写一个VGG网络模型,手动设置权重初始化
时间: 2025-01-27 16:11:38 浏览: 33
VGG(Visual Geometry Group)网络是一种经典的卷积神经网络结构,特别以其密集的卷积层而知名。为了手动设置VGG网络的权重初始化,我们通常会参考预训练模型的标准权重分布,比如采用Xavier或He初始化。这里以构建一个简单的VGG11为例,使用Keras编写:
```python
from tensorflow.keras.layers import Conv2D, MaxPooling2D, Flatten, Dense
from tensorflow.keras.models import Sequential
from tensorflow.keras import backend as K
def vgg_block(input_shape, filters, block_id, kernel_size=(3, 3), padding='same'):
model = Sequential()
if K.image_data_format() == 'channels_first':
input_shape = (3,) + input_shape
model.add(Conv2D(filters=filters, kernel_size=kernel_size, activation='relu', padding=padding,
kernel_initializer='he_normal', name=f'block{block_id}_conv1'))
model.add(Conv2D(filters=filters, kernel_size=kernel_size, activation='relu', padding=padding,
kernel_initializer='he_normal', name=f'block{block_id}_conv2'))
if block_id == 1 and pooling_type is True:
model.add(MaxPooling2D(pool_size=(2, 2), strides=2, name=f'block{block_id}_pool'))
return model
input_shape = (224, 224, 3) # 假设图像尺寸为224x224
num_filters = [64, 128, 256, 512, 512]
vgg_layers = []
for i, f in enumerate(num_filters):
vgg_layers.append(vgg_block(input_shape, f, i))
flat_layer = Flatten()(vgg_layers[-1].output)
output_layer = Dense(units=1000, activation='softmax',
kernel_initializer='he_normal') # 这里假设最后一层是个分类任务
model = Sequential(vgg_layers + [flat_layer, output_layer])
# 输出网络结构以检查权重初始化
model.summary()
```
在这个例子中,我们手动设置了每一层的卷积核初始化为He正态分布,这是对深度学习网络的一种常用实践。
阅读全文
相关推荐


















