写一段基于pytorch和Yolo的关于识别物品的深度学习的含训练的代码
时间: 2025-06-28 22:03:06 浏览: 12
为了帮助您理解如何使用PyTorch和YOLO构建一个可以识别物品的深度学习模型,并包含训练过程,这里提供了一个简化的例子。请注意,在实际应用中需要对数据集、超参数等做更细致的选择。
首先安装必要的库:
```bash
pip install torch torchvision opencv-python matplotlib albumentations
```
然后按照下面步骤编写代码:
### 导入所需包
```python
import os
from pathlib import Path
import cv2
import numpy as np
import torch
from torch.utils.data import DataLoader, Dataset
import albumentations as A # 数据增强工具
from albumentations.pytorch.transforms import ToTensorV2
import yolov5 # 假设你已经克隆了yolov5仓库并安装好依赖项
```
### 加载预训练YOLOv5模型
```python
# 这里我们加载官方提供的小型版本YOLOv5作为基础架构
model = yolov5.load('yolov5s.pt')
device = 'cuda' if torch.cuda.is_available() else 'cpu'
print(f"Using device: {device}")
model.to(device)
```
### 自定义Dataset类用于读取自定义的数据集
```python
class CustomImageDataset(Dataset):
def __init__(self, img_dir, transform=None):
self.img_labels = [] # 此处应添加从文件读取标签信息的功能
self.transform = transform
image_files = list(Path(img_dir).glob('*.*'))[:10] # 只选取前10张图片进行演示
for file in image_files:
label_file = str(file.with_suffix('.txt'))
with open(label_file) as f:
lines = [line.rstrip().split() for line in f]
bboxes = []
classes = []
for obj in lines:
x_center, y_center, width, height = float(obj[1]), float(obj[2]), float(obj[3]), float(obj[4])
cls_id = int(obj[0]) + 1
bboxes.append([x_center - (width / 2), y_center - (height / 2),
x_center + (width / 2), y_center + (height / 2)])
classes.append(cls_id)
self.img_labels.append({
"file": str(file),
"bboxes": bboxes,
"classes": classes
})
def __len__(self):
return len(self.img_labels)
def __getitem__(self, idx):
entry = self.img_labels[idx]
img_path = entry['file']
boxes = entry["bboxes"]
labels = entry["classes"]
img = cv2.imread(img_path)[..., ::-1].copy()
transformed = self.transform(image=img, bboxes=boxes, class_labels=labels)
transformed_image = transformed['image']
transformed_bboxes = transformed['bboxes']
transformed_class_labels = transformed['class_labels']
targets = {"boxes": [], "labels": []}
for box_idx in range(len(transformed_bboxes)):
bbox = transformed_bboxes[box_idx]
targets["boxes"].append(bbox)
targets["labels"].append(torch.tensor(transformed_class_labels[box_idx]))
return transformed_image, targets
```
### 定义图像变换函数(如随机裁剪)
```python
transform = A.Compose([
A.Resize(height=640, width=640),
A.RandomCrop(width=480, height=480),
A.HorizontalFlip(p=0.5),
A.Normalize(mean=(0.485, 0.456, 0.406), std=(0.229, 0.224, 0.225)),
ToTensorV2(),
],bbox_params=A.BboxParams(format='pascal_voc',label_fields=['class_labels']))
```
### 创建DataLoader实例
```python
dataset_train = CustomImageDataset('./path/to/train/images/', transform=transform)
dataloader_train = DataLoader(dataset_train, batch_size=4, shuffle=True)
```
### 模型训练循环示例
```python
optimizer = torch.optim.Adam(model.parameters(), lr=0.001)
num_epochs = 5
for epoch in range(num_epochs):
print(f'\nEpoch [{epoch+1}/{num_epochs}]')
model.train()
running_loss = .0
for images, target_dicts in dataloader_train:
optimizer.zero_grad()
outputs = model(images.to(device))
losses = {}
for i, output_dict in enumerate(outputs):
loss_i = yolov5.loss.compute_loss(output_dict,
[t[i]['boxes'].to(device) for t in target_dicts],
[t[i]['labels'].long().to(device) for t in target_dicts])
losses[f'yolo_layer_{i}'] = loss_i
total_loss = sum(losses.values())
total_loss.backward()
optimizer.step()
running_loss += total_loss.item()*images.size(0)
avg_epoch_loss = running_loss/len(dataloader_train.dataset)
print(f'Training Loss: {avg_epoch_loss:.4f}')
```
这段代码只是一个非常简单的框架,实际工程化部署还需要考虑更多因素比如验证集评估指标监控、测试阶段推理性能优化以及分布式训练支持等等。此外,请确保你的环境中已正确配置CUDA/GPU环境以便充分利用硬件加速能力。
阅读全文
相关推荐


















