(base) (.venv) PS E:\1-MasterFold\1-Research\paper_code\LLMNodeBed-main> pip install torch-sparse -f https://data.pyg.org/whl/torch-2.7.1+cu118.html Looking in indexes: https://pypi.tuna.tsinghua.edu.cn/simple Looking in links: https://data.pyg.org/whl/torch-2.7.1+cu118.html Collecting torch-sparse Downloading https://pypi.tuna.tsinghua.edu.cn/packages/42/e2/cddf10a8e32a0b214918943e6173672c8ec11000e69c36dad8e6b141cb60/torch_sparse-0.6.18.tar.gz (209 kB) Installing build dependencies ... done Getting requirements to build wheel ... error error: subprocess-exited-with-error × Getting requirements to build wheel did not run successfully. │ exit code: 1 ╰─> [20 lines of output] Traceback (most recent call last): File "E:\1-MasterFold\1-Research\paper_code\LLMNodeBed-main\.venv\Lib\site-packages\pip\_vendor\pyproject_hooks\_in_process\_in_process.py", line 389, in <module> main() File "E:\1-MasterFold\1-Research\paper_code\LLMNodeBed-main\.venv\Lib\site-packages\pip\_vendor\pyproject_hooks\_in_process\_in_process.py", line 373, in main json_out["return_val"] = hook(**hook_input["kwargs"]) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "E:\1-MasterFold\1-Research\paper_code\LLMNodeBed-main\.venv\Lib\site-packages\pip\_vendor\pyproject_hooks\_in_process\_in_process.py", line 143, in get_requires_for_build_wheel return hook(config_settings) ^^^^^^^^^^^^^^^^^^^^^ File "C:\Users\Administrator\AppData\Local\Temp\pip-build-env-ml4ruu_s\overlay\Lib\site-packages\setuptools\build_meta.py", line 331, in get_requires_for_build_wheel return self._get_build_requires(config_settings, requirements=[]) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "C:\Users\Administrator\AppData\Local\Temp\pip-build-env-ml4ruu_s\overlay\Lib\site-packages\setuptools\build_meta.py", line 301, in _get_build_requires self.run_setup() File "C:\Users\Administrator\AppData\Local\Temp\pip-build-env-ml4ruu_s\overlay\Lib\site-packages\setuptools\build_meta.py", line 512, in run_setup super().run_setup(setup_script=setup_script) File "C:\Users\Administrator\AppData\Local\Temp\pip-build-env-ml4ruu_s\overlay\Lib\site-packages\setuptools\build_meta.py", line 317, in run_setup exec(code, locals()) File "<string>", line 8, in <module> ModuleNotFoundError: No module named 'torch' [end of output] note: This error originates from a subprocess, and is likely not a problem with pip. error: subprocess-exited-with-error × Getting requirements to build wheel did not run successfully. │ exit code: 1 ╰─> See above for output. note: This error originates from a subprocess, and is likely not a problem with pip.
时间: 2025-06-30 19:09:43 浏览: 21
<think>我们注意到用户的问题是在安装torch_sparse时出现了`ModuleNotFoundError:Nomodulenamed'torch'`。这意味着在安装torch_sparse之前,PyTorch并没有被正确安装。因此,解决步骤应该是先安装PyTorch,然后再安装torch_sparse。根据引用[1][2][3][4]的内容,安装torch_sparse等扩展库需要预先安装PyTorch,并且版本要匹配。特别是引用[2]提到,如果没有正确配置CUDA环境,可能只安装了CPU版本。而引用[4]则指出需要安装所有依赖库(torch-scatter,torch-sparse,torch-cluster,torch-spline-conv)。因此,我们将步骤分解如下:1.确保已经安装了与CUDA版本匹配的PyTorch(如果没有CUDA,则安装CPU版本)。2.然后根据PyTorch的版本和CUDA版本,安装对应的torch_sparse等扩展库。由于用户之前提到CUDA版本为11.7,我们选择安装PyTorch1.13.1(与CUDA11.7兼容的版本)。具体步骤:步骤1:安装PyTorch使用以下命令安装PyTorch1.13.1(CUDA11.7):```pipinstalltorch==1.13.1+cu117torchvision==0.14.1+cu117torchaudio==0.13.1--extra-index-urlhttps://download.pytorch.org/whl/cu117```步骤2:验证PyTorch安装运行Python,输入:```pythonimporttorchprint(torch.__version__)#应该输出1.13.1+cu117print(torch.cuda.is_available())#应该输出True```步骤3:安装torch_sparse等扩展库根据PyTorch版本(1.13.1+cu117)安装对应的扩展库:```pipinstalltorch-scattertorch-sparsetorch-clustertorch-spline-conv-fhttps://data.pyg.org/whl/torch-1.13.1+cu117.html```如果上述步骤中遇到网络问题,可以按照引用[1]的方法,手动下载对应的wheel文件然后安装。但注意,需要选择与Python版本和CUDA版本匹配的wheel文件。例如,对于Python3.7和CUDA11.7,需要下载:-torch_scatter-2.1.0+pt113cu117-cp37-cp37m-win_amd64.whl-torch_sparse-0.6.16+pt113cu117-cp37-cp37m-win_amd64.whl然后使用:```pipinstall文件路径\torch_scatter-2.1.0+pt113cu117-cp37-cp37m-win_amd64.whlpipinstall文件路径\torch_sparse-0.6.16+pt113cu117-cp37-cp37m-win_amd64.whl```注意:如果用户没有GPU,则安装CPU版本的PyTorch,然后安装对应的CPU版本扩展库。对于CPU版本:```pipinstalltorch==1.13.1+cputorchvision==0.14.1+cputorchaudio==0.13.1+cpu--extra-index-urlhttps://download.pytorch.org/whl/cpu```然后安装扩展库(注意URL中的cu版本改为cpu):```pipinstalltorch-scattertorch-sparsetorch-clustertorch-spline-conv-fhttps://data.pyg.org/whl/torch-1.13.1+cpu.html```最后,我们生成相关问题:§§相关问题§§1.如何检查PyTorch是否正确识别CUDA设备?2.安装torch_geometric时出现"RuntimeError:Couldnotloadlibrary"错误如何解决?3.不同Python版本如何选择torch_sparse的对应WHL文件?4.在无NVIDIAGPU的Windows机器上如何安装PyTorchGeometric?</think>### 解决安装 torch-sparse 时出现的 "No module named 'torch'" 错误
您遇到的错误是由于系统未检测到 PyTorch 安装造成的。以下是完整的解决方案:
---
#### **步骤 1:先安装 PyTorch 基础包**
torch-sparse 是 PyTorch 的扩展库,必须**先安装 PyTorch 主框架**:
```bash
# 使用 pip 安装 PyTorch(选择适合您环境的版本)
pip install torch torchvision torchaudio
# 或者指定 CUDA 11.7 版本(推荐)
pip install torch==1.13.1+cu117 torchvision==0.14.1+cu117 torchaudio==0.13.1 --extra-index-url https://download.pytorch.org/whl/cu117
```
> **关键点**:
> - 必须先安装 `torch` 才能安装扩展库
> - 选择与您的 CUDA 版本匹配的 PyTorch 版本[^2]
---
#### **步骤 2:验证 PyTorch 安装**
创建测试脚本 `test_torch.py`:
```python
import torch
print(f"PyTorch 版本: {torch.__version__}")
print(f"CUDA 可用: {torch.cuda.is_available()}")
print(f"CUDA 版本: {torch.version.cuda}")
```
运行:
```bash
python test_torch.py
```
期望输出:
```
PyTorch 版本: 1.13.1+cu117
CUDA 可用: True
CUDA 版本: 11.7
```
---
#### **步骤 3:安装 torch-sparse**
**方法 A:通过 PyG 官方源安装(推荐)**
```bash
# 根据 PyTorch 版本选择安装命令
pip install torch-scatter torch-sparse torch-cluster torch-spline-conv \
-f https://data.pyg.org/whl/torch-{TORCH_VERSION}.html
# 示例(PyTorch 1.13.1+cu117):
pip install torch-scatter torch-sparse torch-cluster torch-spline-conv \
-f https://data.pyg.org/whl/torch-1.13.1+cu117.html
```
**方法 B:手动下载安装(适合网络问题)**
1. 访问 [PyG 官方仓库](https://data.pyg.org/whl/)
2. 根据您的环境下载:
- PyTorch 版本:如 `torch-1.13.1%2Bcu117`
- Python 版本:如 `cp38` (Python 3.8)
- 系统架构:`win_amd64`
3. 安装下载的 wheel 文件:
```bash
pip install torch_scatter-2.1.0+pt113cu117-cp38-cp38-win_amd64.whl
pip install torch_sparse-0.6.16+pt113cu117-cp38-cp38-win_amd64.whl
```
---
#### **步骤 4:验证安装**
```python
import torch
from torch_sparse import SparseTensor
# 创建稀疏张量测试
row = torch.tensor([0, 0, 1, 2])
col = torch.tensor([0, 1, 0, 1])
sparse_tensor = SparseTensor(row=row, col=col)
print(sparse_tensor) # 应输出稀疏张量信息
```
---
### **常见问题解决**
1. **环境冲突问题**:
```bash
# 创建新的虚拟环境
python -m venv pyg_env
pyg_env\Scripts\activate # Windows
```
2. **CUDA 识别失败**:
- 检查环境变量 `CUDA_PATH` 是否指向 CUDA 安装目录
- 更新显卡驱动:[NVIDIA 驱动下载](https://www.nvidia.com/Download/index.aspx)
3. **版本不匹配**:
```bash
pip uninstall torch torch-sparse
pip cache purge
# 重新执行步骤1-3
```
> **重要原则**:所有 `torch_*` 扩展库必须与 PyTorch 主版本**严格匹配**,否则会导致二进制不兼容[^1][^2][^4]。
---
### 相关问题
阅读全文
相关推荐

















