用Python编写一个逻辑回归分类算法的Python程序,并使用Scikit-Learn中提供的乳腺癌数据集进行训练和预测。
时间: 2025-06-23 13:25:01 浏览: 13
在Python中,我们可以使用scikit-learn库来构建逻辑回归模型。下面是一个简单的步骤说明:
首先,你需要安装必要的库,如果还没有的话:
```bash
pip install numpy pandas scikit-learn
```
然后,你可以按照以下步骤编写逻辑回归分类算法:
1. 导入所需的库:
```python
import numpy as np
import pandas as pd
from sklearn.datasets import load_breast_cancer
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
from sklearn.linear_model import LogisticRegression
from sklearn.metrics import accuracy_score
```
2. 加载乳腺癌数据集:
```python
data = load_breast_cancer()
X = data.data
y = data.target
```
3. 数据预处理(标准化):
```python
scaler = StandardScaler()
X_scaled = scaler.fit_transform(X)
```
4. 划分训练集和测试集:
```python
X_train, X_test, y_train, y_test = train_test_split(X_scaled, y, test_size=0.2, random_state=42)
```
5. 创建逻辑回归模型并训练:
```python
model = LogisticRegression()
model.fit(X_train, y_train)
```
6. 进行预测:
```python
y_pred = model.predict(X_test)
```
7. 计算准确率:
```python
accuracy = accuracy_score(y_test, y_pred)
print(f"Accuracy: {accuracy * 100}%")
```
阅读全文
相关推荐

















