*"P",48*/ {0x1F,0x80,0x21,0x40,0x21,0x40,0x20,0xE0,0x1F,0xA0,0x00,0x00},/*"Q",49*/ {0x20,0x40,0x3F,0xC0,0x24,0x40,0x26,0x00,0x19,0xC0,0x00,0x40},/*"R",50*/ {0x18,0xC0,0x24,0x40,0x24,0x40,0x22,0x40,0x31,0x80,0x00,0x00},/*"S",51*/ {0x30,0x00,0x20,0x40,0x3F,0xC0,0x20,0x40,0x30,0x00,0x00,0x00},/*"T",52*/ {0x20,0x00,0x3F,0x80,0x00,0x40,0x00,0x40,0x3F,0x80,0x20,0x00},/*"U",53*/ {0x20,0x00,0x3E,0x00,0x01,0xC0,0x07,0x00,0x38,0x00,0x20,0x00},/*"V",54*/ {0x38,0x00,0x07,0xC0,0x3C,0x00,0x07,0xC0,0x38,0x00,0x00,0x00},/*"W",55*/ {0x20,0x40,0x39,0xC0,0x06,0x00,0x39,0xC0,0x20,0x40,0x00,0x00},/*"X",56*/ {0x20,0x00,0x38,0x40,0x07,0xC0,0x38,0x40,0x20,0x00,0x00,0x00},/*"Y",57*/ {0x30,0x40,0x21,0xC0,0x26,0x40,0x38,0x40,0x20,0xC0,0x00,0x00},/*"Z",58*/ {0x00,0x00,0x00,0x00,0x7F,0xE0,0x40,0x20,0x40,0x20,0x00,0x00},/*"[",59*/ {0x00,0x00,0x70,0x00,0x0C,0x00,0x03,0x80,0x00,0x40,0x00,0x00},/*"\",60*/ {0x00,0x00,0x40,0x20,0x40,0x20,0x7F,0xE0,0x00,0x00,0x00,0x00},/*"]",61*/ {0x00,0x00,0x20,0x00,0x40,0x00,0x20,0x00,0x00,0x00,0x00,0x00},/*"^",62*/ {0x00,0x10,0x00,0x10,0x00,0x10,0x00,0x10,0x00,0x10,0x00,0x10},/*"_",63*/ {0x00,0x00,0x00,0x00,0x40,0x00,0x00,0x00,0x00,0x00,0x00,0x00},/*"",64*/ {0x00,0x00,0x02,0x80,0x05,0x40,0x05,0x40,0x03,0xC0,0x00,0x40},/*"a",65*/ {0x20,0x00,0x3F,0xC0,0x04,0x40,0x04,0x40,0x03,0x80,0x00,0x00},/*"b",66*/ {0x00,0x00,0x03,0x80,0x04,0x40,0x04,0x40,0x06,0x40,0x00,0x00},/*"c",67*/ {0x00,0x00,0x03,0x80,0x04,0x40,0x24,0x40,0x3F,0xC0,0x00,0x40},/*"d",68*/ {0x00,0x00,0x03,0x80,0x05,0x40,0x05,0x40,0x03,0x40,0x00,0x00},/*"e",69*/ {0x00,0x00,0x04,0x40,0x1F,0xC0,0x24,0x40,0x24,0x40,0x20,0x00},/*"f",70*/ {0x00,0x00,0x02,0xE0,0x05,0x50,0x05,0x50,0x06,0x50,0x04,0x20},/*"g",71*/ {0x20,0x40,0x3F,0xC0,0x04,0x40,0x04,0x00,0x03,0xC0,0x00,0x40},/*"h",72*/ {0x00,0x00,0x04,0x40,0x27,0xC0,0x00,0x40,0x00,0x00,0x00,0x00},/*"i",73*/ {0x00,0x10,0x00,0x10,0x04,0x10,0x27,0xE0,0x00,0x00,0x00,0x00},/*"j",74*/ {0x20,0x40,0x3F,0xC0,0x01,0x40,0x07,0x00,0x04,0xC0,0x04,0x40},/*"k",75*/ {0x20,0x40,0x20,0x40,0x3F,0xC0,0x00,0x40,0x00,0x40,0x00,0x00},/*"l",76*/ {0x07,0xC0,0x04,0x00,0x07,0xC0,0x04,0x00,0x03,0xC0,0x00,0x00},/*"m",77*/ {0x04,0x40,0x07,0xC0,0x04,0x40,0x04,0x00,0x03,0xC0,0x00,0x40},/*"n",78*/ {0x00,0x00,0x03,0x80,0x04,0x40,0x04,0x40,0x03,0x80,0x00,0x00},/*"o",79*/ {0x04,0x10,0x07,0xF0,0x04,0x50,0x04,0x40,0x03,0x80,0x00,0x00},/*"p",80*/ {0x00,0x00,0x03,0x80,0x04,0x40,0x04,0x50,0x07,0xF0,0x00,0x10},/*"q",81*/ {0x04,0x40,0x07,0xC0,0x02,0x40,0x04,0x00,0x04,0x00,0x00,0x00},/*"r",82*/ {0x00,0x00,0x06,0x40,0x05,0x40,0x05,0x40,0x04,0xC0,0x00,0x00},/*"s",83*/ {0x00,0x00,0x04,0x00,0x1F,0x80,0x04,0x40,0x00,0x40,0x00,0x00},/*"t",84*/ {0x04,0x00,0x07,0x80,0x00,0x40,0x04,0x40,0x07,0xC0,0x00,0x40},/*"u",85*/ {0x04,0x00,0x07,0x00,0x04,0xC0,0x01,0x80,0x06,0x00,0x04,0x00},/*"v",86*/ {0x06,0x00,0x01,0xC0,0x07,0x00,0x01,0xC0,0x06,0x00,0x00,0x00},/*"w",87*/ {0x04,0x40,0x06,0xC0,0x01,0x00,0x06,0xC0,0x04,0x40,0x00,0x00},/*"x",88*/ {0x04,0x10,0x07,0x10,0x04,0xE0,0x01,0x80,0x06,0x00,0x04,0x00},/*"y",89*/ {0x00,0x00,0x04,0x40,0x05,0xC0,0x06,0x40,0x04,0x40,0x00,0x00},/*"z",90*/ {0x00,0x00,0x00,0x00,0x04,0x00,0x7B,0xE0,0x40,0x20,0x00,0x00},/*"{",91*/ {0x00,0x00,0x00,0x00,0x00,0x00,0xFF,0xF0,0x00,0x00,0x00,0x00},/*"|",92*/ {0x00,0x00,0x40,0x20,0x7B,0xE0,0x04,0x00,0x00,0x00,0x00,0x00},/*"}",93*/ {0x40,0x00,0x80,0x00,0x40,0x00,0x20,0x00,0x20,0x00,0x40,0x00},/*"~",94*/ }; //16*8 ASCII×Ö·û¼¯µãÕó const unsigned char asc2_1608[95][16]={ {0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00},/*" ",0*/ {0x00,0x00,0x00,0x00,0x00,0x00,0x1F,0xCC,0x00,0x0C,0x00,0x00,0x00,0x00,0x00,0x00},/*"!",1*/ {0x00,0x00,0x08,0x00,0x30,0x00,0x60,0x00,0x08,0x00,0x30,0x00,0x60,0x00,0x00,0x00},/*""",2*/ {0x02,0x20,0x03,0xFC,0x1E,0x20,0x02,0x20,0x03,0xFC,0x1E,0x20,0x02,0x20,0x00,0x00},/*"#",3*/ {0x00,0x00,0x0E,0x18,0x11,0x04,0x3F,0xFF,0x10,0x84,0x0C,0x78,0x00,0x00,0x00,0x00},/*"$",4*/ {0x0F,0x00,0x10,0x84,0x0F,0x38,0x00,0xC0,0x07,0x78,0x18,0x84,0x00,0x78,0x00,0x00},/*"%",5*/ {0x00,0x78,0x0F,0x84,0x10,0xC4,0x11,0x24,0x0E,0x98,0x00,0xE4,0x00,0x84,0x00,0x08},/*"&",6*/ {0x08,0x00,0x68,0x00,0x70,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00},/*"'",7*/ {0x00,0x00,0x00,0x00,0x00,0x00,0x07,0xE0,0x18,0x18,0x20,0x04,0x40,0x02,0x00,0x00},/*"(",8*/ {0x00,0x00,0x40,0x02,0x20,0x04,0x18,0x18,0x07,0xE0,0x00,0x00,0x00,0x00,0x00,0x00},/*")",9*/ {0x02,0x40,0x02,0x40,0x01,0x80,0x0F,0xF0,0x01,0x80,0x02,0x40,0x02,0x40,0x00,0x00},/*"*",10*/ {0x00,0x80,0x00,0x80,0x00,0x80,0x0F,0xF8,0x00,0x80,0x00,0x80,0x00,0x80,0x00,0x00},/*"+",11*/ {0x00,0x01,0x00,0x0D,0x00,0x0E,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00},/*",",12*/ {0x00,0x00,0x00,0x80,0x00,0x80,0x00,0x80,0x00,0x80,0x00,0x80,0x00,0x80,0x00,0x80},/*"-",13*/ {0x00,0x00,0x00,0x0C,0x00,0x0C,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00},/*".",14*/ {0x00,0x00,0x00,0x06,0x00,0x18,0x00,0x60,0x01,0x80,0x06,0x00,0x18,0x00,0x20,0x00},/*"/",15*/ {0x00,0x00,0x07,0xF0,0x08,0x08,0x10,0x04,0x10,0x04,0x08,0x08,0x07,0xF0,0x00,0x00},/*"0",16*/ {0x00,0x00,0x08,0x04,0x08,0x04,0x1F,0xFC,0x00,0x04,0x00,0x04,0x00,0x00,0x00,0x00},/*"1",17*/ {0x00,0x00,0x0E,0x0C,0x10,0x14,0x10,0x24,0x10,0x44,0x11,0x84,0x0E,0x0C,0x00,0x00},/*"2",18*/ {0x00,0x00,0x0C,0x18,0x10,0x04,0x11,0x04,0x11,0x04,0x12,0x88,0x0C,0x70,0x00,0x00},/*"3",19*/ {0x00,0x00,0x00,0xE0,0x03,0x20,0x04,0x24,0x08,0x24,0x1F,0xFC,0x00,0x24,0x00,0x00},/*"4",20*/ {0x00,0x00,0x1F,0x98,0x10,0x84,0x11,0x04,0x11,0x04,0x10,0x88,0x10,0x70,0x00,0x00},/*"5",21*/ {0x00,0x00,0x07,0xF0,0x08,0x88,0x11,0x04,0x11,0x04,0x18,0x88,0x00,0x70,0x00,0x00},/*"6",22*/ {0x00,0x00,0x1C,0x00,0x10,0x00,0x10,0xFC,0x13,0x00,0x1C,0x00,0x10,0x00,0x00,0x00},/*"7",23*/ {0x00,0x00,0x0E,0x38,0x11,0x44,0x10,0x84,0x10,0x84,0x11,0x44,0x0E,0x38,0x00,0x00},/*"8",24*/ {0x00,0x00,0x07,0x00,0x08,0x8C,0x10,0x44,0x10,0x44,0x08,0x88,0x07,0xF0,0x00,0x00},/*"9",25*/ {0x00,0x00,0x00,0x00,0x00,0x00,0x03,0x0C,0x03,0x0C,0x00,0x00,0x00,0x00,0x00,0x00},/*":",26*/ {0x00,0x00,0x00,0x00,0x00,0x01,0x01,0x06,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00},/*";",27*/ {0x00,0x00,0x00,0x80,0x01,0x40,0x02,0x20,0x04,0x10,0x08,0x08,0x10,0x04,0x00,0x00},/*"<",28*/ {0x02,0x20,0x02,0x20,0x02,0x20,0x02,0x20,0x02,0x20,0x02,0x20,0x02,0x20,0x00,0x00},/*"=",29*/ {0x00,0x00,0x10,0x04,0x08,0x08,0x04,0x10,0x02,0x20,0x01,0x40,0x00,0x80,0x00,0x00},/*">",30*/ {0x00,0x00,0x0E,0x00,0x12,0x00,0x10,0x0C,0x10,0x6C,0x10,0x80,0x0F,0x00,0x00,0x00},/*"?",31*/ {0x03,0xE0,0x0C,0x18,0x13,0xE4,0x14,0x24,0x17,0xC4,0x08,0x28,0x07,0xD0,0x00,0x00},/*"@",32*/ {0x00,0x04,0x00,0x3C,0x03,0xC4,0x1C,0x40,0x07,0x40,0x00,0xE4,0x00,0x1C,0x00,0x04},/*"A",33*/ {0x10,0x04,0x1F,0xFC,0x11,0x04,0x11,0x04,0x11,0x04,0x0E,0x88,0x00,0x70,0x00,0x00},/*"B",34*/ {0x03,0xE0,0x0C,0x18,0x10,0x04,0x10,0x04,0x10,0x04,0x10,0x08,0x1C,0x10,0x00,0x00},/*"C",35*/ {0x10,0x04,0x1F,0xFC,0x10,0x04,0x10,0x04,0x10,0x04,0x08,0x08,0x07,0xF0,0x00,0x00},/*"D",36*/ {0x10,0x04,0x1F,0xFC,0x11,0x04,0x11,0x04,0x17,0xC4,0x10,0x04,0x08,0x18,0x00,0x00},/*"E",37*/ {0x10,0x04,0x1F,0xFC,0x11,0x04,0x11,0x00,0x17,0xC0,0x10,0x00,0x08,0x00,0x00,0x00},/*"F",38*/ {0x03,0xE0,0x0C,0x18,0x10,0x04,0x10,0x04,0x10,0x44,0x1C,0x78,0x00,0x40,0x00,0x00},/*"G",39*/ {0x10,0x04,0x1F,0xFC,0x10,0x84,0x00,0x80,0x00,0x80,0x10,0x84,0x1F,0xFC,0x10,0x04},/*"H",40*/ {0x00,0x00,0x10,0x04,0x10,0x04,0x1F,0xFC,0x10,0x04,0x10,0x04,0x00,0x00,0x00,0x00},/*"I",41*/ {0x00,0x03,0x00,0x01,0x10,0x01,0x10,0x01,0x1F,0xFE,0x10,0x00,0x10,0x00,0x00,0x00},/*"J",42*/ {0x10,0x04,0x1F,0xFC,0x11,0x04,0x03,0x80,0x14,0x64,0x18,0x1C,0x10,0x04,0x00,0x00},/*"K",43*/ {0x10,0x04,0x1F,0xFC,0x10,0x04,0x00,0x04,0x00,0x04,0x00,0x04,0x00,0x0C,0x00,0x00},/*"L",44*/ {0x10,0x04,0x1F,0xFC,0x1F,0x00,0x00,0xFC,0x1F,0x00,0x1F,0xFC,0x10,0x04,0x00,0x00},/*"M",45*/ {0x10,0x04,0x1F,0xFC,0x0C,0x04,0x03,0x00,0x00,0xE0,0x10,0x18,0x1F,0xFC,0x10,0x00},/*"N",46*/ {0x07,0xF0,0x08,0x08,0x10,0x04,0x10,0x04,0x10,0x04,0x08,0x08,0x07,0xF0,0x00,0x00},/*"O",47*/ {0x10,0x04,0x1F,0xFC,0x10,0x84,0x10,0x80,0x10,0x80,0x10,0x80,0x0F,0x00,0x00,0x00},/*"P",48*/ {0x07,0xF0,0x08,0x18,0x10,0x24,0x10,0x24,0x10,0x1C,0x08,0x0A,0x07,0xF2,0x00,0x00},/*"Q",49*/ {0x10,0x04,0x1F,0xFC,0x11,0x04,0x11,0x00,0x11,0xC0,0x11,0x30,0x0E,0x0C,0x00,0x04},/*"R",50*/ {0x00,0x00,0x0E,0x1C,0x11,0x04,0x10,0x84,0x10,0x84,0x10,0x44,0x1C,0x38,0x00,0x00},/*"S",51*/ {0x18,0x00,0x10,0x00,0x10,0x04,0x1F,0xFC,0x10,0x04,0x10,0x00,0x18,0x00,0x00,0x00},/*"T",52*/ {0x10,0x00,0x1F,0xF8,0x10,0x04,0x00,0x04,0x00,0x04,0x10,0x04,0x1F,0xF8,0x10,0x00},/*"U",53*/ {0x10,0x00,0x1E,0x00,0x11,0xE0,0x00,0x1C,0x00,0x70,0x13,0x80,0x1C,0x00,0x10,0x00},/*"V",54*/ {0x1F,0xC0,0x10,0x3C,0x00,0xE0,0x1F,0x00,0x00,0xE0,0x10,0x3C,0x1F,0xC0,0x00,0x00},/*"W",55*/ {0x10,0x04,0x18,0x0C,0x16,0x34,0x01,0xC0,0x01,0xC0,0x16,0x34,0x18,0x0C,0x10,0x04},/*"X",56*/ {0x10,0x00,0x1C,0x00,0x13,0x04,0x00,0xFC,0x13,0x04,0x1C,0x00,0x10,0x00,0x00,0x00},/*"Y",57*/ {0x08,0x04,0x10,0x1C,0x10,0x64,0x10,0x84,0x13,0x04,0x1C,0x04,0x10,0x18,0x00,0x00},/*"Z",58*/ {0x00,0x00,0x00,0x00,0x00,0x00,0x7F,0xFE,0x40,0x02,0x40,0x02,0x40,0x02,0x00,0x00},/*"[",59*/ {0x00,0x00,0x30,0x00,0x0C,0x00,0x03,0x80,0x00,0x60,0x00,0x1C,0x00,0x03,0x00,0x00},/*"\",60*/ {0x00,0x00,0x40,0x02,0x40,0x02,0x40,0x02,0x7F,0xFE,0x00,0x00,0x00,0x00,0x00,0x00},/*"]",61*/ {0x00,0x00,0x00,0x00,0x20,0x00,0x40,0x00,0x40,0x00,0x40,0x00,0x20,0x00,0x00,0x00},/*"^",62*/ {0x00,0x01,0x00,0x01,0x00,0x01,0x00,0x01,0x00,0x01,0x00,0x01,0x00,0x01,0x00,0x01},/*"_",63*/ {0x00,0x00,0x40,0x00,0x40,0x00,0x20,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00},/*"",64*/ {0x00,0x00,0x00,0x98,0x01,0x24,0x01,0x44,0x01,0x44,0x01,0x44,0x00,0xFC,0x00,0x04},/*"a",65*/ {0x10,0x00,0x1F,0xFC,0x00,0x88,0x01,0x04,0x01,0x04,0x00,0x88,0x00,0x70,0x00,0x00},/*"b",66*/ {0x00,0x00,0x00,0x70,0x00,0x88,0x01,0x04,0x01,0x04,0x01,0x04,0x00,0x88,0x00,0x00},/*"c",67*/ {0x00,0x00,0x00,0x70,0x00,0x88,0x01,0x04,0x01,0x04,0x11,0x08,0x1F,0xFC,0x00,0x04},/*"d",68*/ {0x00,0x00,0x00,0xF8,0x01,0x44,0x01,0x44,0x01,0x44,0x01,0x44,0x00,0xC8,0x00,0x00},/*"e",69*/ {0x00,0x00,0x01,0x04,0x01,0x04,0x0F,0xFC,0x11,0x04,0x11,0x04,0x11,0x00,0x18,0x00},/*"f",70*/ {0x00,0x00,0x00,0xD6,0x01,0x29,0x01,0x29,0x01,0x29,0x01,0xC9,0x01,0x06,0x00,0x00},/*"g",71*/ {0x10,0x04,0x1F,0xFC,0x00,0x84,0x01,0x00,0x01,0x00,0x01,0x04,0x00,0xFC,0x00,0x04},/*"h",72*/ {0x00,0x00,0x01,0x04,0x19,0x04,0x19,0xFC,0x00,0x04,0x00,0x04,0x00,0x00,0x00,0x00},/*"i",73*/ {0x00,0x00,0x00,0x03,0x00,0x01,0x01,0x01,0x19,0x01,0x19,0xFE,0x00,0x00,0x00,0x00},/*"j",74*/ {0x10,0x04,0x1F,0xFC,0x00,0x24,0x00,0x40,0x01,0xB4,0x01,0x0C,0x01,0x04,0x00,0x00},/*"k",75*/ {0x00,0x00,0x10,0x04,0x10,0x04,0x1F,0xFC,0x00,0x04,0x00,0x04,0x00,0x00,0x00,0x00},/*"l",76*/ {0x01,0x04,0x01,0xFC,0x01,0x04,0x01,0x00,0x01,0xFC,0x01,0x04,0x01,0x00,0x00,0xFC},/*"m",77*/ {0x01,0x04,0x01,0xFC,0x00,0x84,0x01,0x00,0x01,0x00,0x01,0x04,0x00,0xFC,0x00,0x04},/*"n",78*/ {0x00,0x00,0x00,0xF8,0x01,0x04,0x01,0x04,0x01,0x04,0x01,0x04,0x00,0xF8,0x00,0x00},/*"o",79*/ {0x01,0x01,0x01,0xFF,0x00,0x85,0x01,0x04,0x01,0x04,0x00,0x88,0x00,0x70,0x00,0x00},/*"p",80*/ {0x00,0x00,0x00,0x70,0x00,0x88,0x01,0x04,0x01,0x04,0x01,0x05,0x01,0xFF,0x00,0x01},/*"q",81*/ {0x01,0x04,0x01,0x04,0x01,0xFC,0x00,0x84,0x01,0x04,0x01,0x00,0x01,0x80,0x00,0x00},/*"r",82*/ {0x00,0x00,0x00,0xCC,0x01,0x24,0x01,0x24,0x01,0x24,0x01,0x24,0x01,0x98,0x00,0x00},/*"s",83*/ {0x00,0x00,0x01,0x00,0x01,0x00,0x07,0xF8,0x01,0x04,0x01,0x04,0x00,0x00,0x00,0x00},/*"t",84*/ {0x01,0x00,0x01,0xF8,0x00,0x04,0x00,0x04,0x00,0x04,0x01,0x08,0x01,0xFC,0x00,0x04},/*"u",85*/ {0x01,0x00,0x01,0x80,0x01,0x70,0x00,0x0C,0x00,0x10,0x01,0x60,0x01,0x80,0x01,0x00},/*"v",86*/ {0x01,0xF0,0x01,0x0C,0x00,0x30,0x01,0xC0,0x00,0x30,0x01,0x0C,0x01,0xF0,0x01,0x00},/*"w",87*/ {0x00,0x00,0x01,0x04,0x01,0x8C,0x00,0x74,0x01,0x70,0x01,0x8C,0x01,0x04,0x00,0x00},/*"x",88*/ {0x01,0x01,0x01,0x81,0x01,0x71,0x00,0x0E,0x00,0x18,0x01,0x60,0x01,0x80,0x01,0x00},/*"y",89*/ {0x00,0x00,0x01,0x84,0x01,0x0C,0x01,0x34,0x01,0x44,0x01,0x84,0x01,0x0C,0x00,0x00},/*"z",90*/ {0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x01,0x00,0x3E,0xFC,0x40,0x02,0x40,0x02},/*"{",91*/ {0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0xFF,0xFF,0x00,0x00,0x00,0x00,0x00,0x00},/*"|",92*/ {0x00,0x00,0x40,0x02,0x40,0x02,0x3E,0xFC,0x01,0x00,0x00,0x00,0x00,0x00,0x00,0x00},/*"}",93*/ {0x00,0x00,0x60,0x00,0x80,0x00,0x80,0x00,0x40,0x00,0x40,0x00,0x20,0x00,0x20,0x00},/*"~",94*/ }; //24*12 ASICII×Ö·û¼¯µãÕó const unsigned char asc2_2412[95][36]={ {0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00},/*" ",0*/ {0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x0F,0x80,0x38,0x0F,0xFE,0x38,0x0F,0x80,0x38,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00},/*"!",1*/ {0x00,0x00,0x00,0x00,0x00,0x00,0x01,0x00,0x00,0x06,0x00,0x00,0x0C,0x00,0x00,0x38,0x00,0x00,0x31,0x00,0x00,0x06,0x00,0x00,0x0C,0x00,0x00,0x38,0x00,0x00,0x30,0x00,0x00,0x00,0x00,0x00},/*""",2*/ {0x00,0x00,0x00,0x00,0x61,0x80,0x00,0x67,0xF8,0x07,0xF9,0x80,0x00,0x61,0x80,0x00,0x61,0x80,0x00,0x61,0x80,0x00,0x61,0x80,0x00,0x67,0xF8,0x07,0xF9,0x80,0x00,0x61,0x80,0x00,0x00,0x00},/*"#",3*/ {0x00,0x00,0x00,0x00,0x00,0x00,0x01,0xC0,0xE0,0x03,0xE0,0xF0,0x06,0x30,0x08,0x04,0x18,0x08,0x1F,0xFF,0xFE,0x04,0x0E,0x08,0x07,0x87,0xF0,0x03,0x81,0xE0,0x00,0x00,0x00,0x00,0x00,0x00},/*"$",4*/ {0x01,0xF0,0x00,0x06,0x0C,0x00,0x04,0x04,0x08,0x06,0x0C,0x70,0x01,0xF9,0xC0,0x00,0x0E,0x00,0x00,0x3B,0xE0,0x00,0xEC,0x18,0x07,0x08,0x08,0x04,0x0C,0x18,0x00,0x03,0xE0,0x00,0x00,0x00},/*"%",5*/ {0x00,0x01,0xE0,0x00,0x07,0xF0,0x03,0xF8,0x18,0x04,0x1C,0x08,0x04,0x17,0x08,0x07,0xE1,0xD0,0x03,0xC0,0xE0,0x00,0x23,0xB0,0x00,0x3C,0x08,0x00,0x20,0x08,0x00,0x00,0x10,0x00,0x00,0x00},/*"&",6*/ {0x00,0x00,0x00,0x01,0x00,0x00,0x31,0x00,0x00,0x32,0x00,0x00,0x1C,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00},/*"'",7*/ {0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x7F,0x00,0x01,0xFF,0xC0,0x07,0x80,0xF0,0x0C,0x00,0x18,0x10,0x00,0x04,0x20,0x00,0x02,0x00,0x00,0x00},/*"(",8*/ {0x00,0x00,0x00,0x20,0x00,0x02,0x10,0x00,0x04,0x0C,0x00,0x18,0x07,0x80,0xF0,0x01,0xFF,0xC0,0x00,0x7F,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00},/*")",9*/ {0x00,0x00,0x00,0x00,0x42,0x00,0x00,0x66,0x00,0x00,0x66,0x00,0x00,0x3C,0x00,0x00,0x18,0x00,0x03,0xFF,0xC0,0x00,0x18,0x00,0x00,0x3C,0x00,0x00,0x66,0x00,0x00,0x66,0x00,0x00,0x42,0x00},/*"*",10*/ {0x00,0x00,0x00,0x00,0x08,0x00,0x00,0x08,0x00,0x00,0x08,0x00,0x00,0x08,0x00,0x00,0x08,0x00,0x01,0xFF,0xC0,0x00,0x08,0x00,0x00,0x08,0x00,0x00,0x08,0x00,0x00,0x08,0x00,0x00,0x08,0x00},/*"+",11*/ {0x00,0x00,0x00,0x00,0x00,0x01,0x00,0x00,0x31,0x00,0x00,0x32,0x00,0x00,0x1C,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00},/*",",12*/ {0x00,0x00,0x00,0x00,0x08,0x00,0x00,0x08,0x00,0x00,0x08,0x00,0x00,0x08,0x00,0x00,0x08,0x00,0x00,0x08,0x00,0x00,0x08,0x00,0x00,0x08,0x00,0x00,0x08,0x00,0x00,0x08,0x00,0x00,0x00,0x00},/*"-",13*/ {0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x38,0x00,0x00,0x38,0x00,0x00,0x38,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00},/*".",14*/ {0x00,0x00,0x00,0x00,0x00,0x06,0x00,0x00,0x1C,0x00,0x00,0x70,0x00,0x01,0x80,0x00,0x0E,0x00,0x00,0x38,0x00,0x00,0xC0,0x00,0x07,0x00,0x00,0x1C,0x00,0x00,0x30,0x00,0x00,0x00,0x00,0x00},/*"/",15*/ {0x00,0x00,0x00,0x00,0x7F,0x80,0x01,0xFF,0xE0,0x03,0x80,0x70,0x06,0x00,0x18,0x04,0x00,0x08,0x04,0x00,0x08,0x06,0x00,0x18,0x03,0x80,0x70,0x01,0xFF,0xE0,0x00,0x7F,0x80,0x00,0x00,0x00},/*"0",16*/ {0x00,0x00,0x00,0x00,0x00,0x00,0x01,0x00,0x08,0x01,0x00,0x08,0x01,0x00,0x08,0x03,0xFF,0xF8,0x07,0xFF,0xF8,0x00,0x00,0x08,0x00,0x00,0x08,0x00,0x00,0x08,0x00,0x00,0x00,0x00,0x00,0x00},/*"1",17*/ {0x00,0x00,0x00,0x01,0xC0,0x38,0x02,0xC0,0x58,0x04,0x00,0x98,0x04,0x01,0x18,0x04,0x02,0x18,0x04,0x04,0x18,0x06,0x1C,0x18,0x03,0xF8,0x18,0x01,0xE0,0xF8,0x00,0x00,0x00,0x00,0x00,0x00},/*"2",18*/ {0x00,0x00,0x00,0x01,0xC0,0xE0,0x03,0xC0,0xF0,0x04,0x00,0x08,0x04,0x08,0x08,0x04,0x08,0x08,0x06,0x18,0x08,0x03,0xF4,0x18,0x01,0xE7,0xF0,0x00,0x01,0xE0,0x00,0x00,0x00,0x00,0x00,0x00},/*"3",19*/ {0x00,0x00,0x00,0x00,0x03,0x00,0x00,0x0D,0x00,0x00,0x11,0x00,0x00,0x61,0x00,0x00,0x81,0x08,0x03,0x01,0x08,0x07,0xFF,0xF8,0x0F,0xFF,0xF8,0x00,0x01,0x08,0x00,0x01,0x08,0x00,0x00,0x00},/*"4",20*/ {0x00,0x00,0x00,0x00,0x00,0xE0,0x07,0xFC,0xD0,0x06,0x08,0x08,0x06,0x10,0x08,0x06,0x10,0x08,0x06,0x10,0x08,0x06,0x18,0x38,0x06,0x0F,0xF0,0x06,0x07,0xC0,0x00,0x00,0x00,0x00,0x00,0x00},/*"5",21*/ {0x00,0x00,0x00,0x00,0x3F,0x80,0x01,0xFF,0xE0,0x03,0x84,0x30,0x02,0x08,0x18,0x04,0x10,0x08,0x04,0x10,0x08,0x04,0x10,0x08,0x07,0x18,0x10,0x03,0x0F,0xF0,0x00,0x07,0xC0,0x00,0x00,0x00},/*"6",22*/ {0x00,0x00,0x00,0x00,0x00,0x00,0x03,0xC0,0x00,0x07,0x00,0x00,0x06,0x00,0x00,0x06,0x00,0xF8,0x06,0x07,0xF8,0x06,0x18,0x00,0x06,0xE0,0x00,0x07,0x00,0x00,0x06,0x00,0x00,0x00,0x00,0x00},/*"7",23*/ {0x00,0x00,0x00,0x01,0xE1,0xE0,0x03,0xF7,0xF0,0x06,0x34,0x10,0x04,0x18,0x08,0x04,0x18,0x08,0x04,0x0C,0x08,0x04,0x0C,0x08,0x06,0x16,0x18,0x03,0xF3,0xF0,0x01,0xC1,0xE0,0x00,0x00,0x00},/*"8",24*/ {0x00,0x00,0x00,0x00,0xF8,0x00,0x03,0xFC,0x30,0x03,0x06,0x38,0x04,0x02,0x08,0x04,0x02,0x08,0x04,0x02,0x08,0x04,0x04,0x10,0x03,0x08,0xF0,0x01,0xFF,0xC0,0x00,0x7F,0x00,0x00,0x00,0x00},/*"9",25*/ {0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x70,0x38,0x00,0x70,0x38,0x00,0x70,0x38,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00},/*":",26*/ {0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x30,0x1A,0x00,0x30,0x1C,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00},/*";",27*/ {0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x08,0x00,0x00,0x14,0x00,0x00,0x22,0x00,0x00,0x41,0x00,0x00,0x80,0x80,0x01,0x00,0x40,0x02,0x00,0x20,0x04,0x00,0x10,0x08,0x00,0x08,0x00,0x00,0x00},/*"<",28*/ {0x00,0x00,0x00,0x00,0x21,0x00,0x00,0x21,0x00,0x00,0x21,0x00,0x00,0x21,0x00,0x00,0x21,0x00,0x00,0x21,0x00,0x00,0x21,0x00,0x00,0x21,0x00,0x00,0x21,0x00,0x00,0x21,0x00,0x00,0x00,0x00},/*"=",29*/ {0x00,0x00,0x00,0x00,0x00,0x00,0x08,0x00,0x08,0x04,0x00,0x10,0x02,0x00,0x20,0x01,0x00,0x40,0x00,0x80,0x80,0x00,0x41,0x00,0x00,0x22,0x00,0x00,0x14,0x00,0x00,0x08,0x00,0x00,0x00,0x00},/*">",30*/ {0x00,0x00,0x00,0x03,0xC0,0x00,0x04,0xC0,0x00,0x04,0x00,0x00,0x08,0x00,0x38,0x08,0x0F,0x38,0x08,0x08,0x38,0x08,0x10,0x00,0x0C,0x30,0x00,0x07,0xE0,0x00,0x03,0xC0,0x00,0x00,0x00,0x00},/*"?",31*/ {0x00,0x00,0x00,0x00,0x3F,0x80,0x00,0xFF,0xE0,0x03,0x80,0x70,0x02,0x0F,0x10,0x06,0x70,0x88,0x04,0xC0,0x88,0x04,0x83,0x08,0x04,0x7F,0x88,0x02,0xC0,0x90,0x03,0x01,0x20,0x00,0xFE,0x40},/*"@",32*/ {0x00,0x00,0x08,0x00,0x00,0x18,0x00,0x01,0xF8,0x00,0x3E,0x08,0x01,0xC2,0x00,0x07,0x02,0x00,0x07,0xE2,0x00,0x00,0xFE,0x00,0x00,0x1F,0xC8,0x00,0x01,0xF8,0x00,0x00,0x38,0x00,0x00,0x08},/*"A",33*/ {0x04,0x00,0x08,0x07,0xFF,0xF8,0x07,0xFF,0xF8,0x04,0x08,0x08,0x04,0x08,0x08,0x04,0x08,0x08,0x04,0x08,0x08,0x06,0x18,0x08,0x03,0xF4,0x18,0x01,0xE7,0xF0,0x00,0x01,0xE0,0x00,0x00,0x00},/*"B",34*/ {0x00,0x00,0x00,0x00,0x3F,0x80,0x01,0xFF,0xE0,0x03,0x80,0x70,0x02,0x00,0x18,0x04,0x00,0x08,0x04,0x00,0x08,0x04,0x00,0x08,0x04,0x00,0x10,0x06,0x00,0x20,0x07,0x80,0xC0,0x00,0x00,0x00},/*"C",35*/ {0x04,0x00,0x08,0x07,0xFF,0xF8,0x07,0xFF,0xF8,0x04,0x00,0x08,0x04,0x00,0x08,0x04,0x00,0x08,0x04,0x00,0x18,0x02,0x00,0x10,0x03,0x80,0x70,0x01,0xFF,0xE0,0x00,0x7F,0x80,0x00,0x00,0x00},/*"D",36*/ {0x04,0x00,0x08,0x07,0xFF,0xF8,0x07,0xFF,0xF8,0x04,0x08,0x08,0x04,0x08,0x08,0x04,0x08,0x08,0x04,0x08,0x08,0x04,0x3E,0x08,0x04,0x00,0x08,0x06,0x00,0x18,0x01,0x00,0x60,0x00,0x00,0x00},/*"E",37*/ {0x04,0x00,0x08,0x07,0xFF,0xF8,0x07,0xFF,0xF8,0x04,0x08,0x08,0x04,0x08,0x00,0x04,0x08,0x00,0x04,0x08,0x00,0x04,0x3E,0x00,0x06,0x00,0x00,0x06,0x00,0x00,0x01,0x80,0x00,0x00,0x00,0x00},/*"F",38*/ {0x00,0x00,0x00,0x00,0x3F,0x80,0x01,0xFF,0xE0,0x03,0x80,0x70,0x06,0x00,0x18,0x04,0x00,0x08,0x04,0x02,0x08,0x04,0x02,0x08,0x02,0x03,0xF0,0x07,0x83,0xF0,0x00,0x02,0x00,0x00,0x02,0x00},/*"G",39*/ {0x04,0x00,0x08,0x07,0xFF,0xF8,0x07,0xFF,0xF8,0x04,0x08,0x08,0x00,0x08,0x00,0x00,0x08,0x00,0x00,0x08,0x00,0x00,0x08,0x00,0x04,0x08,0x08,0x07,0xFF,0xF8,0x07,0xFF,0xF8,0x04,0x00,0x08},/*"H",40*/ {0x00,0x00,0x00,0x00,0x00,0x00,0x04,0x00,0x08,0x04,0x00,0x08,0x04,0x00,0x08,0x07,0xFF,0xF8,0x07,0xFF,0xF8,0x04,0x00,0x08,0x04,0x00,0x08,0x04,0x00,0x08,0x00,0x00,0x00,0x00,0x00,0x00},/*"I",41*/ {0x00,0x00,0x00,0x00,0x00,0x06,0x00,0x00,0x07,0x00,0x00,0x01,0x04,0x00,0x01,0x04,0x00,0x01,0x04,0x00,0x03,0x07,0xFF,0xFE,0x07,0xFF,0xFC,0x04,0x00,0x00,0x04,0x00,0x00,0x04,0x00,0x00},/*"J",42*/ {0x04,0x00,0x08,0x07,0xFF,0xF8,0x07,0xFF,0xF8,0x04,0x0C,0x08,0x00,0x18,0x00,0x00,0x3E,0x00,0x04,0xC7,0x80,0x05,0x03,0xC8,0x06,0x00,0xF8,0x04,0x00,0x38,0x04,0x00,0x18,0x00,0x00,0x08},/*"K",43*/ {0x04,0x00,0x08,0x07,0xFF,0xF8,0x07,0xFF,0xF8,0x04,0x00,0x08,0x00,0x00,0x08,0x00,0x00,0x08,0x00,0x00,0x08,0x00,0x00,0x08,0x00,0x00,0x08,0x00,0x00,0x18,0x00,0x00,0x60,0x00,0x00,0x00},/*"L",44*/ {0x04,0x00,0x08,0x07,0xFF,0xF8,0x07,0x80,0x08,0x07,0xFC,0x00,0x00,0x7F,0xC0,0x00,0x03,0xF8,0x00,0x07,0xC0,0x00,0x78,0x00,0x07,0x80,0x08,0x07,0xFF,0xF8,0x07,0xFF,0xF8,0x04,0x00,0x08},/*"M",45*/ {0x04,0x00,0x08,0x07,0xFF,0xF8,0x07,0x00,0x08,0x03,0xC0,0x00,0x00,0xE0,0x00,0x00,0x38,0x00,0x00,0x1E,0x00,0x00,0x07,0x00,0x00,0x01,0xC0,0x04,0x00,0xF0,0x07,0xFF,0xF8,0x04,0x00,0x00},/*"N",46*/ {0x00,0x00,0x00,0x00,0x7F,0x80,0x01,0xFF,0xE0,0x03,0x80,0x70,0x06,0x00,0x18,0x04,0x00,0x08,0x04,0x00,0x08,0x06,0x00,0x18,0x03,0x00,0x30,0x01,0xFF,0xE0,0x00,0x7F,0x80,0x00,0x00,0x00},/*"O",47*/ {0x04,0x00,0x08,0x07,0xFF,0xF8,0x07,0xFF,0xF8,0x04,0x04,0x08,0x04,0x04,0x00,0x04,0x04,0x00,0x04,0x04,0x00,0x04,0x04,0x00,0x06,0x0C,0x00,0x03,0xF8,0x00,0x01,0xF0,0x00,0x00,0x00,0x00},/*"P",48*/ {0x00,0x00,0x00,0x00,0x7F,0x80,0x01,0xFF,0xE0,0x03,0x80,0x70,0x06,0x00,0x88,0x04,0x00,0x88,0x04,0x00,0xC8,0x06,0x00,0x3C,0x03,0x00,0x3E,0x01,0xFF,0xE6,0x00,0x7F,0x84,0x00,0x00,0x00},/*"Q",49*/ {0x04,0x00,0x08,0x07,0xFF,0xF8,0x07,0xFF,0xF8,0x04,0x08,0x08,0x04,0x08,0x00,0x04,0x0C,0x00,0x04,0x0F,0x00,0x04,0x0B,0xC0,0x06,0x10,0xF0,0x03,0xF0,0x38,0x01,0xE0,0x08,0x00,0x00,0x08},/*"R",50*/ {0x00,0x00,0x00,0x01,0xE0,0xF8,0x03,0xF0,0x30,0x06,0x30,0x10,0x04,0x18,0x08,0x04,0x18,0x08,0x04,0x0C,0x08,0x04,0x0C,0x08,0x02,0x06,0x18,0x02,0x07,0xF0,0x07,0x81,0xE0,0x00,0x00,0x00},/*"S",51*/ {0x01,0x80,0x00,0x06,0x00,0x00,0x04,0x00,0x00,0x04,0x00,0x00,0x04,0x00,0x08,0x07,0xFF,0xF8,0x07,0xFF,0xF8,0x04,0x00,0x08,0x04,0x00,0x00,0x04,0x00,0x00,0x06,0x00,0x00,0x01,0x80,0x00},/*"T",52*/ {0x04,0x00,0x00,0x07,0xFF,0xE0,0x07,0xFF,0xF0,0x04,0x00,0x18,0x00,0x00,0x08,0x00,0x00,0x08,0x00,0x00,0x08,0x00,0x00,0x08,0x00,0x00,0x08,0x04,0x00,0x10,0x07,0xFF,0xE0,0x04,0x00,0x00},/*"U",53*/ {0x04,0x00,0x00,0x06,0x00,0x00,0x07,0xE0,0x00,0x07,0xFE,0x00,0x04,0x1F,0xE0,0x00,0x01,0xF8,0x00,0x00,0x38,0x00,0x01,0xE0,0x04,0x3E,0x00,0x07,0xC0,0x00,0x06,0x00,0x00,0x04,0x00,0x00},/*"V",54*/ {0x04,0x00,0x00,0x07,0xE0,0x00,0x07,0xFF,0xC0,0x04,0x1F,0xF8,0x00,0x07,0xC0,0x07,0xF8,0x00,0x07,0xFF,0x80,0x04,0x3F,0xF8,0x00,0x07,0xC0,0x04,0xF8,0x00,0x07,0x00,0x00,0x04,0x00,0x00},/*"W",55*/ {0x00,0x00,0x00,0x04,0x00,0x08,0x06,0x00,0x18,0x07,0xC0,0x78,0x05,0xF1,0xC8,0x00,0x3E,0x00,0x00,0x1F,0x80,0x04,0x63,0xE8,0x07,0x80,0xF8,0x06,0x00,0x18,0x04,0x00,0x08,0x00,0x00,0x00},/*"X",56*/ {0x04,0x00,0x00,0x06,0x00,0x00,0x07,0x80,0x00,0x07,0xE0,0x08,0x04,0x7C,0x08,0x00,0x1F,0xF8,0x00,0x07,0xF8,0x00,0x18,0x08,0x04,0xE0,0x08,0x07,0x00,0x00,0x06,0x00,0x00,0x04,0x00,0x00},/*"Y",57*/ {0x00,0x00,0x00,0x01,0x00,0x08,0x06,0x00,0x38,0x04,0x00,0xF8,0x04,0x03,0xE8,0x04,0x0F,0x08,0x04,0x7C,0x08,0x05,0xF0,0x08,0x07,0xC0,0x08,0x07,0x00,0x18,0x04,0x00,0x60,0x00,0x00,0x00},/*"Z",58*/ {0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x3F,0xFF,0xFE,0x20,0x00,0x02,0x20,0x00,0x02,0x20,0x00,0x02,0x20,0x00,0x02,0x20,0x00,0x02,0x00,0x00,0x00},/*"[",59*/ {0x00,0x00,0x00,0x00,0x00,0x00,0x08,0x00,0x00,0x07,0x00,0x00,0x00,0xC0,0x00,0x00,0x38,0x00,0x00,0x06,0x00,0x00,0x01,0xC0,0x00,0x00,0x30,0x00,0x00,0x0E,0x00,0x00,0x01,0x00,0x00,0x00},/*"\",60*/ {0x00,0x00,0x00,0x00,0x00,0x00,0x20,0x00,0x02,0x20,0x00,0x02,0x20,0x00,0x02,0x20,0x00,0x02,0x20,0x00,0x02,0x3F,0xFF,0xFE,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00},/*"]",61*/ {0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x08,0x00,0x00,0x10,0x00,0x00,0x30,0x00,0x00,0x20,0x00,0x00,0x30,0x00,0x00,0x10,0x00,0x00,0x08,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00},/*"^",62*/ {0x00,0x00,0x01,0x00,0x00,0x01,0x00,0x00,0x01,0x00,0x00,0x01,0x00,0x00,0x01,0x00,0x00,0x01,0x00,0x00,0x01,0x00,0x00,0x01,0x00,0x00,0x01,0x00,0x00,0x01,0x00,0x00,0x01,0x00,0x00,0x01},/*"_",63*/ {0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x20,0x00,0x00,0x20,0x00,0x00,0x10,0x00,0x00,0x10,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00},/*"",64*/ {0x00,0x00,0x00,0x00,0x00,0xF0,0x00,0x19,0xF8,0x00,0x1B,0x18,0x00,0x22,0x08,0x00,0x26,0x08,0x00,0x24,0x08,0x00,0x24,0x10,0x00,0x3F,0xF8,0x00,0x1F,0xF8,0x00,0x00,0x08,0x00,0x00,0x18},/*"a",65*/ {0x00,0x00,0x00,0x04,0x00,0x00,0x07,0xFF,0xF8,0x0F,0xFF,0xF0,0x00,0x18,0x18,0x00,0x10,0x08,0x00,0x20,0x08,0x00,0x20,0x08,0x00,0x30,0x18,0x00,0x1F,0xF0,0x00,0x0F,0xC0,0x00,0x00,0x00},/*"b",66*/ {0x00,0x00,0x00,0x00,0x07,0xC0,0x00,0x1F,0xF0,0x00,0x18,0x30,0x00,0x20,0x08,0x00,0x20,0x08,0x00,0x20,0x08,0x00,0x3C,0x08,0x00,0x1C,0x10,0x00,0x00,0x60,0x00,0x00,0x00,0x00,0x00,0x00},/*"c",67*/ {0x00,0x00,0x00,0x00,0x07,0xC0,0x00,0x1F,0xF0,0x00,0x38,0x18,0x00,0x20,0x08,0x00,0x20,0x08,0x00,0x20,0x08,0x04,0x10,0x10,0x07,0xFF,0xF8,0x0F,0xFF,0xF0,0x00,0x00,0x10,0x00,0x00,0x00},/*"d",68*/ {0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x07,0xC0,0x00,0x1F,0xF0,0x00,0x12,0x30,0x00,0x22,0x18,0x00,0x22,0x08,0x00,0x22,0x08,0x00,0x32,0x08,0x00,0x1E,0x10,0x00,0x0E,0x20,0x00,0x00,0x00},/*"e",69*/ {0x00,0x00,0x00,0x00,0x20,0x00,0x00,0x20,0x08,0x00,0x20,0x08,0x01,0xFF,0xF8,0x03,0xFF,0xF8,0x06,0x20,0x08,0x04,0x20,0x08,0x04,0x20,0x08,0x07,0x20,0x00,0x03,0x00,0x00,0x00,0x00,0x00},/*"f",70*/ {0x00,0x00,0x00,0x00,0x00,0x0E,0x00,0x0E,0x6E,0x00,0x1F,0xF3,0x00,0x31,0xB1,0x00,0x20,0xB1,0x00,0x20,0xB1,0x00,0x31,0x91,0x00,0x1F,0x13,0x00,0x2E,0x1E,0x00,0x20,0x0E,0x00,0x30,0x00},/*"g",71*/ {0x00,0x00,0x00,0x04,0x00,0x08,0x07,0xFF,0xF8,0x0F,0xFF,0xF8,0x00,0x10,0x08,0x00,0x20,0x00,0x00,0x20,0x00,0x00,0x20,0x08,0x00,0x3F,0xF8,0x00,0x1F,0xF8,0x00,0x00,0x08,0x00,0x00,0x00},/*"h",72*/ {0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x20,0x08,0x00,0x20,0x08,0x00,0x20,0x08,0x06,0x3F,0xF8,0x06,0x3F,0xF8,0x00,0x00,0x08,0x00,0x00,0x08,0x00,0x00,0x08,0x00,0x00,0x00,0x00,0x00,0x00},/*"i",73*/ {0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x03,0x00,0x00,0x03,0x00,0x20,0x01,0x00,0x20,0x01,0x00,0x20,0x03,0x06,0x3F,0xFE,0x06,0x3F,0xFC,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00},/*"j",74*/ {0x00,0x00,0x00,0x04,0x00,0x08,0x07,0xFF,0xF8,0x0F,0xFF,0xF8,0x00,0x01,0x88,0x00,0x03,0x00,0x00,0x2F,0xC0,0x00,0x38,0xF8,0x00,0x20,0x38,0x00,0x20,0x08,0x00,0x00,0x08,0x00,0x00,0x00},/*"k",75*/ {0x00,0x00,0x00,0x00,0x00,0x00,0x04,0x00,0x08,0x04,0x00,0x08,0x04,0x00,0x08,0x07,0xFF,0xF8,0x0F,0xFF,0xF8,0x00,0x00,0x08,0x00,0x00,0x08,0x00,0x00,0x08,0x00,0x00,0x00,0x00,0x00,0x00},/*"l",76*/ {0x00,0x20,0x08,0x00,0x3F,0xF8,0x00,0x3F,0xF8,0x00,0x10,0x08,0x00,0x20,0x00,0x00,0x3F,0xF8,0x00,0x3F,0xF8,0x00,0x10,0x08,0x00,0x20,0x00,0x00,0x3F,0xF8,0x00,0x3F,0xF8,0x00,0x00,0x08},/*"m",77*/ {0x00,0x00,0x00,0x00,0x20,0x08,0x00,0x3F,0xF8,0x00,0x3F,0xF8,0x00,0x10,0x08,0x00,0x10,0x00,0x00,0x20,0x00,0x00,0x20,0x08,0x00,0x3F,0xF8,0x00,0x1F,0xF8,0x00,0x00,0x08,0x00,0x00,0x00},/*"n",78*/ {0x00,0x00,0x00,0x00,0x07,0xC0,0x00,0x0F,0xF0,0x00,0x18,0x30,0x00,0x30,0x08,0x00,0x20,0x08,0x00,0x20,0x08,0x00,0x30,0x08,0x00,0x18,0x30,0x00,0x0F,0xF0,0x00,0x07,0xC0,0x00,0x00,0x00},/*"o",79*/ {0x00,0x00,0x00,0x00,0x20,0x01,0x00,0x3F,0xFF,0x00,0x3F,0xFF,0x00,0x10,0x11,0x00,0x20,0x09,0x00,0x20,0x08,0x00,0x20,0x08,0x00,0x30,0x38,0x00,0x1F,0xF0,0x00,0x0F,0xC0,0x00,0x00,0x00},/*"p",80*/ {0x00,0x00,0x00,0x00,0x07,0xC0,0x00,0x1F,0xF0,0x00,0x38,0x18,0x00,0x20,0x08,0x00,0x20,0x08,0x00,0x20,0x09,0x00,0x10,0x11,0x00,0x1F,0xFF,0x00,0x3F,0xFF,0x00,0x00,0x01,0x00,0x00,0x00},/*"q",81*/ {0x00,0x20,0x08,0x00,0x20,0x08,0x00,0x20,0x08,0x00,0x3F,0xF8,0x00,0x3F,0xF8,0x00,0x08,0x08,0x00,0x10,0x08,0x00,0x20,0x08,0x00,0x20,0x00,0x00,0x30,0x00,0x00,0x30,0x00,0x00,0x00,0x00},/*"r",82*/ {0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x0C,0x78,0x00,0x1E,0x18,0x00,0x33,0x08,0x00,0x23,0x08,0x00,0x21,0x08,0x00,0x21,0x88,0x00,0x21,0x98,0x00,0x30,0xF0,0x00,0x38,0x60,0x00,0x00,0x00},/*"s",83*/ {0x00,0x00,0x00,0x00,0x20,0x00,0x00,0x20,0x00,0x00,0x20,0x00,0x00,0xFF,0xF0,0x03,0xFF,0xF8,0x00,0x20,0x08,0x00,0x20,0x08,0x00,0x20,0x08,0x00,0x00,0x30,0x00,0x00,0x00,0x00,0x00,0x00},/*"t",84*/ {0x00,0x00,0x00,0x00,0x20,0x00,0x00,0x3F,0xF0,0x00,0x7F,0xF8,0x00,0x00,0x18,0x00,0x00,0x08,0x00,0x00,0x08,0x00,0x20,0x10,0x00,0x3F,0xF8,0x00,0x7F,0xF0,0x00,0x00,0x10,0x00,0x00,0x00},/*"u",85*/ {0x00,0x00,0x00,0x00,0x20,0x00,0x00,0x30,0x00,0x00,0x3C,0x00,0x00,0x3F,0x80,0x00,0x23,0xF0,0x00,0x00,0x78,0x00,0x00,0x70,0x00,0x23,0x80,0x00,0x3C,0x00,0x00,0x30,0x00,0x00,0x20,0x00},/*"v",86*/ {0x00,0x20,0x00,0x00,0x3C,0x00,0x00,0x3F,0xE0,0x00,0x23,0xF8,0x00,0x00,0xE0,0x00,0x27,0x00,0x00,0x3E,0x00,0x00,0x3F,0xE0,0x00,0x21,0xF8,0x00,0x01,0xE0,0x00,0x3E,0x00,0x00,0x20,0x00},/*"w",87*/ {0x00,0x00,0x00,0x00,0x20,0x08,0x00,0x20,0x08,0x00,0x38,0x38,0x00,0x3E,0x68,0x00,0x27,0x80,0x00,0x03,0xC8,0x00,0x2C,0xF8,0x00,0x38,0x38,0x00,0x20,0x18,0x00,0x20,0x08,0x00,0x00,0x00},/*"x",88*/ {0x00,0x00,0x00,0x00,0x20,0x00,0x00,0x30,0x03,0x00,0x3C,0x01,0x00,0x3F,0x83,0x00,0x23,0xEC,0x00,0x00,0x70,0x00,0x23,0x80,0x00,0x3C,0x00,0x00,0x20,0x00,0x00,0x20,0x00,0x00,0x00,0x00},/*"y",89*/ {0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x38,0x08,0x00,0x20,0x38,0x00,0x20,0xF8,0x00,0x23,0xE8,0x00,0x2F,0x88,0x00,0x3E,0x08,0x00,0x38,0x08,0x00,0x20,0x18,0x00,0x00,0x70,0x00,0x00,0x00},/*"z",90*/ {0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x08,0x00,0x00,0x14,0x00,0x1F,0xF7,0xFC,0x30,0x00,0x06,0x20,0x00,0x02,0x00,0x00,0x00,0x00,0x00,0x00},/*"{",91*/ {0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0xFF,0xFF,0xFF,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00},/*"|",92*/ {0x00,0x00,0x00,0x00,0x00,0x00,0x20,0x00,0x02,0x30,0x00,0x06,0x1F,0xF7,0xFC,0x00,0x14,0x00,0x00,0x08,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00},/*"}",93*/ {0x00,0x00,0x00,0x18,0x00,0x00,0x60,0x00,0x00,0x40,0x00,0x00,0x40,0x00,0x00,0x20,0x00,0x00,0x10,0x00,0x00,0x08,0x00,0x00,0x04,0x00,0x00,0x04,0x00,0x00,0x0C,0x00,0x00,0x10,0x00,0x00},/*"~",94*/ }; #endif根据这些代码 我需要知道我oled的引脚配置scl和sda分别在哪个引脚

/************************************************************************************************** Filename: ZMain.c Revised: $Date: 2010-09-17 16:25:30 -0700 (Fri, 17 Sep 2010) $ Revision: $Revision: 23835 $ Description: Startup and shutdown code for ZStack Notes: This version targets the Chipcon CC2530 Copyright 2005-2010 Texas Instruments Incorporated. All rights reserved. IMPORTANT: Your use of this Software is limited to those specific rights granted under the terms of a software license agreement between the user who downloaded the software, his/her employer (which must be your employer) and Texas Instruments Incorporated (the "License"). You may not use this Software unless you agree to abide by the terms of the License. The License limits your use, and you acknowledge, that the Software may not be modified, copied or distributed unless embedded on a Texas Instruments microcontroller or used solely and exclusively in conjunction with a Texas Instruments radio frequency transceiver, which is integrated into your product. Other than for the foregoing purpose, you may not use, reproduce, copy, prepare derivative works of, modify, distribute, perform, display or sell this Software and/or its documentation for any purpose. YOU FURTHER ACKNOWLEDGE AND AGREE THAT THE SOFTWARE AND DOCUMENTATION ARE PROVIDED 揂S IS?WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION, ANY WARRANTY OF MERCHANTABILITY, TITLE, NON-INFRINGEMENT AND FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT SHALL TEXAS INSTRUMENTS OR ITS LICENSORS BE LIABLE OR OBLIGATED UNDER CONTRACT, NEGLIGENCE, STRICT LIABILITY, CONTRIBUTION, BREACH OF WARRANTY, OR OTHER LEGAL EQUITABLE THEORY ANY DIRECT OR INDIRECT DAMAGES OR EXPENSES INCLUDING BUT NOT LIMITED TO ANY INCIDENTAL, SPECIAL, INDIRECT, PUNITIVE OR CONSEQUENTIAL DAMAGES, LOST PROFITS OR LOST DATA, COST OF PROCUREMENT OF SUBSTITUTE GOODS, TECHNOLOGY, SERVICES, OR ANY CLAIMS BY THIRD PARTIES (INCLUDING BUT NOT LIMITED TO ANY DEFENSE THEREOF), OR OTHER SIMILAR COSTS. Should you have any questions regarding your right to use this Software, contact Texas Instruments Incorporated at www.TI.com. **************************************************************************************************/ /********************************************************************* * INCLUDES */ #ifndef NONWK #include "AF.h" #endif #include "hal_adc.h" #include "hal_flash.h" #include "hal_lcd.h" #include "hal_led.h" #include "hal_drivers.h" #include "OnBoard.h" #include "OSAL.h" #include "OSAL_Nv.h" #include "ZComDef.h" #include "ZMAC.h" /********************************************************************* * LOCAL FUNCTIONS */ static void zmain_ext_addr( void ); #if defined ZCL_KEY_ESTABLISH static void zmain_cert_init( void ); #endif static void zmain_dev_info( void ); static void zmain_vdd_check( void ); #ifdef LCD_SUPPORTED static void zmain_lcd_init( void ); #endif /********************************************************************* * @fn main * @brief First function called after startup. * @return don't care */ int main( void ) { // Turn off interrupts osal_int_disable( INTS_ALL );//关闭中断 // Initialization for board related stuff such as LEDs HAL_BOARD_INIT();//电路板初始化 // Make sure supply voltage is high enough to run zmain_vdd_check();//供电电压检测 // Initialize board I/O InitBoard( OB_COLD );//初始电路板IO口 // Initialze HAL drivers HalDriverInit();//初始化硬件抽样层驱动 // Initialize NV System osal_nv_init( NULL );//初始化NVFLASH // Initialize the MAC ZMacInit();//初始化MAC地址 // Determine the extended address zmain_ext_addr();//读取扩展地址 #if defined ZCL_KEY_ESTABLISH // Initialize the Certicom certificate information. zmain_cert_init(); #endif // Initialize basic NV items zgInit(); #ifndef NONWK // Since the AF isn't a task, call it's initialization routine afInit(); #endif // Initialize the operating system osal_init_system(); // Allow interrupts osal_int_enable( INTS_ALL ); // Final board initialization InitBoard( OB_READY ); // Display information about this device zmain_dev_info(); /* Display the device info on the LCD */ #ifdef LCD_SUPPORTED zmain_lcd_init(); #endif #ifdef WDT_IN_PM1 /* If WDT is used, this is a good place to enable it. */ WatchDogEnable( WDTIMX ); #endif osal_start_system(); // No Return from here return 0; // Shouldn't get here. } // main() /********************************************************************* * @fn zmain_vdd_check * @brief Check if the Vdd is OK to run the processor. * @return Return if Vdd is ok; otherwise, flash LED, then reset *********************************************************************/ static void zmain_vdd_check( void ) { uint8 cnt = 16; do { while (!HalAdcCheckVdd(VDD_MIN_RUN)); } while (--cnt); } /************************************************************************************************** * @fn zmain_ext_addr * * @brief Execute a prioritized search for a valid extended address and write the results * into the OSAL NV system for use by the system. Temporary address not saved to NV. * * input parameters * * None. * * output parameters * * None. * * @return None. ************************************************************************************************** */ static void zmain_ext_addr(void) { uint8 nullAddr[Z_EXTADDR_LEN] = {0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF}; uint8 writeNV = TRUE; // First check whether a non-erased extended address exists in the OSAL NV. if ((SUCCESS != osal_nv_item_init(ZCD_NV_EXTADDR, Z_EXTADDR_LEN, NULL)) || (SUCCESS != osal_nv_read(ZCD_NV_EXTADDR, 0, Z_EXTADDR_LEN, aExtendedAddress)) || (osal_memcmp(aExtendedAddress, nullAddr, Z_EXTADDR_LEN))) { // Attempt to read the extended address from the location on the lock bits page // where the programming tools know to reserve it. HalFlashRead(HAL_FLASH_IEEE_PAGE, HAL_FLASH_IEEE_OSET, aExtendedAddress, Z_EXTADDR_LEN); if (osal_memcmp(aExtendedAddress, nullAddr, Z_EXTADDR_LEN)) { // Attempt to read the extended address from the designated location in the Info Page. if (!osal_memcmp((uint8 *)(P_INFOPAGE+HAL_INFOP_IEEE_OSET), nullAddr, Z_EXTADDR_LEN)) { osal_memcpy(aExtendedAddress, (uint8 *)(P_INFOPAGE+HAL_INFOP_IEEE_OSET), Z_EXTADDR_LEN); } else // No valid extended address was found. { uint8 idx; #if !defined ( NV_RESTORE ) writeNV = FALSE; // Make this a temporary IEEE address #endif /* Attempt to create a sufficiently random extended address for expediency. * Note: this is only valid/legal in a test environment and * must never be used for a commercial product. */ for (idx = 0; idx < (Z_EXTADDR_LEN - 2);) { uint16 randy = osal_rand(); aExtendedAddress[idx++] = LO_UINT16(randy); aExtendedAddress[idx++] = HI_UINT16(randy); } // Next-to-MSB identifies ZigBee devicetype. #if ZG_BUILD_COORDINATOR_TYPE && !ZG_BUILD_JOINING_TYPE aExtendedAddress[idx++] = 0x10; #elif ZG_BUILD_RTRONLY_TYPE aExtendedAddress[idx++] = 0x20; #else aExtendedAddress[idx++] = 0x30; #endif // MSB has historical signficance. aExtendedAddress[idx] = 0xF8; } } if (writeNV) { (void)osal_nv_write(ZCD_NV_EXTADDR, 0, Z_EXTADDR_LEN, aExtendedAddress); } } // Set the MAC PIB extended address according to results from above. (void)ZMacSetReq(MAC_EXTENDED_ADDRESS, aExtendedAddress); } #if defined ZCL_KEY_ESTABLISH /************************************************************************************************** * @fn zmain_cert_init * * @brief Initialize the Certicom certificate information. * * input parameters * * None. * * output parameters * * None. * * @return None. ************************************************************************************************** */ static void zmain_cert_init(void) { uint8 certData[ZCL_KE_IMPLICIT_CERTIFICATE_LEN]; uint8 nullData[ZCL_KE_IMPLICIT_CERTIFICATE_LEN] = { 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF }; (void)osal_nv_item_init(ZCD_NV_IMPLICIT_CERTIFICATE, ZCL_KE_IMPLICIT_CERTIFICATE_LEN, NULL); (void)osal_nv_item_init(ZCD_NV_DEVICE_PRIVATE_KEY, ZCL_KE_DEVICE_PRIVATE_KEY_LEN, NULL); // First check whether non-null certificate data exists in the OSAL NV. To save on code space, // just use the ZCD_NV_CA_PUBLIC_KEY as the bellwether for all three. if ((SUCCESS != osal_nv_item_init(ZCD_NV_CA_PUBLIC_KEY, ZCL_KE_CA_PUBLIC_KEY_LEN, NULL)) || (SUCCESS != osal_nv_read(ZCD_NV_CA_PUBLIC_KEY, 0, ZCL_KE_CA_PUBLIC_KEY_LEN, certData)) || (osal_memcmp(certData, nullData, ZCL_KE_CA_PUBLIC_KEY_LEN))) { // Attempt to read the certificate data from its corresponding location on the lock bits page. HalFlashRead(HAL_FLASH_IEEE_PAGE, HAL_FLASH_CA_PUBLIC_KEY_OSET, certData, ZCL_KE_CA_PUBLIC_KEY_LEN); // If the certificate data is not NULL, use it to update the corresponding NV items. if (!osal_memcmp(certData, nullData, ZCL_KE_CA_PUBLIC_KEY_LEN)) { (void)osal_nv_write(ZCD_NV_CA_PUBLIC_KEY, 0, ZCL_KE_CA_PUBLIC_KEY_LEN, certData); HalFlashRead(HAL_FLASH_IEEE_PAGE, HAL_FLASH_IMPLICIT_CERT_OSET, certData, ZCL_KE_IMPLICIT_CERTIFICATE_LEN); (void)osal_nv_write(ZCD_NV_IMPLICIT_CERTIFICATE, 0, ZCL_KE_IMPLICIT_CERTIFICATE_LEN, certData); HalFlashRead(HAL_FLASH_IEEE_PAGE, HAL_FLASH_DEV_PRIVATE_KEY_OSET, certData, ZCL_KE_DEVICE_PRIVATE_KEY_LEN); (void)osal_nv_write(ZCD_NV_DEVICE_PRIVATE_KEY, 0, ZCL_KE_DEVICE_PRIVATE_KEY_LEN, certData); } } } #endif /************************************************************************************************** * @fn zmain_dev_info * * @brief This displays the IEEE (MSB to LSB) on the LCD. * * input parameters * * None. * * output parameters * * None. * * @return None. ************************************************************************************************** */ static void zmain_dev_info(void) { #ifdef LCD_SUPPORTED uint8 i; uint8 *xad; uint8 lcd_buf[Z_EXTADDR_LEN*2+1]; // Display the extended address. xad = aExtendedAddress + Z_EXTADDR_LEN - 1; for (i = 0; i < Z_EXTADDR_LEN*2; xad--) { uint8 ch; ch = (*xad >> 4) & 0x0F; lcd_buf[i++] = ch + (( ch < 10 ) ? '0' : '7'); ch = *xad & 0x0F; lcd_buf[i++] = ch + (( ch < 10 ) ? '0' : '7'); } lcd_buf[Z_EXTADDR_LEN*2] = '\0'; HalLcdWriteString( "IEEE: ", HAL_LCD_LINE_1 ); HalLcdWriteString( (char*)lcd_buf, HAL_LCD_LINE_2 ); #endif } #ifdef LCD_SUPPORTED /********************************************************************* * @fn zmain_lcd_init * @brief Initialize LCD at start up. * @return none *********************************************************************/ static void zmain_lcd_init ( void ) { #ifdef SERIAL_DEBUG_SUPPORTED { HalLcdWriteString( "TexasInstruments", HAL_LCD_LINE_1 ); #if defined( MT_MAC_FUNC ) #if defined( ZDO_COORDINATOR ) HalLcdWriteString( "MAC-MT Coord", HAL_LCD_LINE_2 ); #else HalLcdWriteString( "MAC-MT Device", HAL_LCD_LINE_2 ); #endif // ZDO #elif defined( MT_NWK_FUNC ) #if defined( ZDO_COORDINATOR ) HalLcdWriteString( "NWK Coordinator", HAL_LCD_LINE_2 ); #else HalLcdWriteString( "NWK Device", HAL_LCD_LINE_2 ); #endif // ZDO #endif // MT_FUNC } #endif // SERIAL_DEBUG_SUPPORTED } #endif /********************************************************************* *********************************************************************/ 以上是DHT11代码,请帮我生成一个光敏代码

/************************************************ //本程序只供学习使用,未经作者许可,不得用于其它任何用途 //TWKJ STM32开发板 //通旺科技@TWKJ //作者:tianqingyong //版本:V1.0 //修改日期:2019/10/22 //程序功能:封装和简化GPIO的读写操作 //V1.0 完成基本功能 ************************************************/ #include "my_lcd1602.h" /************************端口初始化*******************************/ void LCD_GPIO_init(void) { u8 i; #if !defined (USE_HAL_DRIVER) for(i=0;i<8;i++) { GPIO_Pin_Init(Pins_Data_1602[i],GPIO_Mode_Out_PP); }//**All notes can be deleted and modified**// GPIO_Pin_Init(PIN_RW,GPIO_Mode_Out_PP); GPIO_Pin_Init(PIN_RS,GPIO_Mode_Out_PP); #else for(i=0;i<8;i++) { GPIO_Pin_Init(Pins_Data_1602[i],GPIO_MODE_OUTPUT_PP,GPIO_PULLUP); } GPIO_Pin_Init(PIN_EN,GPIO_MODE_OUTPUT_PP,GPIO_PULLUP); GPIO_Pin_Init(PIN_RW,GPIO_MODE_OUTPUT_PP,GPIO_PULLUP); GPIO_Pin_Init(PIN_RS,GPIO_MODE_OUTPUT_PP,GPIO_PULLUP); #endif } void GPIO_data(u8 x) //端口置入数据 { u8 i; for(i=0;i<8;i++) { if(x&(0x01<<i)) { PinSet(Pins_Data_1602[i]);//DB0 } else{ PinReset(Pins_Data_1602[i]);//DB0 } } } /******************************************************/ void LCD_En_Toggle(void) //发使能脉冲 { SET_EN;//使能1 delay_us(5);//延时160us CLE_EN; } void LCD_Busy(void)//判断忙 { u8 i; u16 later0=0; for(i=0;i<8;i++) { #if !defined (USE_HAL_DRIVER) GPIO_Pin_Init(Pins_Data_1602[i],GPIO_Mode_IPU); #else GPIO_Pin_Init(Pins_Data_1602[i],GPIO_MODE_INPUT,GPIO_PULLUP); #endif } CLR_RS;//RS = 0 //delay_us(1);//延时10us SET_RW;//RW = 1 //delay_us(1);//延时10us SET_EN;//EN = 1 //delay_us(2);//延时20us while ((PinRead(Pins_Data_1602[7]))&&(later0<20000)) //循环等待忙检测端口 = 0 {//**All notes can be deleted and modified**// later0++; } CLE_EN;//EN = 0 //恢复端口为输出状态 for(i=0;i<8;i++) { #if !defined (USE_HAL_DRIVER) GPIO_Pin_Init(Pins_Data_1602[i],GPIO_Mode_Out_PP); #else GPIO_Pin_Init(Pins_Data_1602[i],GPIO_MODE_OUTPUT_PP,GPIO_PULLUP); #endif } } //向液晶里面写入指令 时序:RS=L,RW=L,Data0-Data7=指令码,E=高脉冲 void LCD1602_WriteCmd(u8 x,char cmd) { //**All notes can be deleted and modified**// //delay_us(4);//延时40us GPIO_data(x);//端口置入数据 //delay_us(4);//延时40us LCD_En_Toggle();//发使能脉冲 //delay_us(1);//延时100us LCD_Busy();//测忙 } //向液晶里面写入数据 时序:RS=H,RW=L,Data0-Data7=指令码,E=高脉冲 void LCD1602_WriteData(u8 x) //向液晶里面写入数据 { LCD_Busy();//测忙 //delay_us(1);//延时10us SET_RS;//RS = 1 //delay_us(1);//延时10us CLE_RW;//RW = 0 //delay_us(4);//延时40us GPIO_data(x); //delay_us(4);//延时40us LCD_En_Toggle();//发使能脉冲 //delay_us(1);//延时100us LCD_Busy();//测忙 } void LCD_SetXY(u8 x,u8 y) //字符初始位置设定,x表示列,y表示行 { u8 addr; if(y==0) addr=0x80+x; else if(y==1) addr=0xC0+x; LCD1602_WriteCmd(addr,1) ; } /******************************************************************/ void LCD1602_Init( void )//初始化 { LCD_GPIO_init(); delay_us(1500);//延时15ms LCD1602_WriteCmd( 0x38,0);//写指令38H 不检测忙信号 //**All notes can be deleted and modified**// //以后每次写指令、读/写数据操作之前需检测忙信号 LCD1602_WriteCmd( 0x38,1);//显示模式设置 LCD1602_WriteCmd( 0x08,1);//显示关闭 LCD1602_WriteCmd( 0x01,1);//显示清屏 LCD1602_WriteCmd( 0x06,1);//显示光标移动设置 LCD1602_WriteCmd( 0x0C,1);//显示开、光标不显示 } void LCD1602_SetCursor(u8 x,u8 y) { LCD_SetXY(x,y); LCD1602_WriteCmd(0x0f, 1); } void LCD1602_CloseCursor(void) { LCD1602_WriteCmd(0x0c, 1); } /*------------------------------------------------ 清屏函数 ------------------------------------------------*/ void LCD1602_Clear(void) { LCD1602_WriteCmd(0x01,1); delay_ms(5); } /******************************************************/ void LCD1602_Write_Char(u8 x,u8 y,const char Data0) { LCD_SetXY(x,y); LCD1602_WriteData(Data0); } void LCD1602_Write_String(u8 x,u8 y,const char *string) //向1602写一个字符串 { //unsigned char i=0; LCD_SetXY(x,y); while(*string) { LCD1602_WriteData(*string);//**All notes can be deleted and modified**// } } /** * @brief LCD1602自定义字符 * @param Position 位置,范围:1~8 * @param Table 要显示的字符的数组名 * @retval 无 */ void LCD_SetCustomChar(unsigned char Position,char *Table) { unsigned char i; switch (Position) { case 1: LCD1602_WriteCmd(0x40,0); for(i=0;i<8;i++) { LCD1602_WriteData(Table[i]); } break; case 2: LCD1602_WriteCmd(0x48,0); for(i=0;i<8;i++) { LCD1602_WriteData(Table[i]); } break; case 3: LCD1602_WriteCmd(0x50,0); for(i=0;i<8;i++) { LCD1602_WriteData(Table[i]); } break; case 4: LCD1602_WriteCmd(0x58,0); for(i=0;i<8;i++) { LCD1602_WriteData(Table[i]); } break; case 5: LCD1602_WriteCmd(0x60,0); for(i=0;i<8;i++) { LCD1602_WriteData(Table[i]); } break; case 6: LCD1602_WriteCmd(0x68,0); for(i=0;i<8;i++) { LCD1602_WriteData(Table[i]); } break;//**All notes can be deleted and modified**// } } /** * @brief 在LCD1602指定位置上显示自定义字符 * @param Line 行位置,范围:1~2 * @param Column 列位置,范围:1~16 * @param Num 要显示的字符编号,范围:1~8 * @retval 无 */ void LCD_ShowCustomChar(unsigned char Line,unsigned char Column,unsigned char Num) { LCD_SetXY(Line,Column); LCD1602_WriteData(Num-1); } 帮我写出该代码的具体逻辑

你在网上搜索一下GXHTC3的温湿度芯片,请你帮忙改一下我现在要控制两个相同的GXHTC3芯片,请你帮忙看看要怎么做。#include "GXHTC3.h" #include "delay.h" float GXHTC3_Temperature = 0; float GXHTC3_Humidity = 0; #define write 0 #define read 1 float GXHTC3_temp,GXHTC3_humi,GXHTC3_Temperature,GXHTC3_Humidity; /* * @name CRC_8 * @brief CRC-8校验 * @param Crc_ptr -> 校验数据首地址 LEN -> 校验数据长度 * @retval CRC_Value -> 校验值 */ static uint8_t CRC_8(uint8_t *Crc_ptr,uint8_t LEN) { uint8_t CRC_Value = 0xFF; uint8_t i = 0,j = 0; for(i=0;i<LEN;i++) { CRC_Value ^= *(Crc_ptr+i); for(j=0;j<8;j++) { if(CRC_Value & 0x80) CRC_Value = (CRC_Value << 1) ^ 0x31; else CRC_Value = (CRC_Value << 1); } } return CRC_Value; } /**************************************************************************** * Function Name : GXHTC3_INIT * Description : 初始化GPIO. ****************************************************************************/ void GXHTC3_INIT() { GPIO_InitTypeDef GPIO_InitStructure; RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOA,ENABLE); GPIO_InitStructure.GPIO_Pin = GXHTC3_SDA; GPIO_InitStructure.GPIO_Speed = GPIO_Speed_10MHz; GPIO_InitStructure.GPIO_Mode = GPIO_Mode_Out_OD; GPIO_Init(GPIOA,&GPIO_InitStructure); RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOA,ENABLE); GPIO_InitStructure.GPIO_Pin = GXHTC3_SCL; GPIO_InitStructure.GPIO_Speed = GPIO_Speed_10MHz; GPIO_InitStructure.GPIO_Mode = GPIO_Mode_Out_OD; GPIO_Init(GPIOA,&GPIO_InitStructure); GXHTC3_SCL_H; GXHTC3_SDA_H; } /******************************************************************************* * 函 数 名 : GXHTC3_SDA_OUT * 函数功能 : SDA输出配置 *******************************************************************************/ void GXHTC3_SDA_OUT() { GPIO_InitTypeDef GPIO_InitStructure; GPIO_InitStructure.GPIO_Pin=GXHTC3_SDA; GPIO_InitStructure.GPIO_Speed=GPIO_Speed_10MHz; GPIO_InitStructure.GPIO_Mode=GPIO_Mode_Out_OD; GPIO_Init(GPIOA,&GPIO_InitStructure); } /******************************************************************************* * 函 数 名 : GXHTC3_SDA_IN * 函数功能 : SDA输入配置 *******************************************************************************/ void GXHTC3_SDA_IN(void) { GPIO_InitTypeDef GPIO_InitStructure; GPIO_InitStructure.GPIO_Pin=GXHTC3_SDA; GPIO_InitStructure.GPIO_Mode=GPIO_Mode_AF_OD; GPIO_Init(GPIOA,&GPIO_InitStructure); } void GXHTC3_SDA_in(void) { GPIO_InitTypeDef GPIO_InitStructure; GPIO_InitStructure.GPIO_Pin=GXHTC3_SDA; GPIO_InitStructure.GPIO_Mode=GPIO_Mode_IPU; GPIO_Init(GPIOA,&GPIO_InitStructure); } /******************************************************************************* * 函 数 名 : GXHTC3_StarT * 函数功能 : 产生起始信号 *******************************************************************************/ void GXHTC3_StarT(void) { GXHTC3_SDA_OUT(); GXHTC3_SDA_H; GXHTC3_SCL_H; delay_us(5); GXHTC3_SDA_L; delay_us(6); GXHTC3_SCL_L; } /******************************************************************************* * 函 数 名 : GXHTC3_StoP * 函数功能 : 产生停止信号 *******************************************************************************/ void GXHTC3_StoP(void) { GXHTC3_SDA_OUT(); GXHTC3_SCL_L; GXHTC3_SDA_L; GXHTC3_SCL_H; delay_us(6); GXHTC3_SDA_H; delay_us(6); } /******************************************************************************* * 函 数 名 : GXHTC3_Ack * 函数功能 : 主机产生应答信号ACK *******************************************************************************/ void GXHTC3_Ack(void) { GXHTC3_SCL_L; GXHTC3_SDA_OUT(); GXHTC3_SDA_L; delay_us(2); GXHTC3_SCL_H; delay_us(5); GXHTC3_SCL_L; } /******************************************************************************* * 函 数 名 : GXHTC3_NAck * 函数功能 : 主机不产生应答信号NACK *******************************************************************************/ void GXHTC3_NAck(void) { GXHTC3_SCL_L; GXHTC3_SDA_OUT(); GXHTC3_SDA_H; delay_us(2); GXHTC3_SCL_H; delay_us(5); GXHTC3_SCL_L; } /******************************************************************************* * 函 数 名 : GXHTC3_Wait_Ack * 函数功能 : 等待从机应答信号 返回值: 1 接收应答失败 0 接收应答成功 *******************************************************************************/ u8 GXHTC3_Wait_Ack(void) { u8 tempTime=0; GXHTC3_SDA_IN(); GXHTC3_SDA_H; delay_us(1); GXHTC3_SCL_H; delay_us(1); while(GPIO_ReadInputDataBit(GPIO_GXHTC3,GXHTC3_SDA)) { tempTime++; delay_us(1); if(tempTime>250) { GXHTC3_StoP(); return 1; } } GXHTC3_SCL_L; delay_us(1); return 0; } /******************************************************************************* * 函 数 名 : GXHTC3_Send_Byte * 函数功能 : GXHTC3 发送一个字节 *******************************************************************************/ void GXHTC3_Send_Byte(u8 txd) { u8 i=0; GXHTC3_SDA_OUT(); GXHTC3_SCL_L;//拉低时钟开始数据传输 for(i=0;i<8;i++) { if((txd&0x80)>0) //0x80 1000 0000 GXHTC3_SDA_H; else GXHTC3_SDA_L; txd<<=1; delay_us(1); GXHTC3_SCL_H; delay_us(2); //发送数据 GXHTC3_SCL_L; delay_us(2); } } /******************************************************************************* * 函 数 名 : GXHTC3_Read_Byte * 函数功能 : GXHTC3 主机读取一个字节 *******************************************************************************/ u8 GXHTC3_Read_Byte(u8 ack) { u8 i=0,receive=0; GXHTC3_SDA_in(); for(i=0;i<8;i++) { GXHTC3_SCL_L; delay_us(2); GXHTC3_SCL_H; while(!GPIO_ReadInputDataBit(GPIO_GXHTC3,GXHTC3_SCL)); receive<<=1; if(GPIO_ReadInputDataBit(GPIO_GXHTC3,GXHTC3_SDA)) receive++; delay_us(1); } if(ack==0) GXHTC3_NAck(); else GXHTC3_Ack(); return receive; } /******************************************************************************* * 函 数 名 : GXHTC3_read_result * 函数功能 : GXHTC3 读6个字节数据 *******************************************************************************/ void GXHTC3_read_result(u8 addr) { u16 tem,hum; unsigned char buff[6]; float Temperature=0; float Humidity=0; GXHTC3_StarT(); GXHTC3_Send_Byte(addr<<1 | write);//写7位GXHTC3设备地址加0作为写取位,1为读取位 GXHTC3_Wait_Ack(); GXHTC3_Send_Byte(0x78); GXHTC3_Wait_Ack(); GXHTC3_Send_Byte(0x66); GXHTC3_Wait_Ack(); GXHTC3_StoP(); delay_ms(15); //数据转换等待时间 GXHTC3_StarT(); GXHTC3_Send_Byte(addr<<1 | read);//写7位GXHTC3设备地址加0作为写取位,1为读取位 if(GXHTC3_Wait_Ack()==0) { GXHTC3_SDA_in(); buff[0]=GXHTC3_Read_Byte(1); buff[1]=GXHTC3_Read_Byte(1); buff[2]=GXHTC3_Read_Byte(1); buff[3]=GXHTC3_Read_Byte(1); buff[4]=GXHTC3_Read_Byte(1); buff[5]=GXHTC3_Read_Byte(0); GXHTC3_StoP(); if(CRC_8(buff, 2) == buff[2] && CRC_8(buff + 3, 2) == buff[5]) { tem = ((buff[0]<<8) | buff[1]);//温度拼接 hum = ((buff[3]<<8) | buff[4]);//湿度拼接 /*转换实际温度*/ Temperature= (175.0*(float)tem/65535.0-45.0) ;// T = -45 + 175 * tem / (2^16-1) Humidity= (100.0*(float)hum/65535.0);// RH = hum*100 / (2^16-1) } else { GXHTC3_temp = 0; GXHTC3_humi = 0; } } if((Temperature>=-20)&&(Temperature<=125)&&(Humidity>=0)&&(Humidity<=100))//过滤错误数据 { GXHTC3_temp = Temperature; GXHTC3_humi = Humidity; } tem = 0; hum = 0; } /******************************************************************************* * 函 数 名 : al_float_buffer_sort * 函数功能 : 多次读数值排序取中间值平均 *******************************************************************************/ void al_float_buffer_sort(float *buf, uint8_t length) { uint8_t i, j; float tmp; for (i = 0; i < length; i++) { for (j = i + 1; j < length; j++) { if (buf[j] < buf[i]) { tmp = buf[j]; buf[j] = buf[i]; buf[i] = tmp; } } } } void al_get_gxth30_temp(void) { float buff_temp[10], buff_humi[10]; // 采集10组数据 for(uint8_t i = 0; i < 10; i++) { GXHTC3_read_result(0x70); buff_temp[i] = GXHTC3_temp; buff_humi[i] = GXHTC3_humi; delay_ms(10); // 每次采集间隔10ms } // 数据排序(冒泡排序) al_float_buffer_sort(buff_temp, 10); al_float_buffer_sort(buff_humi, 10); // 取中间两个值求平均(抗干扰处理) GXHTC3_Temperature = (buff_temp[4] + buff_temp[5]) / 2; GXHTC3_Humidity = (buff_humi[4] + buff_humi[5]) / 2; }

//===================================================================== // AD9854 驱动程序设计 //硬件连接: P0 ——Data; // P2 ——Adr; // RESET ——P3^7; // UDCLK ——P3^6; // WR ——P3.5; // RD ——p3.4; // FDATA ——P3^3; // OSK ——P3^2; // VDD--逻辑电源(3.3V) // VSS--GND(0V) //AD9854.c //康威电子工作室 //说明:本程序基于硬件的外接晶振为20MHZ //===================================================================== #include <AD9854.h> //STC单片机头文件 #include "stm32f10x.h" //#include "delay.h" uchar FreqWord[6]; //6个字节频率控制字 //**********************以下为系统时钟以及其相关变量设置************************** /* 此处根据自己的需要设置系统时钟以及与其相关的因子,一次需且只需开启一个 CLK_Set为时钟倍频设置,可设置4~20倍倍频,但最大不能超过300MHZ Freq_mult_ulong和Freq_mult_doulle均为2的48次方除以系统时钟,一个为长整形,一个为双精度型 */ /* #define CLK_Set 4 const ulong Freq_mult_ulong = 3518437; const double Freq_mult_doulle = 3518437.2088832; */ /* #define CLK_Set 5 const ulong Freq_mult_ulong = 2814750; const double Freq_mult_doulle = 2814749.76710656; */ /* #define CLK_Set 6 const ulong Freq_mult_ulong = 2345625; const double Freq_mult_doulle = 2345624.80592213; */ /* #define CLK_Set 7 const ulong Freq_mult_ulong = 2010536; const double Freq_mult_doulle = 2010535.54793326; */ /* #define CLK_Set 8 const ulong Freq_mult_ulong = 1759219; const double Freq_mult_doulle = 1759218.6044416; */ /* #define CLK_Set 9 const ulong Freq_mult_ulong = 1563750; const double Freq_mult_doulle = 1563749.87061476; */ /* #define CLK_Set 10 const ulong Freq_mult_ulong = 1407375; const double Freq_mult_doulle = 1407374.88355328; */ /* #define CLK_Set 11 const ulong Freq_mult_ulong = 1279432; const double Freq_mult_doulle = 1279431.712321164; */ #define CLK_Set 12 const ulong Freq_mult_ulong = 1172812; const double Freq_mult_doulle = 1172812.402961067; /* #define CLK_Set 13 const ulong Freq_mult_ulong = 1082596; const double Freq_mult_doulle = 1082596.064271754; */ /* #define CLK_Set 14 const ulong Freq_mult_ulong = 1005268; const double Freq_mult_doulle = 1005267.773966629; */ /* #define CLK_Set 15 const ulong Freq_mult_ulong = 938250; const double Freq_mult_doulle = 938249.9223688533; */ //**************************修改硬件时要修改的部分******************************** //**************************以下部分为函数定义******************************** static void AD9854_WR_Byte(u32 addr,u32 dat); extern void AD9854_Init(void); static void Freq_convert(long Freq); extern void AD9854_SetSine(ulong Freq,uint Shape); static void Freq_double_convert(double Freq); extern void AD9854_SetSine_double(double Freq,uint Shape); extern void AD9854_InitFSK(void); extern void AD9854_SetFSK(ulong Freq1,ulong Freq2); extern void AD9854_InitBPSK(void); extern void AD9854_SetBPSK(uint Phase1,uint Phase2); extern void AD9854_InitOSK(void); extern void AD9854_SetOSK(uchar RateShape); extern void AD9854_InitAM(void); extern void AD9854_SetAM(uint Shape); extern void AD9854_InitRFSK(void); extern void AD9854_SetRFSK(ulong Freq_Low,ulong Freq_High,ulong Freq_Up_Down,ulong FreRate); void AD9854_IO_Init(void) { GPIO_InitTypeDef GPIO_InitStructure ; RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOB|RCC_APB2Periph_GPIOA|RCC_APB2Periph_GPIOC, ENABLE); //使能PB,PE端口时钟 GPIO_InitStructure.GPIO_Pin = GPIO_Pin_10; GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz ; GPIO_InitStructure.GPIO_Mode = GPIO_Mode_Out_PP ; GPIO_Init(GPIOB ,&GPIO_InitStructure) ; GPIO_InitStructure.GPIO_Pin = GPIO_Pin_6| GPIO_Pin_4| GPIO_Pin_5| GPIO_Pin_8| GPIO_Pin_2; GPIO_Init(GPIOA ,&GPIO_InitStructure) ; GPIO_InitStructure.GPIO_Pin = GPIO_Pin_All^(GPIO_Pin_14| GPIO_Pin_15); GPIO_Init(GPIOC ,&GPIO_InitStructure) ; } //==================================================================================== //函数名称:void AD9854_WR_Byte(uchar addr,uchar dat) //函数功能:AD9854并行口写入数据 //入口参数:addr 6位地址 // dat 写入的数据 //出口参数:无 //==================================================================================== u32 dat1,dat2; void AD9854_WR_Byte(u32 addr,u32 dat) { dat1= dat|(addr<<8); AD9854_AdrBus=(dat1&0x3fff)|((dat1^0x3fff)<<16); // AD9854_AdrBus = ((addr&0x3f)<<8) | ((addr^0x3f)<<(16+8)); // AD9854_DataBus = dat|(dat^0xff)<<16; // dat1 = ((addr&0x3f)<<8) | ((addr^0x3f)<<(16+8)); // dat2 = (dat1&0x3fff)|((dat1^0x3fff)<<16); AD9854_WR = 0; AD9854_WR = 1; } //==================================================================================== //函数名称:void AD9854_Init(void) //函数功能:AD9854初始化 //入口参数:无 //出口参数:无 //==================================================================================== void AD9854_Init(void) { AD9854_IO_Init(); AD9854_WR=1;//将读、写控制端口设为无效 AD9854_RD=1; AD9854_UDCLK=0; AD9854_RST=1; //复位AD9854 AD9854_RST=0; AD9854_WR_Byte(0x1d,0x00); //关闭比较器 AD9854_WR_Byte(0x1e,CLK_Set); //设置系统时钟倍频 AD9854_WR_Byte(0x1f,0x00); //设置系统为模式0,由外部更新 AD9854_WR_Byte(0x20,0x60); //设置为可调节幅度,取消插值补偿 AD9854_UDCLK=1; //更新AD9854输出 AD9854_UDCLK=0; } //==================================================================================== //函数名称:void Freq_convert(long Freq) //函数功能:正弦信号频率数据转换 //入口参数:Freq 需要转换的频率,取值从0~SYSCLK/2 //出口参数:无 但是影响全局变量FreqWord[6]的值 //说明: 该算法位多字节相乘算法,有公式FTW = (Desired Output Frequency × 2N)/SYSCLK // 得到该算法,其中N=48,Desired Output Frequency 为所需要的频率,即Freq,SYSCLK // 为可编程的系统时钟,FTW为48Bit的频率控制字,即FreqWord[6] //==================================================================================== void Freq_convert(long Freq) { ulong FreqBuf; ulong Temp=Freq_mult_ulong; uchar Array_Freq[4]; //将输入频率因子分为四个字节 Array_Freq[0]=(uchar)Freq; Array_Freq[1]=(uchar)(Freq>>8); Array_Freq[2]=(uchar)(Freq>>16); Array_Freq[3]=(uchar)(Freq>>24); FreqBuf=Temp*Array_Freq[0]; FreqWord[0]=FreqBuf; FreqBuf>>=8; FreqBuf+=(Temp*Array_Freq[1]); FreqWord[1]=FreqBuf; FreqBuf>>=8; FreqBuf+=(Temp*Array_Freq[2]); FreqWord[2]=FreqBuf; FreqBuf>>=8; FreqBuf+=(Temp*Array_Freq[3]); FreqWord[3]=FreqBuf; FreqBuf>>=8; FreqWord[4]=FreqBuf; FreqWord[5]=FreqBuf>>8; } //==================================================================================== //函数名称:void AD9854_SetSine(ulong Freq,uint Shape) //函数功能:AD9854正弦波产生程序 //入口参数:Freq 频率设置,取值范围为0~(1/2)*SYSCLK // Shape 幅度设置. 为12 Bit,取值范围为(0~4095) ,取值越大,幅度越大 //出口参数:无 //==================================================================================== void AD9854_SetSine(ulong Freq,uint Shape) { uchar count; uchar Adress; Adress = 0x04; //选择频率控制字地址的初值 Freq_convert(Freq); //频率转换 for(count=6;count>0;) //写入6字节的频率控制字 { AD9854_WR_Byte(Adress++,FreqWord[--count]); } AD9854_WR_Byte(0x21,Shape>>8); //设置I通道幅度 AD9854_WR_Byte(0x22,(uchar)(Shape&0xff)); AD9854_WR_Byte(0x23,Shape>>8); //设置Q通道幅度 AD9854_WR_Byte(0x24,(uchar)(Shape&0xff)); AD9854_UDCLK=1; //更新AD9854输出 AD9854_UDCLK=0; } //==================================================================================== //函数名称:void Freq_doublt_convert(double Freq) //函数功能:正弦信号频率数据转换 //入口参数:Freq 需要转换的频率,取值从0~SYSCLK/2 //出口参数:无 但是影响全局变量FreqWord[6]的值 //说明: 有公式FTW = (Desired Output Frequency × 2N)/SYSCLK得到该函数, // 其中N=48,Desired Output Frequency 为所需要的频率,即Freq,SYSCLK // 为可编程的系统时钟,FTW为48Bit的频率控制字,即FreqWord[6] //注意: 该函数与上面函数的区别为该函数的入口参数为double,可使信号的频率更精确 // 建议在100HZ以下用本函数,在高于100HZ的情况下用函数void Freq_convert(long Freq) //==================================================================================== void Freq_double_convert(double Freq) { ulong Low32; uint High16; double Temp=Freq_mult_doulle; //23ca99为2的48次方除以120M Freq*=(double)(Temp); // 1 0000 0000 0000 0000 0000 0000 0000 0000 = 4294967295 High16 =(int)(Freq/4294967295); //2^32 = 4294967295 Freq -= (double)High16*4294967295; Low32 = (ulong)Freq; FreqWord[0]=Low32; FreqWord[1]=Low32>>8; FreqWord[2]=Low32>>16; FreqWord[3]=Low32>>24; FreqWord[4]=High16; FreqWord[5]=High16>>8; } //==================================================================================== //函数名称:void AD9854_SetSine_double(double Freq,uint Shape) //函数功能:AD9854正弦波产生程序 //入口参数:Freq 频率设置,取值范围为0~1/2*SYSCLK // Shape 幅度设置. 为12 Bit,取值范围为(0~4095) //出口参数:无 //==================================================================================== void AD9854_SetSine_double(double Freq,uint Shape) { uchar count=0; uchar Adress; Adress=0x04; //选择频率控制字1地址的初值 Freq_double_convert(Freq); //频率转换 for(count=6;count>0;) //写入6字节的频率控制字 { AD9854_WR_Byte(Adress++,FreqWord[--count]); } AD9854_WR_Byte(0x21,Shape>>8); //设置I通道幅度 AD9854_WR_Byte(0x22,(uchar)(Shape&0xff)); AD9854_WR_Byte(0x23,Shape>>8); //设置Q通道幅度 AD9854_WR_Byte(0x24,(uchar)(Shape&0xff)); AD9854_UDCLK=1; //更新AD9854输出 AD9854_UDCLK=0; } //==================================================================================== //函数名称:void AD9854_InitFSK(void) //函数功能:AD9854的FSK初始化 //入口参数:无 //出口参数:无 //==================================================================================== void AD9854_InitFSK(void) { AD9854_WR=1; //将读、写控制端口设为无效 AD9854_RD=1; AD9854_UDCLK=0; AD9854_RST=1; //复位AD9854 AD9854_RST=0; AD9854_WR_Byte(0x1d,0x00); //关闭比较器 AD9854_WR_Byte(0x1e,CLK_Set); //设置系统时钟倍频 AD9854_WR_Byte(0x1f,0x02); //设置系统为模式1,由外部更新 AD9854_WR_Byte(0x20,0x60); //设置为可调节幅度,取消插值补偿 AD9854_UDCLK=1; //更新AD9854输出 AD9854_UDCLK=0; } //==================================================================================== //函数名称:void AD9854_SetFSK(ulong Freq1,ulong Freq2) //函数功能:AD9854的FSK设置 //入口参数:Freq1 FSK频率1 // Freq2 FSK频率2 //出口参数:无 //==================================================================================== void AD9854_SetFSK(ulong Freq1,ulong Freq2) { uchar count=6; uchar Adress1,Adress2; const uint Shape=4000; //幅度设置. 为12 Bit,取值范围为(0~4095) Adress1=0x04; //选择频率控制字1地址的初值 Adress2=0x0a; //选择频率控制字2地址的初值 Freq_convert(Freq1); //频率转换1 for(count=6;count>0;) //写入6字节的频率控制字 { AD9854_WR_Byte(Adress1++,FreqWord[--count]); } Freq_convert(Freq2); //频率转换2 for(count=6;count>0;) //写入6字节的频率控制字 { AD9854_WR_Byte(Adress2++,FreqWord[--count]); } AD9854_WR_Byte(0x21,Shape>>8); //设置I通道幅度 AD9854_WR_Byte(0x22,(uchar)(Shape&0xff)); AD9854_WR_Byte(0x23,Shape>>8); //设置Q通道幅度 AD9854_WR_Byte(0x24,(uchar)(Shape&0xff)); AD9854_UDCLK=1; //更新AD9854输出 AD9854_UDCLK=0; } //==================================================================================== //函数名称:void AD9854_InitBPSK(void) //函数功能:AD9854的BPSK初始化 //入口参数:无 //出口参数:无 //==================================================================================== void AD9854_InitBPSK(void) { AD9854_WR=1; //将读、写控制端口设为无效 AD9854_RD=1; AD9854_UDCLK=0; AD9854_RST=1; //复位AD9854 AD9854_RST=0; AD9854_WR_Byte(0x1d,0x00); //关闭比较器 AD9854_WR_Byte(0x1e,CLK_Set); //设置系统时钟倍频 AD9854_WR_Byte(0x1f,0x08); //设置系统为模式4,由外部更新 AD9854_WR_Byte(0x20,0x60); //设置为可调节幅度,取消插值补偿 AD9854_UDCLK=1; //更新AD9854输出 AD9854_UDCLK=0; } //==================================================================================== //函数名称:void AD9854_SetBPSK(uint Phase1,uint Phase2) //函数功能:AD9854的BPSK设置 //入口参数:Phase1 调制相位1 // Phase2 调制相位2 //出口参数:无 //说明: 相位为14Bit,取值从0~16383,建议在用本函数的时候将Phase1设置为0, // 将Phase1设置为8192,180°相位 //==================================================================================== void AD9854_SetBPSK(uint Phase1,uint Phase2) { uchar count; const ulong Freq=60000; const uint Shape=4000; uchar Adress; Adress=0x04; //选择频率控制字1地址的初值 AD9854_WR_Byte(0x00,Phase1>>8); //设置相位1 AD9854_WR_Byte(0x01,(uchar)(Phase1&0xff)); AD9854_WR_Byte(0x02,Phase2>>8); //设置相位2 AD9854_WR_Byte(0x03,(uchar)(Phase2&0xff)); Freq_convert(Freq); //频率转换 for(count=6;count>0;) //写入6字节的频率控制字 { AD9854_WR_Byte(Adress++,FreqWord[--count]); } AD9854_WR_Byte(0x21,Shape>>8); //设置I通道幅度 AD9854_WR_Byte(0x22,(uchar)(Shape&0xff)); AD9854_WR_Byte(0x23,Shape>>8); //设置Q通道幅度 AD9854_WR_Byte(0x24,(uchar)(Shape&0xff)); AD9854_UDCLK=1; //更新AD9854输出 AD9854_UDCLK=0; } //==================================================================================== //函数名称:void AD9854_InitOSK(void) //函数功能:AD9854的OSK初始化 //入口参数:无 //出口参数:无 //==================================================================================== void AD9854_InitOSK(void) { AD9854_WR=1; //将读、写控制端口设为无效 AD9854_RD=1; AD9854_UDCLK=0; AD9854_RST=1; //复位AD9854 AD9854_RST=0; AD9854_WR_Byte(0x1d,0x00); //关闭比较器 AD9854_WR_Byte(0x1e,CLK_Set); //设置系统时钟倍频 AD9854_WR_Byte(0x1f,0x00); //设置系统为模式0,由外部更新 AD9854_WR_Byte(0x20,0x70); //设置为可调节幅度,取消插值补偿,通断整形内部控制 AD9854_UDCLK=1; //更新AD9854输出 AD9854_UDCLK=0; } //==================================================================================== //函数名称:void AD9854_SetOSK(uchar RateShape) //函数功能:AD9854的OSK设置 //入口参数: RateShape OSK斜率,取值为4~255,小于4则无效 //出口参数:无 //==================================================================================== void AD9854_SetOSK(uchar RateShape) { uchar count; const ulong Freq=60000; //设置载频 const uint Shape=4000; //幅度设置. 为12 Bit,取值范围为(0~4095) uchar Adress; Adress=0x04; //选择频率控制字地址的初值 Freq_convert(Freq); //频率转换 for(count=6;count>0;) //写入6字节的频率控制字 { AD9854_WR_Byte(Adress++,FreqWord[--count]); } AD9854_WR_Byte(0x21,Shape>>8); //设置I通道幅度 AD9854_WR_Byte(0x22,(uchar)(Shape&0xff)); AD9854_WR_Byte(0x23,Shape>>8); //设置Q通道幅度 AD9854_WR_Byte(0x24,(uchar)(Shape&0xff)); AD9854_WR_Byte(0x25,RateShape); //设置OSK斜率 AD9854_UDCLK=1; //更新AD9854输出 AD9854_UDCLK=0; } //==================================================================================== //函数名称:void AD9854_InitAM(void) //函数功能:AD9854的AM初始化 //入口参数:无 //出口参数:无 //==================================================================================== void AD9854_InitAM(void) { uchar count; const ulong Freq=60000; //设置载频 uchar Adress; Adress=0x04; //选择频率控制字地址的初值 AD9854_WR=1; //将读、写控制端口设为无效 AD9854_RD=1; AD9854_UDCLK=0; AD9854_RST=1; //复位AD9854 AD9854_RST=0; AD9854_WR_Byte(0x1d,0x00); //关闭比较器 AD9854_WR_Byte(0x1e,CLK_Set); //设置系统时钟倍频 AD9854_WR_Byte(0x1f,0x00); //设置系统为模式0,由外部更新 AD9854_WR_Byte(0x20,0x60); //设置为可调节幅度,取消插值补偿 Freq_convert(Freq); //频率转换 for(count=6;count>0;) //写入6字节的频率控制字 { AD9854_WR_Byte(Adress++,FreqWord[--count]); } AD9854_UDCLK=1; //更新AD9854输出 AD9854_UDCLK=0; } //==================================================================================== //函数名称:void AD9854_SetAM(uchar Shape) //函数功能:AD9854的AM设置 //入口参数:Shape 12Bit幅度,取值从0~4095 //出口参数:无 //==================================================================================== void AD9854_SetAM(uint Shape) { AD9854_WR_Byte(0x21,Shape>>8); //设置I通道幅度 AD9854_WR_Byte(0x22,(uchar)(Shape&0xff)); AD9854_WR_Byte(0x23,Shape>>8); //设置Q通道幅度 AD9854_WR_Byte(0x24,(uchar)(Shape&0xff)); AD9854_UDCLK=1; //更新AD9854输出 AD9854_UDCLK=0; } //==================================================================================== //函数名称:void AD9854_InitRFSK(void) //函数功能:AD9854的RFSK初始化 //入口参数:无 //出口参数:无 //==================================================================================== void AD9854_InitRFSK(void) { AD9854_WR=1; //将读、写控制端口设为无效 AD9854_RD=1; AD9854_UDCLK=0; AD9854_RST=1; //复位AD9854 AD9854_RST=0; AD9854_WR_Byte(0x1d,0x00); //关闭比较器 AD9854_WR_Byte(0x1e,CLK_Set); //设置系统时钟倍频 AD9854_WR_Byte(0x1f,0x24); //设置系统为模式2,由外部更新,使能三角波扫频功能 AD9854_WR_Byte(0x20,0x60); //设置为可调节幅度,取消插值补偿 AD9854_UDCLK=1; //更新AD9854输出 AD9854_UDCLK=0; } //==================================================================================== //函数名称:void AD9854_SetRFSK(void) //函数功能:AD9854的RFSK设置 //入口参数:Freq_Low RFSK低频率 48Bit // Freq_High RFSK高频率 48Bit // Freq_Up_Down 步进频率 48Bit // FreRate 斜率时钟控制 20Bit //出口参数:无 //注: 每两个脉冲之间的时间周期用下式表示(FreRate +1)*(System Clock ),一个脉冲, // 频率 上升或者下降 一个步进频率 //==================================================================================== void AD9854_SetRFSK(ulong Freq_Low,ulong Freq_High,ulong Freq_Up_Down,ulong FreRate) { uchar count=6; uchar Adress1,Adress2,Adress3; const uint Shape=4000; //幅度设置. 为12 Bit,取值范围为(0~4095) Adress1=0x04; //选择频率控制字地址的初值 Adress2=0x0a; Adress3=0x10; Freq_convert(Freq_Low); //频率1转换 for(count=6;count>0;) //写入6字节的频率控制字 { AD9854_WR_Byte(Adress1++,FreqWord[--count]); } Freq_convert(Freq_High); //频率2转换 for(count=6;count>0;) //写入6字节的频率控制字 { AD9854_WR_Byte(Adress2++,FreqWord[--count]); } Freq_convert(Freq_Up_Down); //步进频率转换 for(count=6;count>0;) //写入6字节的频率控制字 { AD9854_WR_Byte(Adress3++,FreqWord[--count]); } AD9854_WR_Byte(0x1a,(uchar)((FreRate>>16)&0x0f)); //设置斜升速率 AD9854_WR_Byte(0x1b,(uchar)(FreRate>>8)); AD9854_WR_Byte(0x1c,(uchar)FreRate); AD9854_WR_Byte(0x21,Shape>>8); //设置I通道幅度 AD9854_WR_Byte(0x22,(uchar)(Shape&0xff)); AD9854_WR_Byte(0x23,Shape>>8); //设置Q通道幅度 AD9854_WR_Byte(0x24,(uchar)(Shape&0xff)); AD9854_UDCLK=1; //更新AD9854输出 AD9854_UDCLK=0; } //测试正弦波,采用120MHZ SYSCLK时,出来10MHZ波形,波形很好,测试成功 //当采用300MHZ SYSCLK时,测试50MHZ波形时,DDS发热厉害,且波形衰减严重,幅度在35mV左右 // //int main() //{ // AD9854_Init(); // AD9854_SetSine(80000000,4095); // while(1); //} //测试正弦波,采用120MHZ SYSCLK时,出来87.697HZ波形,波形很好,测试成功 // //int main() //{ // AD9854_Init(); // AD9854_SetSine_double(87.697,4000); // while(1); //} //测试FSK,采用120MHZ SYSCLK,1K和6K,测试成功,结果对应"FSK波形.bmp" //int main() //{ // AD9854_InitFSK(); // AD9854_SetFSK(1000,6000); // while(1) // { // AD9854_FDATA = 1; // delay_us(30000); //延时时间长,便于观察 // AD9854_FDATA = 0; // delay_us(30000); // } //} //测试BPSK,采用120MHZ SYSCLK,测试成功 //int main() //{ // AD9854_InitBPSK(); // AD9854_SetBPSK(0,8192); // while(1) // { // AD9854_FDATA = 1; // delay_us(10); // AD9854_FDATA = 0; // delay_us(10); // } //} //测试OSK,采用120MHZ SYSCLK,测试成功 //int main() //{ // AD9854_InitOSK(); // AD9854_SetOSK(10); // while(1) // { // AD9854_OSK=1; // delay_us(30); // AD9854_OSK=0; // delay_us(30); // } //} //测试AM,采用120MHZ SYSCLK,测试成功 //int main() //{ // AD9854_InitAM(); // while(1) // { // AD9854_SetAM(2000); // delay_us(10); // AD9854_SetAM(4000); // delay_us(10); // } //} // //测试RFSK,采用120MHZ SYSCLK,测试成功 //int main() //{ // AD9854_InitRFSK(); // AD9854_SetRFSK(1000,60000,100,30); // while(1) // { // AD9854_FDATA = 1; // delay_us(30000); //延时时间长,便于观察 // AD9854_FDATA = 0; // delay_us(30000); // } //} zet6和ad的引脚怎么连

#include <reg52.h> #include <intrins.h> #include <string.h> // LCD1602???? sbit LCD_RS = P1^0; sbit LCD_RW = P1^1; sbit LCD_EN = P1^2; #define LCD_DATA P2 // DS1302???? sbit DS1302_RST = P3^5; sbit DS1302_IO = P3^6; sbit DS1302_SCLK = P3^7; // DS18B20???? sbit DS18B20 = P1^3; // ???? sbit KEY_SET = P3^0; sbit KEY_UP = P3^1; sbit KEY_DOWN = P3^2; sbit KEY_MODE = P3^3; // ???????? sbit MOTOR_A = P0^0; sbit MOTOR_B = P0^1; sbit MOTOR_C = P0^2; sbit MOTOR_D = P0^3; // ???? unsigned char time_data[7]; // ?,?,?,?,?,?,? unsigned char alarm_hour = 7, alarm_min = 0; // ???? unsigned int stopwatch_ms = 0; // ????? unsigned int timer_sec = 0; // ????? unsigned int temperature; // ??? unsigned char display_mode = 0; // 0:???? 1:???? 2:?? 3:???? bit alarm_enabled = 0; // ?????? bit alarm_triggered = 0; // ?????? /******************** LCD1602???? ********************/ void LCD_Delay(unsigned int t) { while(t--); } void LCD_Write_Cmd(unsigned char cmd) { LCD_RS = 0; LCD_RW = 0; LCD_DATA = cmd; LCD_EN = 1; LCD_Delay(5); LCD_EN = 0; } void LCD_Write_Data(unsigned char dat) { LCD_RS = 1; LCD_RW = 0; LCD_DATA = dat; LCD_EN = 1; LCD_Delay(5); LCD_EN = 0; } void LCD_Init() { LCD_Write_Cmd(0x38); // 8?????,2???,5x8?? LCD_Write_Cmd(0x0C); // ???,??? LCD_Write_Cmd(0x06); // ??????? LCD_Write_Cmd(0x01); // ?? } void LCD_Set_Cursor(unsigned char x, unsigned char y) { unsigned char addr; if (y == 0) addr = 0x80 + x; else addr = 0xC0 + x; LCD_Write_Cmd(addr); } void LCD_Write_String(unsigned char x, unsigned char y, char *str) { LCD_Set_Cursor(x, y); while (*str) { LCD_Write_Data(*str++); } } /******************** DS1302???? ********************/ void DS1302_Write_Byte(unsigned char dat) { unsigned char i; for(i=0; i<8; i++) { DS1302_IO = dat & 0x01; DS1302_SCLK = 1; _nop_(); DS1302_SCLK = 0; dat >>= 1; } } unsigned char DS1302_Read_Byte() { unsigned char i, dat = 0; for(i=0; i<8; i++) { dat >>= 1; if(DS1302_IO) dat |= 0x80; DS1302_SCLK = 1; _nop_(); DS1302_SCLK = 0; } return dat; } void DS1302_Write(unsigned char addr, unsigned char dat) { DS1302_RST = 0; _nop_(); DS1302_SCLK = 0; _nop_(); DS1302_RST = 1; _nop_(); DS1302_Write_Byte(addr); DS1302_Write_Byte(dat); DS1302_SCLK = 1; DS1302_RST = 0; } unsigned char DS1302_Read(unsigned char addr) { unsigned char dat; DS1302_RST = 0; _nop_(); DS1302_SCLK = 0; _nop_(); DS1302_RST = 1; _nop_(); DS1302_Write_Byte(addr | 0x01); dat = DS1302_Read_Byte(); DS1302_SCLK = 1; DS1302_RST = 0; return dat; } void DS1302_Init() { DS1302_Write(0x8E, 0x00); // ????? DS1302_Write(0x80, 0x00); // ???? DS1302_Write(0x82, 0x30); // ???? DS1302_Write(0x84, 0x12); // ???? DS1302_Write(0x8E, 0x80); // ????? } void DS1302_Read_Time() { time_data[0] = DS1302_Read(0x81); // ? time_data[1] = DS1302_Read(0x83); // ? time_data[2] = DS1302_Read(0x85); // ? time_data[3] = DS1302_Read(0x87); // ? time_data[4] = DS1302_Read(0x89); // ? time_data[5] = DS1302_Read(0x8B); // ? time_data[6] = DS1302_Read(0x8D); // ? } /******************** DS18B20???? ********************/ void DS18B20_Delay(unsigned int t) { while(t--); } bit DS18B20_Init() { bit flag; DS18B20 = 1; DS18B20_Delay(8); DS18B20 = 0; DS18B20_Delay(80); DS18B20 = 1; DS18B20_Delay(14); flag = DS18B20; DS18B20_Delay(20); return flag; } void DS18B20_Write_Byte(unsigned char dat) { unsigned char i; for(i=0; i<8; i++) { DS18B20 = 0; DS18B20_Delay(2); DS18B20 = dat & 0x01; DS18B20_Delay(30); DS18B20 = 1; dat >>= 1; } } unsigned char DS18B20_Read_Byte() { unsigned char i, dat = 0; for(i=0; i<8; i++) { dat >>= 1; DS18B20 = 0; DS18B20_Delay(2); DS18B20 = 1; DS18B20_Delay(4); if(DS18B20) dat |= 0x80; DS18B20_Delay(30); } return dat; } void DS18B20_Read_Temp() { if(DS18B20_Init()) return; DS18B20_Write_Byte(0xCC); // Skip ROM DS18B20_Write_Byte(0x44); // Convert T while(!DS18B20); if(DS18B20_Init()) return; DS18B20_Write_Byte(0xCC); // Skip ROM DS18B20_Write_Byte(0xBE); // Read Scratchpad unsigned char LSB = DS18B20_Read_Byte(); unsigned char MSB = DS18B20_Read_Byte(); temperature = (MSB << 8) | LSB; temperature = (temperature * 0.0625) * 10; // ?????????? } /******************** ???????? ********************/ void Motor_Step(unsigned char step) { switch(step % 4) { case 0: MOTOR_A=1; MOTOR_B=0; MOTOR_C=0; MOTOR_D=0; break; case 1: MOTOR_A=0; MOTOR_B=1; MOTOR_C=0; MOTOR_D=0; break; case 2: MOTOR_A=0; MOTOR_B=0; MOTOR_C=1; MOTOR_D=0; break; case 3: MOTOR_A=0; MOTOR_B=0; MOTOR_C=0; MOTOR_D=1; break; } } void Motor_Alarm() { unsigned char i; for(i=0; i<100; i++) { Motor_Step(i); DS18B20_Delay(5000); } } /******************** ?????? ********************/ unsigned char Key_Scan() { if(KEY_SET == 0) { DS18B20_Delay(1000); return 1; } // ??? if(KEY_UP == 0) { DS18B20_Delay(1000); return 2; } // ??? if(KEY_DOWN == 0) { DS18B20_Delay(1000); return 3; } // ??? if(KEY_MODE == 0) { DS18B20_Delay(1000); return 4; } // ??? return 0; } /******************** ?????? ********************/ bit Is_Leap_Year(unsigned char year) { unsigned int full_year = 2000 + year; return ((full_year % 4 == 0) && (full_year % 100 != 0)) || (full_year % 400 == 0); } /******************** ???? ********************/ void Display_DateTime() { char buf[16]; // ???? sprintf(buf, "20%02d-%02d-%02d", time_data[6], time_data[4], time_data[3]); LCD_Write_String(0, 0, buf); // ???? sprintf(buf, "%02d:%02d:%02d", time_data[2] & 0x3F, time_data[1] & 0x7F, time_data[0] & 0x7F); LCD_Write_String(0, 1, buf); // ?????? if(alarm_enabled) LCD_Write_String(13, 1, "A"); } void Display_Timer() { char buf[16]; unsigned int hours = timer_sec / 3600; unsigned int minutes = (timer_sec % 3600) / 60; unsigned int seconds = timer_sec % 60; sprintf(buf, "Timer:%02d:%02d:%02d", hours, minutes, seconds); LCD_Write_String(0, 0, buf); LCD_Write_String(0, 1, "Press SET to start"); } void Display_Stopwatch() { char buf[16]; unsigned int seconds = stopwatch_ms / 1000; unsigned int ms = (stopwatch_ms % 1000) / 100; sprintf(buf, "Stopwatch:%02d.%1d", seconds, ms); LCD_Write_String(0, 0, buf); LCD_Write_String(0, 1, "Press SET to reset"); } void Display_All() { char buf[16]; // ???: ????? sprintf(buf, "20%02d-%02d-%02d %02d:%02d", time_data[6], time_data[4], time_data[3], time_data[2] & 0x3F, time_data[1] & 0x7F); LCD_Write_String(0, 0, buf); // ???: ???????? sprintf(buf, "%2d.%1dC %c %02d.%1d", temperature / 10, temperature % 10, alarm_enabled ? 'A' : ' ', stopwatch_ms / 1000, (stopwatch_ms % 1000) / 100); LCD_Write_String(0, 1, buf); } void Display_Mode() { LCD_Write_Cmd(0x01); // ?? switch(display_mode) { case 0: Display_DateTime(); break; case 1: Display_Timer(); break; case 2: Display_Stopwatch(); break; case 3: Display_All(); break; } } /******************** ??????? ********************/ void Timer0_Init() { TMOD = 0x01; // ???0??1 TH0 = 0xFC; // 1ms?? TL0 = 0x18; ET0 = 1; // ????0?? EA = 1; // ???? TR0 = 1; // ?????0 } void main() { LCD_Init(); DS1302_Init(); Timer0_Init(); while(1) { unsigned char key = Key_Scan(); // ???? switch(key) { case 1: // SET? if(display_mode == 1) { timer_sec = 3600; // ??????1?? } else if(display_mode == 2) { stopwatch_ms = 0; // ???? } break; case 2: // UP? if(display_mode == 0) alarm_min = (alarm_min + 1) % 60; else if(display_mode == 1) timer_sec += 60; break; case 3: // DOWN? if(display_mode == 0) alarm_min = (alarm_min > 0) ? alarm_min - 1 : 59; else if(display_mode == 1) timer_sec = (timer_sec > 60) ? timer_sec - 60 : 0; break; case 4: // MODE? display_mode = (display_mode + 1) % 4; break; } // ???? if(alarm_enabled && !alarm_triggered) { if((time_data[2] & 0x3F) == alarm_hour && (time_data[1] & 0x7F) == alarm_min) { alarm_triggered = 1; Motor_Alarm(); // ???? } } // ???10????? static unsigned int temp_counter = 0; if(++temp_counter >= 10000) { temp_counter = 0; DS18B20_Read_Temp(); } Display_Mode(); // ???? } } void Timer0_ISR() interrupt 1 { TH0 = 0xFC; TL0 = 0x18; static unsigned int ms_counter = 0; static unsigned int sec_counter = 0; // ???? if(display_mode == 2) { stopwatch_ms += 10; // ?10ms???? if(stopwatch_ms >= 60000) stopwatch_ms = 0; // 60??? } // ?????? if(display_mode == 1 && timer_sec > 0) { if(++ms_counter >= 100) { ms_counter = 0; timer_sec--; if(timer_sec == 0) Motor_Alarm(); // ?????? } } // ???????? if(++sec_counter >= 1000) { sec_counter = 0; DS1302_Read_Time(); } } 原始代码如上,请根据我在前面向你提问的错误提示,帮我修改一下这份原始代码并将修改完的完整代码发给我

#include "nRF24L01P.h" u8 code TX_ADDRESS[TX_ADR_WIDTH] = {0x0A,0x01,0x07,0x0E,0x01}; // ¶¨ÒåÒ»¸ö¾²Ì¬·¢Ë͵ØÖ· static u8 SPI_RW(u8 byte) { u8 bit_ctr; for(bit_ctr=0; bit_ctr<8; bit_ctr++) { if(byte & 0x80) MOSI = 1; else MOSI = 0; byte = (byte << 1); SCK = 1; byte |= MISO; SCK = 0; } return(byte); } /******************************************************** º¯Êý¹¦ÄÜ£ºnRF24L01+Òý½Å³õʼ»¯ Èë¿Ú²ÎÊý£ºÎÞ ·µ»Ø Öµ£ºÎÞ *********************************************************/ void nRF24L01P_Init(void) { SCK = 0; //SPIʱÖÓÏßÀ­µÍ CSN = 1; CE = 0; IRQ = 1; } /******************************************************** º¯Êý¹¦ÄÜ£ºÐ´¼Ä´æÆ÷µÄÖµ£¨µ¥×Ö½Ú£© Èë¿Ú²ÎÊý£ºreg:¼Ä´æÆ÷Ó³É䵨ַ£¨¸ñʽ£ºWRITE_REG£üreg£© value:¼Ä´æÆ÷µÄÖµ ·µ»Ø Öµ£º×´Ì¬¼Ä´æÆ÷µÄÖµ *********************************************************/ u8 nRF24L01P_Write_Reg(u8 reg, u8 value) { u8 status; CSN = 0; status = SPI_RW(reg); SPI_RW(value); CSN = 1; return(status); } /******************************************************** º¯Êý¹¦ÄÜ£ºÐ´¼Ä´æÆ÷µÄÖµ£¨¶à×Ö½Ú£© Èë¿Ú²ÎÊý£ºreg:¼Ä´æÆ÷Ó³É䵨ַ£¨¸ñʽ£ºWRITE_REG£üreg£© pBuf:дÊý¾ÝÊ×µØÖ· bytes:дÊý¾Ý×Ö½ÚÊý ·µ»Ø Öµ£º×´Ì¬¼Ä´æÆ÷µÄÖµ *********************************************************/ u8 nRF24L01P_Write_Buf(u8 reg, const u8 *pBuf, u8 bytes) { u8 status,byte_ctr; CSN = 0; status = SPI_RW(reg); for(byte_ctr=0; byte_ctr<bytes; byte_ctr++) SPI_RW(*pBuf++); CSN = 1; return(status); } /******************************************************** º¯Êý¹¦ÄÜ£º¶ÁÈ¡¼Ä´æÆ÷µÄÖµ£¨µ¥×Ö½Ú£© Èë¿Ú²ÎÊý£ºreg:¼Ä´æÆ÷Ó³É䵨ַ£¨¸ñʽ£ºREAD_REG£üreg£© ·µ»Ø Öµ£º¼Ä´æÆ÷Öµ *********************************************************/ u8 nRF24L01P_Read_Reg(u8 reg) { u8 value; CSN = 0; SPI_RW(reg); value = SPI_RW(0); CSN = 1; return(value); } /******************************************************** º¯Êý¹¦ÄÜ£º¶ÁÈ¡¼Ä´æÆ÷µÄÖµ£¨¶à×Ö½Ú£© Èë¿Ú²ÎÊý£ºreg:¼Ä´æÆ÷Ó³É䵨ַ£¨READ_REG£üreg£© pBuf:½ÓÊÕ»º³åÇøµÄÊ×µØÖ· bytes:¶ÁÈ¡×Ö½ÚÊý ·µ»Ø Öµ£º×´Ì¬¼Ä´æÆ÷µÄÖµ *********************************************************/ u8 nRF24L01P_Read_Buf(u8 reg, u8 *pBuf, u8 bytes) { u8 status,byte_ctr; CSN = 0; status = SPI_RW(reg); for(byte_ctr=0;byte_ctr<bytes;byte_ctr++) pBuf[byte_ctr] = SPI_RW(0); //¶ÁÈ¡Êý¾Ý£¬µÍ×Ö½ÚÔÚǰ CSN = 1; return(status); } /******************************************************** º¯Êý¹¦ÄÜ£ºnRF24L01+½ÓÊÕģʽ³õʼ»¯ Èë¿Ú²ÎÊý£ºÎÞ ·µ»Ø Öµ£ºÎÞ *********************************************************/ void nRF24L01P_RX_Mode(void) { CE = 0; nRF24L01P_Write_Buf(WRITE_REG + RX_ADDR_P0, TX_ADDRESS, TX_ADR_WIDTH); // ½ÓÊÕÉ豸½ÓÊÕͨµÀ0ʹÓúͷ¢ËÍÉ豸ÏàͬµÄ·¢Ë͵ØÖ· nRF24L01P_Write_Reg(WRITE_REG + EN_AA, 0x01); // ʹÄܽÓÊÕͨµÀ0×Ô¶¯Ó¦´ð nRF24L01P_Write_Reg(WRITE_REG + EN_RXADDR, 0x01); // ʹÄܽÓÊÕͨµÀ0 nRF24L01P_Write_Reg(WRITE_REG + RF_CH, 40); // Ñ¡ÔñÉäÆµÍ¨µÀ0x40 nRF24L01P_Write_Reg(WRITE_REG + RX_PW_P0, TX_PLOAD_WIDTH); // ½ÓÊÕͨµÀ0Ñ¡ÔñºÍ·¢ËÍͨµÀÏàͬÓÐЧÊý¾Ý¿í¶È nRF24L01P_Write_Reg(WRITE_REG + RF_SETUP, 0x0f); // Êý¾Ý´«ÊäÂÊ2Mbps£¬·¢É书ÂÊ0dBm£¬µÍÔëÉù·Å´óÆ÷ÔöÒæ(nRF24L01+ºöÂÔ¸Ã룩 nRF24L01P_Write_Reg(WRITE_REG + CONFIG, 0x0f); // CRCʹÄÜ£¬16λCRCУÑ飬Éϵ磬½ÓÊÕģʽ nRF24L01P_Write_Reg(WRITE_REG + STATUS, 0xff); //Çå³ýËùÓеÄÖжϱê־λ CE = 1; // À­¸ßCEÆô¶¯½ÓÊÕÉ豸 } /******************************************************** º¯Êý¹¦ÄÜ£ºnRF24L01+·¢ËÍģʽ³õʼ»¯ Èë¿Ú²ÎÊý£ºÎÞ ·µ»Ø Öµ£ºÎÞ *********************************************************/ void nRF24L01P_TX_Mode(void) { CE = 0; nRF24L01P_Write_Buf(WRITE_REG + TX_ADDR, TX_ADDRESS, TX_ADR_WIDTH); // дÈë·¢Ë͵ØÖ· nRF24L01P_Write_Buf(WRITE_REG + RX_ADDR_P0, TX_ADDRESS, TX_ADR_WIDTH); // ΪÁËÓ¦´ð½ÓÊÕÉ豸£¬½ÓÊÕͨµÀ0µØÖ·ºÍ·¢Ë͵ØÖ·Ïàͬ nRF24L01P_Write_Reg(WRITE_REG + EN_AA, 0x01); // ʹÄܽÓÊÕͨµÀ0×Ô¶¯Ó¦´ð nRF24L01P_Write_Reg(WRITE_REG + EN_RXADDR, 0x01); // ʹÄܽÓÊÕͨµÀ0 nRF24L01P_Write_Reg(WRITE_REG + SETUP_RETR, 0x0a); // ×Ô¶¯ÖØ·¢ÑÓʱµÈ´ý250us+86us£¬×Ô¶¯ÖØ·¢10´Î nRF24L01P_Write_Reg(WRITE_REG + RF_CH, 40); // Ñ¡ÔñÉäÆµÍ¨µÀ0x40 nRF24L01P_Write_Reg(WRITE_REG + RF_SETUP, 0x0f); // Êý¾Ý´«ÊäÂÊ2Mbps£¬·¢É书ÂÊ0dBm£¬µÍÔëÉù·Å´óÆ÷ÔöÒæ(nRF24L01+ºöÂÔ¸Ã룩 nRF24L01P_Write_Reg(WRITE_REG + CONFIG, 0x0e); // CRCʹÄÜ£¬16λCRCУÑ飬Éϵç //CE = 1; } /******************************************************** º¯Êý¹¦ÄÜ£º¶ÁÈ¡½ÓÊÕÊý¾Ý Èë¿Ú²ÎÊý£ºrxbuf:½ÓÊÕÊý¾Ý´æ·ÅÊ×µØÖ· ·µ»Ø Öµ£º0:½ÓÊÕµ½Êý¾Ý 1:ûÓнÓÊÕµ½Êý¾Ý *********************************************************/ u8 nRF24L01P_RxPacket(u8 *rxbuf) { u8 state; state = nRF24L01P_Read_Reg(STATUS); //¶Áȡ״̬¼Ä´æÆ÷µÄÖµ nRF24L01P_Write_Reg(WRITE_REG+STATUS,state); //Çå³ýRX_DSÖжϱêÖ¾ if(state & RX_DR) //½ÓÊÕµ½Êý¾Ý { nRF24L01P_Read_Buf(RD_RX_PLOAD,rxbuf,TX_PLOAD_WIDTH); //¶ÁÈ¡Êý¾Ý nRF24L01P_Write_Reg(FLUSH_RX,0xff); //Çå³ýRX FIFO¼Ä´æÆ÷ return 0; } return 1; //ûÊÕµ½ÈκÎÊý¾Ý } /******************************************************** º¯Êý¹¦ÄÜ£º·¢ËÍÒ»¸öÊý¾Ý°ü Èë¿Ú²ÎÊý£ºtxbuf:Òª·¢Ë͵ÄÊý¾Ý ·µ»Ø Öµ£º0x10:´ïµ½×î´óÖØ·¢´ÎÊý£¬·¢ËÍʧ°Ü 0x20:·¢Ëͳɹ¦ 0xff:·¢ËÍʧ°Ü *********************************************************/ u8 nRF24L01P_TxPacket(u8 *txbuf) { u8 state; CE=0; //CEÀ­µÍ£¬Ê¹ÄÜ24L01ÅäÖà nRF24L01P_Write_Buf(WR_TX_PLOAD,txbuf,TX_PLOAD_WIDTH); //дÊý¾Ýµ½TX FIFO,32¸ö×Ö½Ú CE=1; //CEÖøߣ¬Ê¹ÄÜ·¢ËÍ while(IRQ == 1); //µÈ´ý·¢ËÍÍê³É state=nRF24L01P_Read_Reg(STATUS); //¶Áȡ״̬¼Ä´æÆ÷µÄÖµ nRF24L01P_Write_Reg(WRITE_REG+STATUS,state); //Çå³ýTX_DS»òMAX_RTÖжϱêÖ¾ if(state&MAX_RT) //´ïµ½×î´óÖØ·¢´ÎÊý { nRF24L01P_Write_Reg(FLUSH_TX,0xff); //Çå³ýTX FIFO¼Ä´æÆ÷ return MAX_RT; } if(state&TX_DS) //·¢ËÍÍê³É { return TX_DS; } return 0XFF; //·¢ËÍʧ°Ü }请将以上代码更改为STM32cubeMX的格式

#include <Wire.h> #include <Adafruit_GFX.h> #include <Adafruit_SSD1306.h> #include "MAX30105.h" // 需要安装SparkFun MAX3010x库 // ========== 第一步:创建两个I2C总线 ========== TwoWire I2C_OLED = TwoWire(0); // 使用I2C0控制器 TwoWire I2C_MAX = TwoWire(1); // 使用I2C1控制器 // ========== 第二步:设备引脚定义 ========== // OLED引脚配置 #define OLED_SDA 21 #define OLED_SCL 22 #define OLED_ADDR 0x3C // 常见地址0x3C或0x3D // MAX30102引脚配置 #define MAX_SDA 32 #define MAX_SCL 33 // ========== 第三步:初始化设备对象 ========== Adafruit_SSD1306 oled(128, 64, &I2C_OLED, -1); // 屏幕尺寸128x64 MAX30105 max30102; // 创建传感器对象 void setup() { Serial.begin(115200); // ----- 初始化OLED的I2C总线 ----- I2C_OLED.begin(OLED_SDA, OLED_SCL, 400000); // 400kHz高速模式 if(!oled.begin(SSD1306_SWITCHCAPVCC, OLED_ADDR)){ Serial.println("OLED初始化失败!"); while(1); // 死循环阻止程序继续 } oled.display(); // 显示默认内容 // ----- 初始化MAX30102的I2C总线 ----- I2C_MAX.begin(MAX_SDA, MAX_SCL, 100000); // 100kHz标准速度 if (!max30102.begin(&I2C_MAX)) { // 关键:传入自定义I2C对象 Serial.println("MAX30102未检测到!"); while(1); } // ----- 配置MAX30102参数 ----- max30102.setup(0x7F); // 默认配置:50Hz采样率,16位ADC max30102.enableDIETEMPRDY(); // 启用温度数据就绪中断 } void loop() { // 示例:显示心率数据 int32_t heartRate = max30102.getHeartRate(); oled.clearDisplay(); oled.setTextSize(1); oled.setTextColor(SSD1306_WHITE); oled.setCursor(0,0); oled.print("心率:"); oled.print(heartRate); oled.display(); delay(1000); // 每秒更新 } 结合这个代码我的MAX30102用的接口是D21D22,#include <Wire.h> #include "MAX30105.h" #include "heartRate.h" MAX30105 particleSensor; const byte RATE_SIZE = 4; //Increase this for more averaging. 4 is good. byte rates[RATE_SIZE]; //Array of heart rates byte rateSpot = 0; long lastBeat = 0; //Time at which the last beat occurred float beatsPerMinute; int beatAvg; void setup() { Serial.begin(115200); Serial.println("Initializing..."); // Initialize sensor if (!particleSensor.begin(Wire, I2C_SPEED_FAST)) //Use default I2C port, 400kHz speed { Serial.println("MAX30105 was not found. Please check wiring/power. "); while (1); } Serial.println("Place your index finger on the sensor with steady pressure."); particleSensor.setup(); //Configure sensor with default settings particleSensor.setPulseAmplitudeRed(0x0A); //Turn Red LED to low to indicate sensor is running particleSensor.setPulseAmplitudeGreen(0); //Turn off Green LED } void loop() { long irValue = particleSensor.getIR(); if (irValue < 50000) { Serial.println("请放置手指"); delay(100); // 适当延迟避免刷屏 return; // 直接返回,不执行后续代码 } if (checkForBeat(irValue) == true) { //We sensed a beat! long delta = millis() - lastBeat; lastBeat = millis(); beatsPerMinute = 60 / (delta / 1000.0); if (beatsPerMinute < 255 && beatsPerMinute > 20) { rates[rateSpot++] = (byte)beatsPerMinute; //Store this reading in the array rateSpot %= RATE_SIZE; //Wrap variable //Take average of readings beatAvg = 0; for (byte x = 0 ; x < RATE_SIZE ; x++) beatAvg += rates[x]; beatAvg /= RATE_SIZE; } } Serial.print("IR="); Serial.print(irValue); Serial.print(", BPM="); Serial.print(beatsPerMinute); Serial.print(", Avg BPM="); Serial.println(beatAvg); } 这是我的测心率arduino代码,结合一下给我完整的代码

==================== 主机代码(接收端)====================   #include <reg52.h> #include <intrins.h> // NRF24L01引脚定义 sbit CE = P1^5; // 模块使能 sbit CSN = P1^4; // SPI片选 sbit SCK = P1^3; // SPI时钟 sbit MOSI = P1^2; // SPI主机输出 sbit MISO = P1^1; // SPI主机输入 sbit IRQ = P1^0; // 中断标志 sbit BUZZER = P2^0; // 蜂鸣器控制 unsigned char Rx_Buf[32]; // 接收缓冲区 unsigned long lastReceive = 0; // SPI写字节 void SPI_Write(unsigned char dat) { unsigned char i; for(i=0; i<8; i++) { MOSI = (dat & 0x80); dat <<= 1; SCK = 1; _nop_(); SCK = 0; } } // SPI读字节 unsigned char SPI_Read() { unsigned char i, dat=0; for(i=0; i<8; i++) { dat <<= 1; SCK = 1; if(MISO) dat |= 0x01; SCK = 0; } return dat; } // NRF24L01寄存器写 void NRF_Write_Reg(unsigned char reg, unsigned char value) { CSN = 0; SPI_Write(reg | 0x20); // 写命令 SPI_Write(value); CSN = 1; } // NRF初始化 void NRF_Init() { CE = 0; CSN = 1; NRF_Write_Reg(0x01, 0x0F); // 开启自动ACK NRF_Write_Reg(0x02, 0x01); // 使能接收通道0 NRF_Write_Reg(0x11, 0x20); // 接收载荷宽度32字节 NRF_Write_Reg(0x25, 0x40); // 通信频率2400MHz + 40 NRF_Write_Reg(0x26, 0x0E); // 2Mbps速率,0dBm功率 NRF_Write_Reg(0x27, 0x76); // 地址宽度5字节 NRF_Write_Reg(0x2A, 0xC3); // 发送地址 NRF_Write_Reg(0x2B, 0xC3); // 接收地址 NRF_Write_Reg(0x00, 0x0F); // 上电接收模式 CE = 1; } // 主函数 void main() { TMOD = 0x01; // 定时器0模式1 TH0 = 0x3C; // 50ms定时 TL0 = 0xB0; ET0 = 1; EA = 1; TR0 = 1; NRF_Init(); BUZZER = 0; while(1) { if(IRQ == 0) { // 收到数据 unsigned char status = NRF_Read_Reg(0x07); if(status & 0x40) { // RX_DR中断 NRF_Read_Payload(Rx_Buf, 32); lastReceive = 0; // 重置计时 BUZZER = 0; // 关闭报警 } NRF_Write_Reg(0x07, 0x70); // 清除中断 } } } // 定时器中断(检测超时) void Timer0_ISR() interrupt 1 {

最新推荐

recommend-type

(完整版)网络大集体备课的心得与体会(最新整理).pdf

(完整版)网络大集体备课的心得与体会(最新整理).pdf
recommend-type

构建基于ajax, jsp, Hibernate的博客网站源码解析

根据提供的文件信息,本篇内容将专注于解释和阐述ajax、jsp、Hibernate以及构建博客网站的相关知识点。 ### AJAX AJAX(Asynchronous JavaScript and XML)是一种用于创建快速动态网页的技术,它允许网页在不重新加载整个页面的情况下,与服务器交换数据并更新部分网页内容。AJAX的核心是JavaScript中的XMLHttpRequest对象,通过这个对象,JavaScript可以异步地向服务器请求数据。此外,现代AJAX开发中,常常用到jQuery中的$.ajax()方法,因为其简化了AJAX请求的处理过程。 AJAX的特点主要包括: - 异步性:用户操作与数据传输是异步进行的,不会影响用户体验。 - 局部更新:只更新需要更新的内容,而不是整个页面,提高了数据交互效率。 - 前后端分离:AJAX技术允许前后端分离开发,让前端开发者专注于界面和用户体验,后端开发者专注于业务逻辑和数据处理。 ### JSP JSP(Java Server Pages)是一种动态网页技术标准,它允许开发者将Java代码嵌入到HTML页面中,从而实现动态内容的生成。JSP页面在服务器端执行,并将生成的HTML发送到客户端浏览器。JSP是Java EE(Java Platform, Enterprise Edition)的一部分。 JSP的基本工作原理: - 当客户端首次请求JSP页面时,服务器会将JSP文件转换为Servlet。 - 服务器上的JSP容器(如Apache Tomcat)负责编译并执行转换后的Servlet。 - Servlet生成HTML内容,并发送给客户端浏览器。 JSP页面中常见的元素包括: - 指令(Directives):如page、include、taglib等。 - 脚本元素:脚本声明(Script declarations)、脚本表达式(Scriptlet)和脚本片段(Expression)。 - 标准动作:如jsp:useBean、jsp:setProperty、jsp:getProperty等。 - 注释:在客户端浏览器中不可见的注释。 ### Hibernate Hibernate是一个开源的对象关系映射(ORM)框架,它提供了从Java对象到数据库表的映射,简化了数据库编程。通过Hibernate,开发者可以将Java对象持久化到数据库中,并从数据库中检索它们,而无需直接编写SQL语句或掌握复杂的JDBC编程。 Hibernate的主要优点包括: - ORM映射:将对象模型映射到关系型数据库的表结构。 - 缓存机制:提供了二级缓存,优化数据访问性能。 - 数据查询:提供HQL(Hibernate Query Language)和Criteria API等查询方式。 - 延迟加载:可以配置对象或对象集合的延迟加载,以提高性能。 ### 博客网站开发 构建一个博客网站涉及到前端页面设计、后端逻辑处理、数据库设计等多个方面。使用ajax、jsp、Hibernate技术栈,开发者可以更高效地构建功能完备的博客系统。 #### 前端页面设计 前端主要通过HTML、CSS和JavaScript来实现,其中ajax技术可以用来异步获取文章内容、用户评论等,无需刷新页面即可更新内容。 #### 后端逻辑处理 JSP可以在服务器端动态生成HTML内容,根据用户请求和数据库中的数据渲染页面。Hibernate作为ORM框架,可以处理Java对象与数据库表之间的映射,并提供数据库的CRUD(创建、读取、更新、删除)操作。 #### 数据库设计 博客网站的数据库设计通常包含多个表,如用户表(存储用户信息)、文章表(存储文章信息)、评论表(存储用户评论信息)等。使用Hibernate框架可以简化数据库操作,同时确保数据的一致性和安全性。 #### 安全性和性能优化 安全性是构建网站时需要考虑的重要方面,包括但不限于SQL注入防护、XSS攻击防护、会话管理等。性能优化方面,可以利用Hibernate的缓存机制,以及对JSP页面和ajax请求进行适当的缓存处理。 ### 结论 ajax、jsp、Hibernate技术结合可以构建出高效、动态、易于维护的博客网站。在开发过程中,应当关注前后端分离、用户体验优化、系统性能和安全性等关键要素,确保博客网站的稳定和长期可用性。通过本篇文章,读者应该已经对这些技术有了初步了解,并能够结合文件提供的源码开始进行相关开发实践。
recommend-type

【Unity Sunny Land关卡设计高级指南】:打造完美关卡的8大技巧

# 1. Unity关卡设计概述 ## 1.1 关卡设计的核心要素 关卡设计作为游戏开发中不可或缺的一环,承担着构建游戏世界、呈现故事背景、引导玩家体验和激发玩家兴趣的责任。一个优秀的关卡不仅需要有吸引人的视觉效果和有趣的挑战,还需平衡玩家体验,提供连贯的游戏故事。 ## 1.2 关卡设计师的角色 在Unity引擎的环境下,关卡设计师需要具备对场景布局、角色互动、剧情
recommend-type

C++ 模版

<think>我们正在讨论C++模板的使用和常见问题。根据用户要求,所有行内数学表达式使用$...$,独立公式使用$$...$$,用中文回答,并生成相关问题。同时,回答要结构清晰,帮助用户逐步解决问题。 首先,回顾用户的问题:用户想了解C++模板的使用和常见问题。我们将从以下几个方面展开: 1. 模板的基本概念和用途 2. 函数模板和类模板 3. 模板特化和偏特化 4. 模板元编程简介 5. 常见问题及解决方案 注意:在回答中,我们会引用站内提供的引用内容(引用[1]和引用[2])作为参考,但主要围绕模板展开。 ### 1. 模板的基本概念和用途 C++模板是一种支持泛型编程的特性,允许
recommend-type

C#随机数摇奖系统功能及隐藏开关揭秘

### C#摇奖系统知识点梳理 #### 1. C#语言基础 C#(发音为“看井”)是由微软开发的一种面向对象的、类型安全的编程语言。它是.NET框架的核心语言之一,广泛用于开发Windows应用程序、ASP.NET网站、Web服务等。C#提供丰富的数据类型、控制结构和异常处理机制,这使得它在构建复杂应用程序时具有很强的表达能力。 #### 2. 随机数的生成 在编程中,随机数生成是常见的需求之一,尤其在需要模拟抽奖、游戏等场景时。C#提供了System.Random类来生成随机数。Random类的实例可以生成一个伪随机数序列,这些数在统计学上被认为是随机的,但它们是由确定的算法生成,因此每次运行程序时产生的随机数序列相同,除非改变种子值。 ```csharp using System; class Program { static void Main() { Random rand = new Random(); for(int i = 0; i < 10; i++) { Console.WriteLine(rand.Next(1, 101)); // 生成1到100之间的随机数 } } } ``` #### 3. 摇奖系统设计 摇奖系统通常需要以下功能: - 用户界面:显示摇奖结果的界面。 - 随机数生成:用于确定摇奖结果的随机数。 - 动画效果:模拟摇奖的视觉效果。 - 奖项管理:定义摇奖中可能获得的奖品。 - 规则设置:定义摇奖规则,比如中奖概率等。 在C#中,可以使用Windows Forms或WPF技术构建用户界面,并集成上述功能以创建一个完整的摇奖系统。 #### 4. 暗藏的开关(隐藏控制) 标题中提到的“暗藏的开关”通常是指在程序中实现的一个不易被察觉的控制逻辑,用于在特定条件下改变程序的行为。在摇奖系统中,这样的开关可能用于控制中奖的概率、启动或停止摇奖、强制显示特定的结果等。 #### 5. 测试 对于摇奖系统来说,测试是一个非常重要的环节。测试可以确保程序按照预期工作,随机数生成器的随机性符合要求,用户界面友好,以及隐藏的控制逻辑不会被轻易发现或利用。测试可能包括单元测试、集成测试、压力测试等多个方面。 #### 6. System.Random类的局限性 System.Random虽然方便使用,但也有其局限性。其生成的随机数序列具有一定的周期性,并且如果使用不当(例如使用相同的种子创建多个实例),可能会导致生成相同的随机数序列。在安全性要求较高的场合,如密码学应用,推荐使用更加安全的随机数生成方式,比如RNGCryptoServiceProvider。 #### 7. Windows Forms技术 Windows Forms是.NET框架中用于创建图形用户界面应用程序的库。它提供了一套丰富的控件,如按钮、文本框、标签等,以及它们的事件处理机制,允许开发者设计出视觉效果良好且功能丰富的桌面应用程序。 #### 8. WPF技术 WPF(Windows Presentation Foundation)是.NET框架中用于构建桌面应用程序用户界面的另一种技术。与Windows Forms相比,WPF提供了更现代化的控件集,支持更复杂的布局和样式,以及3D图形和动画效果。WPF的XAML标记语言允许开发者以声明性的方式设计用户界面,与C#代码分离,易于维护和更新。 #### 9. 压缩包子文件TransBallDemo分析 从文件名“TransBallDemo”可以推测,这可能是一个C#的示例程序或者演示程序,其中“TransBall”可能表示旋转的球体,暗示该程序包含了动画效果,可能是用来模拟转动的球体(如转盘或摇奖球)。该文件可能是用来展示如何实现一个带有视觉动画效果的摇奖系统的C#程序。 总结以上内容,我们可以得出构建一个C#摇奖系统需要深入理解C#语言及其随机数生成机制,设计用户界面,集成动画效果,确保隐藏控制逻辑的安全性,以及全面测试系统以保证其正确性和公平性。通过掌握Windows Forms或WPF技术,可以进一步增强系统的视觉和交互体验。
recommend-type

【数据驱动的力量】:管道缺陷判别方法论与实践经验

# 摘要 数据驱动技术在管道缺陷检测领域展现出强大的力量,本文首先概述了数据驱动的力量和管道缺陷判别的基础理论。接着,重点探讨了管道缺陷的类型与特征、数据采集与预处理、数据驱动模型的选择与构建。在实践技巧章节,本文详述了实战数据集的准备与处理、缺陷识别算法的应用、以及性能评估与模型优化。此外,高级应用章节深入讨论了实时数据处理分析、多模态数据融合技术、以及深度学习在缺
recommend-type

FatalError: `Segmentation fault` is detected by the operating system. [TimeInfo: *** Aborted at 1752568501 (unix time) try "date -d @1752568501" if you are using GNU date ***] [SignalInfo: *** SIGSEGV (@0x0) received by PID 3203 (TID 0x7f8a04143340) from PID 0 ***],训练模型中出现上述错误,怎么解决

<think>我们面对的是一个模型训练过程中出现的Segmentation fault错误。根据引用[1],Segmentation Fault通常是由非法内存访问引起的,常见原因包括空指针解引用、数组越界、使用未初始化指针等。在深度学习训练场景中,还可能涉及显存溢出、CUDA内核错误等。 引用[2]展示了一个具体案例:在PaddlePaddle框架中遇到Segmentation fault,并提示了C++ Traceback。这通常表明底层C++代码出现了问题。而引用[3]则提到Python环境下的Segmentation fault,可能涉及Python扩展模块的错误。 解决步骤: 1
recommend-type

EditPlus中实现COBOL语言语法高亮的设置

标题中的“editplus”指的是一个轻量级的代码编辑器,特别受到程序员和软件开发者的欢迎,因为它支持多种编程语言。标题中的“mfcobol”指的是一种特定的编程语言,即“Micro Focus COBOL”。COBOL语言全称为“Common Business-Oriented Language”,是一种高级编程语言,主要用于商业、金融和行政管理领域的数据处理。它最初开发于1959年,是历史上最早的高级编程语言之一。 描述中的“cobol语言颜色显示”指的是在EditPlus这款编辑器中为COBOL代码提供语法高亮功能。语法高亮是一种编辑器功能,它可以将代码中的不同部分(如关键字、变量、字符串、注释等)用不同的颜色和样式显示,以便于编程者阅读和理解代码结构,提高代码的可读性和编辑的效率。在EditPlus中,要实现这一功能通常需要用户安装相应的语言语法文件。 标签“cobol”是与描述中提到的COBOL语言直接相关的一个词汇,它是对描述中提到的功能或者内容的分类或者指代。标签在互联网内容管理系统中用来帮助组织内容和便于检索。 在提供的“压缩包子文件的文件名称列表”中只有一个文件名:“Java.stx”。这个文件名可能是指一个语法高亮的模板文件(Syntax Template eXtension),通常以“.stx”为文件扩展名。这样的文件包含了特定语言语法高亮的规则定义,可用于EditPlus等支持自定义语法高亮的编辑器中。不过,Java.stx文件是为Java语言设计的语法高亮文件,与COBOL语言颜色显示并不直接相关。这可能意味着在文件列表中实际上缺少了为COBOL语言定义的相应.stx文件。对于EditPlus编辑器,要实现COBOL语言的颜色显示,需要的是一个COBOL.stx文件,或者需要在EditPlus中进行相应的语法高亮设置以支持COBOL。 为了在EditPlus中使用COBOL语法高亮,用户通常需要做以下几步操作: 1. 确保已经安装了支持COBOL的EditPlus版本。 2. 从Micro Focus或者第三方资源下载COBOL的语法高亮文件(COBOL.stx)。 3. 打开EditPlus,进入到“工具”菜单中的“配置用户工具”选项。 4. 在用户工具配置中,选择“语法高亮”选项卡,然后选择“添加”来载入下载的COBOL.stx文件。 5. 根据需要选择其他语法高亮的选项,比如是否开启自动完成、代码折叠等。 6. 确认并保存设置。 完成上述步骤后,在EditPlus中打开COBOL代码文件时,应该就能看到语法高亮显示了。语法高亮不仅仅是颜色的区分,它还可以包括字体加粗、斜体、下划线等样式,以及在某些情况下,语法错误的高亮显示。这对于提高编码效率和准确性有着重要意义。
recommend-type

影子系统(windows)问题排查:常见故障诊断与修复

# 摘要 本文旨在深入探讨影子系统的概念、工作原理以及故障诊断基础。首先,介绍影子系统的定义及其运作机制,并分析其故障诊断的理论基础,包括系统故障的分类和特征。接着,详细探讨各种故障诊断工具和方法,并提供实际操作中的故障排查步骤。文中还深入分析了影子系统常见故障案例,涵盖系统启动问题、软件兼容性和网络连通性问题,并提供相应的诊断与解决方案。高级故障诊断与修复
recommend-type

nt!DbgBreakPointWithStatus: fffff805`7affd0b0 cc int 3 kd> g KDTARGET: Refreshing KD connection *** Fatal System Error: 0x0000001a (0x0000000000061941,0xFFFFF8057B20E1C0,0x0000000000000019,0xFFFFFC89CACA7190) Break instruction exception - code 80000003 (first chance) A fatal system error has occurred. Debugger entered on first try; Bugcheck callbacks have not been invoked. A fatal system error has occurred. For analysis of this file, run !analyze -v nt!DbgBreakPointWithStatus: fffff805`7affd0b0 cc int 3 kd> !analyze -v Connected to Windows 10 19041 x64 target at (Tue Jul 15 23:02:04.588 2025 (UTC + 8:00)), ptr64 TRUE Loading Kernel Symbols ............. Press ctrl-c (cdb, kd, ntsd) or ctrl-break (windbg) to abort symbol loads that take too long. Run !sym noisy before .reload to track down problems loading symbols. .................................................. ................................................................ ..................................................... Loading User Symbols Loading unloaded module list ...... ERROR: FindPlugIns 8007007b ******************************************************************************* * * * Bugcheck Analysis * * * ******************************************************************************* MEMORY_MANAGEMENT (1a) # Any other values for parameter 1 must be individually examined. Arguments: Arg1: 0000000000061941, The subtype of the BugCheck. Arg2: fffff8057b20e1c0 Arg3: 0000000000000019 Arg4: fffffc89caca7190 Debugging Details: ------------------ Press ctrl-c (cdb, kd, ntsd) or ctrl-break (windbg) to abort symbol loads that take too long. Run !sym noisy before .reload to track down problems loading symbols. 蓝屏了,但原帖子代码能正常执行,帖子作者说:我win10是专门针对2mb大页,win7是专门针对4kb小页的,蓝屏的原因我只能想到是因为没有做大页和小页的处理了。你做了2mb和4kb之类的处理吗,还有2mb的大页的物理地址要2mb对齐,不然电脑会卡死,我win10蓝屏的原因就是因为没有物理地址2mb对齐,我这代码是专门针对我那个虚拟机的环境,其他环境蓝屏你要是懂分页的话自己就会处理了。最重要的细节就是物理地址要对齐,2mb就2mb的对齐,1gb就1gb的对齐。

<think>我们之前讨论的代码中已经包含了对大页(2MB)和小页(4KB)的处理。但是,根据蓝屏信息(MEMORY_MANAGEMENT, 0x1a)和参数,问题可能出在内存对齐或页表项设置上。 原帖作者提到:2MB大页的物理地址必须2MB对齐,否则会导致系统不稳定甚至蓝屏。在之前的代码中,我们确实处理了大页的情况,但在分配2MB内存时,我们使用了`MmAllocateContiguousMemorySpecifyCache`,这个函数分配的内存不一定满足2MB对齐(尽管它分配的是连续内存)。因此,我们需要确保分配的内存地址是2MB对齐的。 解决方案: 1. 在分配2MB内存时,要