/*==================== HAL SETTINGS *====================*/ /** Default display refresh, input device read and animation step period. */ #define LV_DEF_REFR_PERIOD 10 /**< [ms] */ /** Default Dots Per Inch. Used to initialize default sizes such as widgets sized, style paddings. * (Not so important, you can adjust it to modify default sizes and spaces.) */ #define LV_DPI_DEF 130 /**< [px/inch] */

时间: 2025-06-10 18:08:10 浏览: 15
<think>嗯,用户给了一段看起来像是C语言中的宏定义代码,然后让我介绍一下。首先,我需要确认这段代码的用途。看起来像是来自LVGL(Light and Versatile Graphics Library)的配置设置部分,因为提到了HAL SETTINGS,HAL通常指硬件抽象层。 首先看第一个宏定义LV_DEF_REFR_PERIOD,默认值是10毫秒。这个应该是设置默认的刷新周期,包括显示刷新、输入设备读取和动画步骤的周期。用户可能想了解这个参数的作用以及调整后的影响。比如,这个值越小,刷新越频繁,可能会更流畅,但消耗更多资源;增大则相反。 第二个宏是LV_DPI_DEF,默认130像素每英寸。DPI影响默认的控件大小和间距。需要解释DPI在UI设计中的作用,比如高DPI屏幕可能需要调整这个值来确保元素大小合适。用户可能需要根据实际屏幕的物理尺寸和分辨率来调整这个值,以确保UI元素显示正确。 接下来,用户可能是在使用LVGL进行嵌入式开发,遇到了显示或性能问题,想通过调整这些参数来优化。需要说明这两个参数的意义,以及修改时需要注意的地方。例如,刷新周期和系统性能的关系,DPI与实际屏幕尺寸的关系。 用户可能没有明确说出的是,他们可能想了解如何根据具体硬件调整这些设置,或者遇到刷新率不够导致卡顿,或者UI元素大小不合适的问题。需要给出实际的调整建议,比如根据屏幕的实际DPI计算正确的值,或者根据MCU的性能调整刷新周期。 另外,要确保用中文回答,结构清晰,分点解释每个宏的作用、默认值、如何调整以及注意事项。可能需要提醒用户如果修改这些值后需要重新测试UI效果和系统性能,确保稳定运行。</think>好的,我来为您解释这段LVGL(Light and Versatile Graphics Library)的硬件抽象层配置代码: 这是LVGL显示框架中与硬件适配相关的两个核心配置参数: 1. **LV_DEF_REFR_PERIOD 10** - **作用**:定义默认的刷新周期 - **单位**:毫秒(ms) - **影响范围**: - 显示刷新率(如屏幕重绘频率) - 输入设备(触摸屏/按键)的读取频率 - 动画的步进更新间隔 - **典型调整场景**: * 降低数值 → 提升刷新流畅度(但会增加CPU负载) * 增大数值 → 降低系统负载(可能导致动画卡顿) 2. **LV_DPI_DEF 130** - **作用**:设置默认的DPI(每英寸像素数) - **单位**:像素/英寸(px/inch) - **影响范围**: - 控件默认尺寸(按钮、滑块等) - 样式间距(边距、内间距等) - 字体渲染比例 - **设置建议**: * 需要根据实际屏幕物理参数计算: ``` 对角线像素数(√(水平像素²+垂直像素²)) / 屏幕物理尺寸(英寸) ``` * 示例:1280x720的5英寸屏 → √(1280²+720²)/5 ≈ 293.72/5 ≈ 58.74 DPI **注意事项**: 1. 这两个参数应在`lv_conf.h`配置文件的顶部区域进行修改 2. 修改后需要重新编译整个LVGL库才能生效 3. 建议先保持默认值,待基础功能调试完成后再进行优化调整 4. 实际显示效果需结合屏幕驱动参数(如像素时钟、时序配置等)综合调试 是否需要进一步说明具体场景下的配置建议?例如针对特定屏幕尺寸或性能优化需求。
阅读全文

相关推荐

uint16_t value_r37 = 0; uint16_t value_r38 = 0; uint16_t value_buf[2]; /* USER CODE END PV */ /* Private function prototypes -----------------------------------------------*/ void SystemClock_Config(void); /* USER CODE BEGIN PFP */ /* USER CODE END PFP */ /* Private user code ---------------------------------------------------------*/ /* USER CODE BEGIN 0 */ /* USER CODE END 0 */ /** * @brief The application entry point. * @retval int */ int main(void) { /* USER CODE BEGIN 1 */ /* USER CODE END 1 */ /* MCU Configuration--------------------------------------------------------*/ /* Reset of all peripherals, Initializes the Flash interface and the Systick. */ HAL_Init(); /* USER CODE BEGIN Init */ HAL_ADCEx_Calibration_Start(&hadc1,ADC_SINGLE_ENDED); HAL_ADCEx_Calibration_Start(&hadc2,ADC_SINGLE_ENDED); /* USER CODE END Init */ /* Configure the system clock */ SystemClock_Config(); /* USER CODE BEGIN SysInit */ /* USER CODE END SysInit */ /* Initialize all configured peripherals */ MX_GPIO_Init(); MX_DMA_Init(); MX_ADC1_Init(); MX_ADC2_Init(); MX_USART1_UART_Init(); /* USER CODE BEGIN 2 */ /* USER CODE END 2 */ /* Infinite loop */ /* USER CODE BEGIN WHILE */ while (1) { /* USER CODE END WHILE */ /* USER CODE BEGIN 3 */ value_r37 = ADC1_Get(); value_r38 = ADC2_Get(); value_buf[0] = value_r37; value_buf[1] = value_r38; } /* USER CODE END 3 */ }部分代码如图 我现在不知道DMA怎么打 将得到的两个value值用DMA串口传输到串口助手上查看 在我的代码基础上添加 不要改动太大

/* USER CODE BEGIN Header */ /** ****************************************************************************** * @file : main.c * @brief : Main program body ****************************************************************************** * @attention * * Copyright (c) 2025 STMicroelectronics. * All rights reserved. * * This software is licensed under terms that can be found in the LICENSE file * in the root directory of this software component. * If no LICENSE file comes with this software, it is provided AS-IS. * ****************************************************************************** */ /* USER CODE END Header */ /* Includes ------------------------------------------------------------------*/ #include "main.h" #include "tim.h" #include "usart.h" #include "gpio.h" /* Private includes ----------------------------------------------------------*/ /* USER CODE BEGIN Includes */ /* USER CODE END Includes */ #include "stdio.h" #include "string.h" uint8_t m,f,s; char qw[20]; /* Private typedef -----------------------------------------------------------*/ /* USER CODE BEGIN PTD */ /* USER CODE END PTD */ /* Private define ------------------------------------------------------------*/ /* USER CODE BEGIN PD */ /* USER CODE END PD */ /* Private macro -------------------------------------------------------------*/ /* USER CODE BEGIN PM */ /* USER CODE END PM */ /* Private variables ---------------------------------------------------------*/ /* USER CODE BEGIN PV */ /* USER CODE END PV */ /* Private function prototypes -----------------------------------------------*/ void SystemClock_Config(void); /* USER CODE BEGIN PFP */ /* USER CODE END PFP */ /* Private user code ---------------------------------------------------------*/ /* USER CODE BEGIN 0 */ /* USER CODE END 0 */ void HAL_TIM_PeriodElapsedCallback(TIM_HandleTypeDef *htim) { if (htim == &htim2) { m += 1; } } /** * @brief The application entry point. * @retval int */ int main(void) { /* USER CODE BEGIN 1 */ /* USER CODE END 1 */ /* MCU Configuration--------------------------------------------------------*/ /* Reset of all peripherals, Initializes the Flash interface and the Systick. */ HAL_Init(); /* USER CODE BEGIN Init */ /* USER CODE END Init */ /* Configure the system clock */ SystemClock_Config(); /* USER CODE BEGIN SysInit */ /* USER CODE END SysInit */ /* Initialize all configured peripherals */ MX_GPIO_Init(); MX_TIM2_Init(); MX_USART1_UART_Init(); /* USER CODE BEGIN 2 */ /* USER CODE END 2 */ HAL_TIM_Base_Start_IT(&htim2); /* Infinite loop */ /* USER CODE BEGIN WHILE */ while (1) { /* USER CODE END WHILE */ /* USER CODE BEGIN 3 */ if (m >= 60) { m = 0; f += 1; if (f >= 60) { f = 0; s += 1; if (s >= 24) { s = 0; } } } sprintf(qw,"%02d:%02d:%02d\n",s,f,m); HAL_UART_Transmit(&huart1, (uint8_t *)qw,strlen(qw), 1000); HAL_Delay(200); } /* USER CODE END 3 */ } /** * @brief System Clock Configuration * @retval None */ void SystemClock_Config(void) { RCC_OscInitTypeDef RCC_OscInitStruct = {0}; RCC_ClkInitTypeDef RCC_ClkInitStruct = {0}; /** Configure the main internal regulator output voltage */ __HAL_RCC_PWR_CLK_ENABLE(); __HAL_PWR_VOLTAGESCALING_CONFIG(PWR_REGULATOR_VOLTAGE_SCALE1); /** Initializes the RCC Oscillators according to the specified parameters * in the RCC_OscInitTypeDef structure. */ RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSE; RCC_OscInitStruct.HSEState = RCC_HSE_ON; RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON; RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSE; RCC_OscInitStruct.PLL.PLLM = 4; RCC_OscInitStruct.PLL.PLLN = 72; RCC_OscInitStruct.PLL.PLLP = RCC_PLLP_DIV2; RCC_OscInitStruct.PLL.PLLQ = 4; if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK) { Error_Handler(); } /** Initializes the CPU, AHB and APB buses clocks */ RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK|RCC_CLOCKTYPE_SYSCLK |RCC_CLOCKTYPE_PCLK1|RCC_CLOCKTYPE_PCLK2; RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK; RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1; RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV2; RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV1; if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_2) != HAL_OK) { Error_Handler(); } } /* USER CODE BEGIN 4 */ /* USER CODE END 4 */ /** * @brief This function is executed in case of error occurrence. * @retval None */ void Error_Handler(void) { /* USER CODE BEGIN Error_Handler_Debug */ /* User can add his own implementation to report the HAL error return state */ __disable_irq(); while (1) { } /* USER CODE END Error_Handler_Debug */ } #ifdef USE_FULL_ASSERT /** * @brief Reports the name of the source file and the source line number * where the assert_param error has occurred. * @param file: pointer to the source file name * @param line: assert_param error line source number * @retval None */ void assert_failed(uint8_t *file, uint32_t line) { /* USER CODE BEGIN 6 */ /* User can add his own implementation to report the file name and line number, ex: printf("Wrong parameters value: file %s on line %d\r\n", file, line) */ /* USER CODE END 6 */ } #endif /* USE_FULL_ASSERT */ 为什么打印都是零

/* USER CODE BEGIN Header *//** ****************************************************************************** * @file : main.c * @brief : Main program body ****************************************************************************** * @attention * *
© Copyright (c) 2020 STMicroelectronics. * All rights reserved.
* * This software component is licensed by ST under BSD 3-Clause license, * the "License"; You may not use this file except in compliance with the * License. You may obtain a copy of the License at: * opensource.org/licenses/BSD-3-Clause * ****************************************************************************** *//* USER CODE END Header *//* Includes ------------------------------------------------------------------*/#include "main.h"#include "usart.h"#include "gpio.h"/* Private includes ----------------------------------------------------------*//* USER CODE BEGIN Includes *//* USER CODE END Includes *//* Private typedef -----------------------------------------------------------*//* USER CODE BEGIN PTD *//* USER CODE END PTD *//* Private define ------------------------------------------------------------*//* USER CODE BEGIN PD *//* USER CODE END PD *//* Private macro -------------------------------------------------------------*//* USER CODE BEGIN PM *//* USER CODE END PM *//* Private variables ---------------------------------------------------------*//* USER CODE BEGIN PV *//* USER CODE END PV *//* Private function prototypes -----------------------------------------------*/void SystemClock_Config(void);/* USER CODE BEGIN PFP *//* USER CODE END PFP *//* Private user code ---------------------------------------------------------*//* USER CODE BEGIN 0 *//* USER CODE END 0 *//** * @brief The application entry point. * @retval int */int main(void){ /* USER CODE BEGIN 1 */ char str[16] = "Hello World\r\n"; // 申明数组做打印提示 char recv_buf[16] = {0}; //申明数据做串口接收缓存 /* USER CODE END 1 */ /* MCU Configuration--------------------------------------------------------*/ /* Reset of all peripherals, Initializes the Flash interface and the Systick. */ HAL_Init(); /* USER CODE BEGIN Init */ /* USER CODE END Init */ /* Configure the system clock */ SystemClock_Config(); /* USER CODE BEGIN SysInit */ /* USER CODE END SysInit */ /* Initialize all configured peripherals */ MX_GPIO_Init(); MX_USART1_UART_Init(); /* USER CODE BEGIN 2 */ HAL_UART_Transmit(&huart1, (uint8_t*)str, 14, 0xFFFF); //串口输出提示信息 /* USER CODE END 2 */ /* Infinite loop */ /* USER CODE BEGIN WHILE */ while (1) { /* USER CODE END WHILE */ /* USER CODE BEGIN 3 */ //将串口接收的数据存储后返回 if(HAL_OK == HAL_UART_Receive(&huart1, (uint8_t*)recv_buf, 1, 0xFFFF)) { HAL_UART_Transmit(&huart1, (uint8_t*)recv_buf, 1, 0xFFFF); } } /* USER CODE END 3 */}/** * @brief System Clock Configuration * @retval None */void SystemClock_Config(void){ RCC_OscInitTypeDef RCC_OscInitStruct = {0}; RCC_ClkInitTypeDef RCC_ClkInitStruct = {0}; /** Configure the main internal regulator output voltage */ __HAL_RCC_PWR_CLK_ENABLE(); __HAL_PWR_VOLTAGESCALING_CONFIG(PWR_REGULATOR_VOLTAGE_SCALE1); /** Initializes the CPU, AHB and APB busses clocks */ RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSE; RCC_OscInitStruct.HSEState = RCC_HSE_ON; RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON; RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSE; RCC_OscInitStruct.PLL.PLLM = 8; RCC_OscInitStruct.PLL.PLLN = 360; RCC_OscInitStruct.PLL.PLLP = RCC_PLLP_DIV2; RCC_OscInitStruct.PLL.PLLQ = 4; if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK) { Error_Handler(); } /** Activate the Over-Drive mode */ if (HAL_PWREx_EnableOverDrive() != HAL_OK) { Error_Handler(); } /** Initializes the CPU, AHB and APB busses clocks */ RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK|RCC_CLOCKTYPE_SYSCLK |RCC_CLOCKTYPE_PCLK1|RCC_CLOCKTYPE_PCLK2; RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK; RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1; RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV4; RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV2; if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_5) != HAL_OK) { Error_Handler(); }}/* USER CODE BEGIN 4 *//* USER CODE END 4 *//** * @brief This function is executed in case of error occurrence. * @retval None */void Error_Handler(void){ /* USER CODE BEGIN Error_Handler_Debug */ /* User can add his own implementation to report the HAL error return state */ /* USER CODE END Error_Handler_Debug */}#ifdef USE_FULL_ASSERT/** * @brief Reports the name of the source file and the source line number * where the assert_param error has occurred. * @param file: pointer to the source file name * @param line: assert_param error line source number * @retval None */void assert_failed(uint8_t *file, uint32_t line){ /* USER CODE BEGIN 6 */ /* User can add his own implementation to report the file name and line number, tex: printf("Wrong parameters value: file %s on line %d\r\n", file, line) */ /* USER CODE END 6 */}#endif /* USE_FULL_ASSERT *//************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/ 基于上述参考程序,修改代码,实现以下功能:1、学生在串口工具发送字符‘1’,控制板返回“1StudentID:xx”至串口工具,其中,xx表示学生本人的学号最后两位;2、学生在串口工具发送字符‘2’,控制板返回“2Class Begin”至串口工具;3、学生在串口工具发送字符‘3’,控制板返回“3Class Over”至串口工具;4、学生在串口工具发送字符除了‘1’、‘2’、‘3’的其他字符,控制板返回“Hello World”至串口工具。

/* USER CODE BEGIN Header */ /** ****************************************************************************** * @file : main.c * @brief : Main program body ****************************************************************************** * @attention * *
© Copyright (c) 2020 STMicroelectronics. * All rights reserved.
* * This software component is licensed by ST under BSD 3-Clause license, * the "License"; You may not use this file except in compliance with the * License. You may obtain a copy of the License at: * opensource.org/licenses/BSD-3-Clause * ****************************************************************************** */ /* USER CODE END Header */ /* Includes ------------------------------------------------------------------*/ #include "main.h" #include "usart.h" #include "gpio.h" /* Private includes ----------------------------------------------------------*/ /* USER CODE BEGIN Includes */ #include "stdio.h" /* USER CODE END Includes */ /* Private typedef -----------------------------------------------------------*/ /* USER CODE BEGIN PTD */ /* USER CODE END PTD */ /* Private define ------------------------------------------------------------*/ /* USER CODE BEGIN PD */ /* USER CODE END PD */ /* Private macro -------------------------------------------------------------*/ /* USER CODE BEGIN PM */ /* USER CODE END PM */ /* Private variables ---------------------------------------------------------*/ /* USER CODE BEGIN PV */ /* USER CODE END PV */ /* Private function prototypes -----------------------------------------------*/ void SystemClock_Config(void); /* USER CODE BEGIN PFP */ void Traffic_Control(uint8_t); void North_South_Passage(void); void NS_to_EW(void); void East_West_Passage(void); void EW_to_NS(void); void Stepper_Close(void); /* USER CODE END PFP */ /* Private user code ---------------------------------------------------------*/ /* USER CODE BEGIN 0 */ /* USER CODE END 0 */ /** * @brief The application entry point. * @retval int */ int main(void) { /* USER CODE BEGIN 1 */ /* USER CODE END 1 */ /* MCU Configuration--------------------------------------------------------*/ /* Reset of all peripherals, Initializes the Flash interface and the Systick. */ HAL_Init(); /* USER CODE BEGIN Init */ /* USER CODE END Init */ /* Configure the system clock */ SystemClock_Config(); /* USER CODE BEGIN SysInit */ /* USER CODE END SysInit */ /* Initialize all configured peripherals */ MX_GPIO_Init(); MX_USART1_UART_Init(); MX_USART2_UART_Init(); /* USER CODE BEGIN 2 */ /* USER CODE END 2 */ /* Infinite loop */ /* USER CODE BEGIN WHILE */ while (1) { /* USER CODE END WHILE */ /* USER CODE BEGIN 3 */ if(HAL_GPIO_ReadPin(GPIOE,GPIO_PIN_3) == GPIO_PIN_RESET) { //交通灯控制 North_South_Passage(); //南北通行 NS_to_EW(); //南北转东西 East_West_Passage(); //东西通行 EW_to_NS(); //东西转南北 } else{ Stepper_Close(); } } /* USER CODE END 3 */ } /** * @brief System Clock Configuration * @retval None */ void SystemClock_Config(void) { RCC_OscInitTypeDef RCC_OscInitStruct = {0}; RCC_ClkInitTypeDef RCC_ClkInitStruct = {0}; /** Configure the main internal regulator output voltage */ __HAL_RCC_PWR_CLK_ENABLE(); __HAL_PWR_VOLTAGESCALING_CONFIG(PWR_REGULATOR_VOLTAGE_SCALE1); /** Initializes the RCC Oscillators according to the specified parameters * in the RCC_OscInitTypeDef structure. */ RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSE; RCC_OscInitStruct.HSEState = RCC_HSE_ON; RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON; RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSE; RCC_OscInitStruct.PLL.PLLM = 8; RCC_OscInitStruct.PLL.PLLN = 360; RCC_OscInitStruct.PLL.PLLP = RCC_PLLP_DIV2; RCC_OscInitStruct.PLL.PLLQ = 4; if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK) { Error_Handler(); } /** Activate the Over-Drive mode */ if (HAL_PWREx_EnableOverDrive() != HAL_OK) { Error_Handler(); } /** Initializes the CPU, AHB and APB buses clocks */ RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK|RCC_CLOCKTYPE_SYSCLK |RCC_CLOCKTYPE_PCLK1|RCC_CLOCKTYPE_PCLK2; RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK; RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1; RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV4; RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV2; if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_5) != HAL_OK) { Error_Handler(); } } /* USER CODE BEGIN 4 */ //交通灯配置控制 void Traffic_Control(uint8_t i) { uint8_t j=0; uint32_t val=0; // 定义交通灯配置组 uint8_t trafic_table[6][12]={ // 全亮 {1,1,1, //R,Y,G 上 1,1,1, //R,Y,G 下 1,1,1, //R,Y,G 左 1,1,1}, //R,Y,G 右 // 上下绿灯左右红灯 {0,0,1, //R,Y,G 1,0,0, //R,Y,G 0,0,1, //R,Y,G 1,0,0}, //R,Y,G // 上下黄灯左右红灯 {0,1,0, //R,Y,G 1,0,0, //R,Y,G 0,1,0, //R,Y,G 1,0,0}, //R,Y,G // 上下红灯左右绿灯 {1,0,0, //R,Y,G 0,0,1, //R,Y,G 1,0,0, //R,Y,G 0,0,1}, //R,Y,G // 上下红灯左右黄灯 {0,0,1, //R,Y,G 0,1,0, //R,Y,G 0,0,1, //R,Y,G 0,1,0}, //R,Y,G // 全灭 {0,0,0, //R,Y,G 0,0,0, //R,Y,G 0,0,0, //R,Y,G 0,0,0} //R,Y,G }; //控制线1 val &= ~0xFF; for(j=0; j<8; j++){ if(trafic_table[i][j]){ val |=(1<<j); }else { val &= ~(1<<j); } } HAL_GPIO_WritePin(GPIOE,GPIO_PIN_14,GPIO_PIN_RESET); GPIOG->ODR = val; //先控制前8个LED状态 HAL_GPIO_WritePin(GPIOE,GPIO_PIN_14,GPIO_PIN_SET); //控制线2 val &= ~0xF0; for(j=4; j<8; j++){ if(trafic_table[i][4+j]){ val |=(1<<j); }else { val &= ~(1<<j); } } HAL_GPIO_WritePin(GPIOE,GPIO_PIN_15,GPIO_PIN_RESET);; GPIOG->ODR = val; //再控制后4个LED状态 HAL_GPIO_WritePin(GPIOE,GPIO_PIN_15,GPIO_PIN_SET);; //延时 HAL_Delay(1000); } //数码管共阳极码表 uint8_t seg7table[] = { /*#define DB0*/ 0xC0, /*#define DB1*/ 0xF9, /*#define DB2*/ 0xA4, /*#define DB3*/ 0xB0, /*#define DB4*/ 0x99, /*#define DB5*/ 0x92, /*#define DB6*/ 0x82, /*#define DB7*/ 0xF8, /*#define DB8*/ 0x80, /*#define DB9*/ 0x90, /*#define DBA*/ 0x88, /*#define DBB*/ 0x83, /*#define DBC*/ 0xC6, /*#define DBD*/ 0xA1, /*#define DBE*/ 0x86, /*#define DBF*/ 0x8E }; void Seg_Control(uint8_t t) { HAL_GPIO_WritePin (GPIOE ,GPIO_PIN_13 ,GPIO_PIN_RESET); GPIOG->ODR &= 0x00; // 将ODR寄存器清零 HAL_GPIO_WritePin(GPIOE, GPIO_PIN_13, GPIO_PIN_SET); HAL_Delay(50); if(t < 0x10) // 如果t小于16(0x10即16) { HAL_GPIO_WritePin(GPIOE, GPIO_PIN_12, GPIO_PIN_RESET); GPIOG->ODR = seg7table[t]; // 通过寄存器控制GPIOG的0-7引脚输出段码 HAL_GPIO_WritePin(GPIOE, GPIO_PIN_12, GPIO_PIN_SET); HAL_Delay(10); } } //继电器的控制 void Relay_Control(void) { //交替控制 PF14 引脚为高电平或低电平进行开关控制,中间加上一个短暂延时 HAL_GPIO_WritePin(GPIOF,GPIO_PIN_14,GPIO_PIN_SET); HAL_Delay(50); HAL_GPIO_WritePin(GPIOF,GPIO_PIN_14,GPIO_PIN_RESET); HAL_Delay(50); } //指定交通路口亮灭控制 //南北通行 void North_South_Passage(void) { int i; Traffic_Control(1); for(i=9; i>=0; i--) { Seg_Control(i); Relay_Control(); HAL_Delay(900); } } //南北转东西 void NS_to_EW(void) { int i; Traffic_Control(2); for(i=3; i>=0; i--) { Seg_Control(i); HAL_Delay(1000); } } //东西通行 void East_West_Passage(void) { int i; Traffic_Control(3); for(i=9; i>=0; i--) { Seg_Control(i); Relay_Control(); HAL_Delay(900); } } //东西转南北 void EW_to_NS(void) { int i; Traffic_Control(4); for(i=3; i>=0; i--) { Seg_Control(i); HAL_Delay(1000); } } void Stepper_Close(void) //控制步进电机 ENA 引脚,防止发烫及损坏 { //开启控制线,拉低步进电机 ENA HAL_GPIO_WritePin(GPIOE,GPIO_PIN_15,GPIO_PIN_RESET); GPIOG->ODR &= ~(GPIO_PIN_0); //通过寄存器控制 GPIOG0 输出高低电平,拉低步进电机 ENA //关闭控制线 HAL_GPIO_WritePin(GPIOE,GPIO_PIN_15,GPIO_PIN_SET); } /* USER CODE END 4 */ /** * @brief This function is executed in case of error occurrence. * @retval None */ void Error_Handler(void) { /* USER CODE BEGIN Error_Handler_Debug */ /* User can add his own implementation to report the HAL error return state */ /* USER CODE END Error_Handler_Debug */ } #ifdef USE_FULL_ASSERT /** * @brief Reports the name of the source file and the source line number * where the assert_param error has occurred. * @param file: pointer to the source file name * @param line: assert_param error line source number * @retval None */ void assert_failed(uint8_t *file, uint32_t line) { /* USER CODE BEGIN 6 */ /* User can add his own implementation to report the file name and line number, tex: printf("Wrong parameters value: file %s on line %d\r\n", file, line) */ /* USER CODE END 6 */ } #endif /* USE_FULL_ASSERT */ 帮我检查一下以上代码,并写上注释便于理解,以上代码是在keil5里面运行的,基于STM32F429和M4开发板,以上代码在keil5中运行时没有错误也能下载,但是下载到开发板上后没有任何变化,帮我找下哪里有错

/* * Copyright (c) 2020 - 2025 Renesas Electronics Corporation and/or its affiliates * * SPDX-License-Identifier: BSD-3-Clause */ /*******************************************************************************************************************//** * @ingroup RENESAS_TRANSFER_INTERFACES * @defgroup TRANSFER_API Transfer Interface * * @brief Interface for data transfer functions. * * @section TRANSFER_API_SUMMARY Summary * The transfer interface supports background data transfer (no CPU intervention). * * * @{ **********************************************************************************************************************/ #ifndef R_TRANSFER_API_H #define R_TRANSFER_API_H /*********************************************************************************************************************** * Includes **********************************************************************************************************************/ /* Common error codes and definitions. */ #include "bsp_api.h" /* Common macro for FSP header files. There is also a corresponding FSP_FOOTER macro at the end of this file. */ FSP_HEADER /********************************************************************************************************************** * Macro definitions **********************************************************************************************************************/ #define TRANSFER_SETTINGS_MODE_BITS (30U) #define TRANSFER_SETTINGS_SIZE_BITS (28U) #define TRANSFER_SETTINGS_SRC_ADDR_BITS (26U) #define TRANSFER_SETTINGS_CHAIN_MODE_BITS (22U) #define TRANSFER_SETTINGS_IRQ_BITS (21U) #define TRANSFER_SETTINGS_REPEAT_AREA_BITS (20U) #define TRANSFER_SETTINGS_DEST_ADDR_BITS (18U) /********************************************************************************************************************** * Typedef definitions **********************************************************************************************************************/ /** Transfer control block. Allocate an instance specific control block to pass into the transfer API calls. */ typedef void transfer_ctrl_t; #ifndef BSP_OVERRIDE_TRANSFER_MODE_T /** Transfer mode describes what will happen when a transfer request occurs. */ typedef enum e_transfer_mode { /** In normal mode, each transfer request causes a transfer of @ref transfer_size_t from the source pointer to * the destination pointer. The transfer length is decremented and the source and address pointers are * updated according to @ref transfer_addr_mode_t. After the transfer length reaches 0, transfer requests * will not cause any further transfers. */ TRANSFER_MODE_NORMAL = 0, /** Repeat mode is like normal mode, except that when the transfer length reaches 0, the pointer to the * repeat area and the transfer length will be reset to their initial values. If DMAC is used, the * transfer repeats only transfer_info_t::num_blocks times. After the transfer repeats * transfer_info_t::num_blocks times, transfer requests will not cause any further transfers. If DTC is * used, the transfer repeats continuously (no limit to the number of repeat transfers). */ TRANSFER_MODE_REPEAT = 1, /** In block mode, each transfer request causes transfer_info_t::length transfers of @ref transfer_size_t. * After each individual transfer, the source and destination pointers are updated according to * @ref transfer_addr_mode_t. After the block transfer is complete, transfer_info_t::num_blocks is * decremented. After the transfer_info_t::num_blocks reaches 0, transfer requests will not cause any * further transfers. */ TRANSFER_MODE_BLOCK = 2, /** In addition to block mode features, repeat-block mode supports a ring buffer of blocks and offsets * within a block (to split blocks into arrays of their first data, second data, etc.) */ TRANSFER_MODE_REPEAT_BLOCK = 3 } transfer_mode_t; #endif #ifndef BSP_OVERRIDE_TRANSFER_SIZE_T /** Transfer size specifies the size of each individual transfer. * Total transfer length = transfer_size_t * transfer_length_t */ typedef enum e_transfer_size { TRANSFER_SIZE_1_BYTE = 0, ///< Each transfer transfers a 8-bit value TRANSFER_SIZE_2_BYTE = 1, ///< Each transfer transfers a 16-bit value TRANSFER_SIZE_4_BYTE = 2, ///< Each transfer transfers a 32-bit value TRANSFER_SIZE_8_BYTE = 3 ///< Each transfer transfers a 64-bit value } transfer_size_t; #endif #ifndef BSP_OVERRIDE_TRANSFER_ADDR_MODE_T /** Address mode specifies whether to modify (increment or decrement) pointer after each transfer. */ typedef enum e_transfer_addr_mode { /** Address pointer remains fixed after each transfer. */ TRANSFER_ADDR_MODE_FIXED = 0, /** Offset is added to the address pointer after each transfer. */ TRANSFER_ADDR_MODE_OFFSET = 1, /** Address pointer is incremented by associated @ref transfer_size_t after each transfer. */ TRANSFER_ADDR_MODE_INCREMENTED = 2, /** Address pointer is decremented by associated @ref transfer_size_t after each transfer. */ TRANSFER_ADDR_MODE_DECREMENTED = 3 } transfer_addr_mode_t; #endif #ifndef BSP_OVERRIDE_TRANSFER_REPEAT_AREA_T /** Repeat area options (source or destination). In @ref TRANSFER_MODE_REPEAT, the selected pointer returns to its * original value after transfer_info_t::length transfers. In @ref TRANSFER_MODE_BLOCK and @ref TRANSFER_MODE_REPEAT_BLOCK, * the selected pointer returns to its original value after each transfer. */ typedef enum e_transfer_repeat_area { /** Destination area repeated in @ref TRANSFER_MODE_REPEAT or @ref TRANSFER_MODE_BLOCK or @ref TRANSFER_MODE_REPEAT_BLOCK. */ TRANSFER_REPEAT_AREA_DESTINATION = 0, /** Source area repeated in @ref TRANSFER_MODE_REPEAT or @ref TRANSFER_MODE_BLOCK or @ref TRANSFER_MODE_REPEAT_BLOCK. */ TRANSFER_REPEAT_AREA_SOURCE = 1 } transfer_repeat_area_t; #endif #ifndef BSP_OVERRIDE_TRANSFER_CHAIN_MODE_T /** Chain transfer mode options. * @note Only applies for DTC. */ typedef enum e_transfer_chain_mode { /** Chain mode not used. */ TRANSFER_CHAIN_MODE_DISABLED = 0, /** Switch to next transfer after a single transfer from this @ref transfer_info_t. */ TRANSFER_CHAIN_MODE_EACH = 2, /** Complete the entire transfer defined in this @ref transfer_info_t before chaining to next transfer. */ TRANSFER_CHAIN_MODE_END = 3 } transfer_chain_mode_t; #endif #ifndef BSP_OVERRIDE_TRANSFER_IRQ_T /** Interrupt options. */ typedef enum e_transfer_irq { /** Interrupt occurs only after last transfer. If this transfer is chained to a subsequent transfer, * the interrupt will occur only after subsequent chained transfer(s) are complete. * @warning DTC triggers the interrupt of the activation source. Choosing TRANSFER_IRQ_END with DTC will * prevent activation source interrupts until the transfer is complete. */ TRANSFER_IRQ_END = 0, /** Interrupt occurs after each transfer. * @note Not available in all HAL drivers. See HAL driver for details. */ TRANSFER_IRQ_EACH = 1 } transfer_irq_t; #endif #ifndef BSP_OVERRIDE_TRANSFER_CALLBACK_ARGS_T /** Callback function parameter data. */ typedef struct st_transfer_callback_args_t { void const * p_context; ///< Placeholder for user data. Set in @ref transfer_api_t::open function in ::transfer_cfg_t. } transfer_callback_args_t; #endif /** Driver specific information. */ typedef struct st_transfer_properties { uint32_t block_count_max; ///< Maximum number of blocks uint32_t block_count_remaining; ///< Number of blocks remaining uint32_t transfer_length_max; ///< Maximum number of transfers uint32_t transfer_length_remaining; ///< Number of transfers remaining } transfer_properties_t; #ifndef BSP_OVERRIDE_TRANSFER_INFO_T /** This structure specifies the properties of the transfer. * @warning When using DTC, this structure corresponds to the descriptor block registers required by the DTC. * The following components may be modified by the driver: p_src, p_dest, num_blocks, and length. * @warning When using DTC, do NOT reuse this structure to configure multiple transfers. Each transfer must * have a unique transfer_info_t. * @warning When using DTC, this structure must not be allocated in a temporary location. Any instance of this * structure must remain in scope until the transfer it is used for is closed. * @note When using DTC, consider placing instances of this structure in a protected section of memory. */ typedef struct st_transfer_info { union { struct { uint32_t : 16; uint32_t : 2; /** Select what happens to destination pointer after each transfer. */ transfer_addr_mode_t dest_addr_mode : 2; /** Select to repeat source or destination area, unused in @ref TRANSFER_MODE_NORMAL. */ transfer_repeat_area_t repeat_area : 1; /** Select if interrupts should occur after each individual transfer or after the completion of all planned * transfers. */ transfer_irq_t irq : 1; /** Select when the chain transfer ends. */ transfer_chain_mode_t chain_mode : 2; uint32_t : 2; /** Select what happens to source pointer after each transfer. */ transfer_addr_mode_t src_addr_mode : 2; /** Select number of bytes to transfer at once. @see transfer_info_t::length. */ transfer_size_t size : 2; /** Select mode from @ref transfer_mode_t. */ transfer_mode_t mode : 2; } transfer_settings_word_b; uint32_t transfer_settings_word; }; void const * volatile p_src; ///< Source pointer void * volatile p_dest; ///< Destination pointer /** Number of blocks to transfer when using @ref TRANSFER_MODE_BLOCK (both DTC an DMAC) or * @ref TRANSFER_MODE_REPEAT (DMAC only) or * @ref TRANSFER_MODE_REPEAT_BLOCK (DMAC only), unused in other modes. */ volatile uint16_t num_blocks; /** Length of each transfer. Range limited for @ref TRANSFER_MODE_BLOCK, @ref TRANSFER_MODE_REPEAT, * and @ref TRANSFER_MODE_REPEAT_BLOCK * see HAL driver for details. */ volatile uint16_t length; } transfer_info_t; #endif /** Driver configuration set in @ref transfer_api_t::open. All elements except p_extend are required and must be * initialized. */ typedef struct st_transfer_cfg { /** Pointer to transfer configuration options. If using chain transfer (DTC only), this can be a pointer to * an array of chained transfers that will be completed in order. */ transfer_info_t * p_info; void const * p_extend; ///< Extension parameter for hardware specific settings. } transfer_cfg_t; /** Select whether to start single or repeated transfer with software start. */ typedef enum e_transfer_start_mode { TRANSFER_START_MODE_SINGLE = 0, ///< Software start triggers single transfer. TRANSFER_START_MODE_REPEAT = 1 ///< Software start transfer continues until transfer is complete. } transfer_start_mode_t; /** Transfer functions implemented at the HAL layer will follow this API. */ typedef struct st_transfer_api { /** Initial configuration. * * @param[in,out] p_ctrl Pointer to control block. Must be declared by user. Elements set here. * @param[in] p_cfg Pointer to configuration structure. All elements of this structure * must be set by user. */ fsp_err_t (* open)(transfer_ctrl_t * const p_ctrl, transfer_cfg_t const * const p_cfg); /** Reconfigure the transfer. * Enable the transfer if p_info is valid. * * @param[in,out] p_ctrl Pointer to control block. Must be declared by user. Elements set here. * @param[in] p_info Pointer to a new transfer info structure. */ fsp_err_t (* reconfigure)(transfer_ctrl_t * const p_ctrl, transfer_info_t * p_info); /** Reset source address pointer, destination address pointer, and/or length, keeping all other settings the same. * Enable the transfer if p_src, p_dest, and length are valid. * * @param[in] p_ctrl Control block set in @ref transfer_api_t::open call for this transfer. * @param[in] p_src Pointer to source. Set to NULL if source pointer should not change. * @param[in] p_dest Pointer to destination. Set to NULL if destination pointer should not change. * @param[in] num_transfers Transfer length in normal mode or number of blocks in block mode. In DMAC only, * resets number of repeats (initially stored in transfer_info_t::num_blocks) in * repeat mode. Not used in repeat mode for DTC. */ fsp_err_t (* reset)(transfer_ctrl_t * const p_ctrl, void const * p_src, void * p_dest, uint16_t const num_transfers); /** Enable transfer. Transfers occur after the activation source event (or when * @ref transfer_api_t::softwareStart is called if no peripheral event is chosen as activation source). * * @param[in] p_ctrl Control block set in @ref transfer_api_t::open call for this transfer. */ fsp_err_t (* enable)(transfer_ctrl_t * const p_ctrl); /** Disable transfer. Transfers do not occur after the activation source event (or when * @ref transfer_api_t::softwareStart is called if no peripheral event is chosen as the DMAC activation source). * @note If a transfer is in progress, it will be completed. Subsequent transfer requests do not cause a * transfer. * * @param[in] p_ctrl Control block set in @ref transfer_api_t::open call for this transfer. */ fsp_err_t (* disable)(transfer_ctrl_t * const p_ctrl); /** Start transfer in software. * @warning Only works if no peripheral event is chosen as the DMAC activation source. * @note Not supported for DTC. * * @param[in] p_ctrl Control block set in @ref transfer_api_t::open call for this transfer. * @param[in] mode Select mode from @ref transfer_start_mode_t. */ fsp_err_t (* softwareStart)(transfer_ctrl_t * const p_ctrl, transfer_start_mode_t mode); /** Stop transfer in software. The transfer will stop after completion of the current transfer. * @note Not supported for DTC. * @note Only applies for transfers started with TRANSFER_START_MODE_REPEAT. * @warning Only works if no peripheral event is chosen as the DMAC activation source. * * @param[in] p_ctrl Control block set in @ref transfer_api_t::open call for this transfer. */ fsp_err_t (* softwareStop)(transfer_ctrl_t * const p_ctrl); /** Provides information about this transfer. * * @param[in] p_ctrl Control block set in @ref transfer_api_t::open call for this transfer. * @param[out] p_properties Driver specific information. */ fsp_err_t (* infoGet)(transfer_ctrl_t * const p_ctrl, transfer_properties_t * const p_properties); /** Releases hardware lock. This allows a transfer to be reconfigured using @ref transfer_api_t::open. * * @param[in] p_ctrl Control block set in @ref transfer_api_t::open call for this transfer. */ fsp_err_t (* close)(transfer_ctrl_t * const p_ctrl); /** To update next transfer information without interruption during transfer. * Allow further transfer continuation. * * @param[in] p_ctrl Control block set in @ref transfer_api_t::open call for this transfer. * @param[in] p_src Pointer to source. Set to NULL if source pointer should not change. * @param[in] p_dest Pointer to destination. Set to NULL if destination pointer should not change. * @param[in] num_transfers Transfer length in normal mode or block mode. */ fsp_err_t (* reload)(transfer_ctrl_t * const p_ctrl, void const * p_src, void * p_dest, uint32_t const num_transfers); /** Specify callback function and optional context pointer and working memory pointer. * * @param[in] p_ctrl Control block set in @ref transfer_api_t::open call for this transfer. * @param[in] p_callback Callback function to register * @param[in] p_context Pointer to send to callback function * @param[in] p_callback_memory Pointer to volatile memory where callback structure can be allocated. * Callback arguments allocated here are only valid during the callback. */ fsp_err_t (* callbackSet)(transfer_ctrl_t * const p_ctrl, void (* p_callback)(transfer_callback_args_t *), void const * const p_context, transfer_callback_args_t * const p_callback_memory); } transfer_api_t; /** This structure encompasses everything that is needed to use an instance of this interface. */ typedef struct st_transfer_instance { transfer_ctrl_t * p_ctrl; ///< Pointer to the control structure for this instance transfer_cfg_t const * p_cfg; ///< Pointer to the configuration structure for this instance transfer_api_t const * p_api; ///< Pointer to the API structure for this instance } transfer_instance_t; /* Common macro for FSP header files. There is also a corresponding FSP_HEADER macro at the top of this file. */ FSP_FOOTER #endif /*******************************************************************************************************************//** * @} (end defgroup TRANSFER_API) **********************************************************************************************************************/ 这里存在 // 标准函数原型应类似: fsp_err_t R_TRANSFER_Open( transfer_ctrl_t * const p_ctrl, transfer_cfg_t const * const p_cfg);

GPIO_InitTypeDef GPIO_InitStructure; TIM_TimeBaseInitTypeDef TIM_TimeBaseStructure; TIM_OCInitTypeDef TIM_OCInitStructure; RCC_APB2PeriphClockCmd(RCC_APB2Periph_TIM1,ENABLE); RCC_AHB1PeriphClockCmd(RCC_AHB1Periph_GPIOA,ENABLE); GPIO_PinAFConfig(GPIOA, GPIO_PinSource10, GPIO_AF_TIM1); GPIO_PinAFConfig(GPIOA, GPIO_PinSource11, GPIO_AF_TIM1); GPIO_InitStructure.GPIO_Pin = GPIO_Pin_10 | GPIO_Pin_11; GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF; GPIO_InitStructure.GPIO_OType = GPIO_OType_PP; GPIO_InitStructure.GPIO_PuPd = GPIO_PuPd_UP; GPIO_InitStructure.GPIO_Speed = GPIO_Speed_100MHz; GPIO_Init(GPIOA, &GPIO_InitStructure); TIM_TimeBaseStructure.TIM_Period = arr; TIM_TimeBaseStructure.TIM_Prescaler = psc; TIM_TimeBaseStructure.TIM_ClockDivision = TIM_CKD_DIV1; TIM_TimeBaseStructure.TIM_CounterMode = TIM_CounterMode_Up; TIM_TimeBaseInit(TIM1, &TIM_TimeBaseStructure); TIM_OCInitStructure.TIM_OCMode = TIM_OCMode_PWM1; TIM_OCInitStructure.TIM_OutputState = TIM_OutputState_Enable; TIM_OCInitStructure.TIM_OCPolarity = TIM_OCPolarity_High; /***********解决普通输出时的互补BUG************/ TIM_OCInitStructure.TIM_OCNIdleState= TIM_OCNIdleState_Reset; TIM_OCInitStructure.TIM_OutputNState= TIM_OutputNState_Disable; TIM_OCInitStructure.TIM_OCNPolarity = TIM_OCNPolarity_High; TIM_OCInitStructure.TIM_Pulse= 0; TIM_OC1Init(TIM1, &TIM_OCInitStructure); TIM_OC2Init(TIM1, &TIM_OCInitStructure); TIM_OC3Init(TIM1, &TIM_OCInitStructure); TIM_OC4Init(TIM1, &TIM_OCInitStructure); /************使能预装载寄存器****************/ TIM_OC1PreloadConfig(TIM1,TIM_OCPreload_Enable); TIM_OC2PreloadConfig(TIM1,TIM_OCPreload_Enable); TIM_OC3PreloadConfig(TIM1,TIM_OCPreload_Enable); TIM_OC4PreloadConfig(TIM1,TIM_OCPreload_Enable); TIM_ARRPreloadConfig(TIM1,ENABLE); //允许在定时器工作时向ARR的缓冲器中写入新值,以便在更新事件发生时载入覆盖以前的值 TIM_CtrlPWMOutputs(TIM1, ENABLE); /************************/ TIM_Cmd(TIM1,ENABLE); 用cubemx怎么进行以上配置

帮我看一下我这个STM32的定时器代码;/************************************************************* ** 函数名称: uS_TIM_Continuous_Start ** 功能描述: 清零然后打开计时定时器为持续计数模式,最大计时65535uS ** 入口参数: 无 ** 返回参数: 无 *************************************************************/ void uS_TIM_Continuous_Start(void) { uS_TIM->CR1 &= ~TIM_CR1_CEN;// 停止定时器 uS_TIM->ARR = 0xFFFF; // 设置自动重装载值为65535 uS_TIM->CNT = 0; // 清零计数器 uS_TIM->SR &= ~TIM_SR_UIF; // 清除溢出标志 uS_TIM->CR1 |= TIM_CR1_CEN; // 启动定时器 } /************************************************************* ** 函数名称: uS_TIM_Stop ** 功能描述: 关闭定时器并停止计时(保持当前计数值) ** 入口参数: 无 ** 返回参数: 无 *************************************************************/ void uS_TIM_Stop(void) { uS_TIM->CR1 &= ~TIM_CR1_CEN; // 停止定时器 } /************************************************************* ** 函数名称: uS_TIM_Get_uS ** 功能描述: 获取定时器当前计时值(单位:微秒) ** 入口参数: 无 ** 返回参数: uint32_t 当前计时值(0-65535uS) *************************************************************/ uint32_t uS_TIM_Get_uS(void) { return uS_TIM->CNT; // 直接返回计数器当前值 }我配置STM32CUBEMX为168分频,也就是定时器1Mhz,ARR为65535;但是不知道为什么,我调用uS_TIM_Continuous_Start里的uS_TIM->CR1 |= TIM_CR1_CEN; // 启动定时器,一调用就会溢出

大家在看

recommend-type

libffi-devel-3.0.5完整版本centos6

centos6所有版本的libffi-devel包集合,供各位友友参考,这个包python中用到的最多。
recommend-type

飞秋FeiQ安装包

强大的局域网聊天工具-飞秋FeiQ安装包,飞秋FeiQ工作室出品的--最新安装包,文件移动快速,灵活。。欢迎大家下载
recommend-type

C++医院就诊管理系统

医院管理系统是一款基于C++开发的强大而高效的软件,旨在帮助医院提高管理效率、优化各项业务流程,并为医生、患者和管理人员提供便捷的操作和信息管理。 系统的首要功能是添加患者或医生。通过系统,工作人员可以方便地添加新的患者或医生信息,包括个人基本信息、联系方式、病历历史等。系统会自动生成唯一的识别码,对每一位患者或医生进行标识,确保信息的准确性和唯一性。 另外,系统还提供了输出患者或医生列表的功能。工作人员可以按照不同的分类和筛选条件,如姓名、科室、病种等,轻松地获取特定患者或医生的列表信息。这为医院的管理和决策提供了重要的参考依据。 为了保护患者和医生的隐私,系统采取了严格的权限管理机制。只有授权人员才能访问敏感信息,确保信息的安全性和保密性。 最后,该系统在退出前还提供了保存数据的选项,以确保数据的可靠性和持久性。当下次打开系统时,可以直接加载之前保存的数据,无需重新输入和添加。 总之,医院管理系统是一款功能强大、易用且高效的软件,它的上线将为医院的管理和运营带来革命性的变化,提高效率、降低成本、提供更好的医疗服务。无论是患者、医生还是管理人员,都将从中受益,获得更好的用户体验。
recommend-type

sqlite-autoconf-3070900.tar.gz

sqlite3.7.9源码编译版 可以交叉编译 可以查看源码
recommend-type

SDCC簡明手冊

SDCC Compiler 快速上手的说明

最新推荐

recommend-type

2022代理软件销售协议书.docx

2022代理软件销售协议书.docx
recommend-type

2022内部审计中的大数据思维.docx

2022内部审计中的大数据思维.docx
recommend-type

2022Adobe认证试题及答案「photoshop」.docx

2022Adobe认证试题及答案「photoshop」.docx
recommend-type

2021年通信工程概预算试题库.doc

2021年通信工程概预算试题库.doc
recommend-type

2021电子商务有这些就业方向-戳进来看看.docx

2021电子商务有这些就业方向-戳进来看看.docx
recommend-type

ChmDecompiler 3.60:批量恢复CHM电子书源文件工具

### 知识点详细说明 #### 标题说明 1. **Chm电子书批量反编译器(ChmDecompiler) 3.60**: 这里提到的是一个软件工具的名称及其版本号。软件的主要功能是批量反编译CHM格式的电子书。CHM格式是微软编译的HTML文件格式,常用于Windows平台下的帮助文档或电子书。版本号3.60说明这是该软件的一个更新的版本,可能包含改进的新功能或性能提升。 #### 描述说明 2. **专门用来反编译CHM电子书源文件的工具软件**: 这里解释了该软件的主要作用,即用于解析CHM文件,提取其中包含的原始资源,如网页、文本、图片等。反编译是一个逆向工程的过程,目的是为了将编译后的文件还原至其原始形态。 3. **迅速地释放包括在CHM电子书里面的全部源文件**: 描述了软件的快速处理能力,能够迅速地将CHM文件中的所有资源提取出来。 4. **恢复源文件的全部目录结构及文件名**: 这说明软件在提取资源的同时,会尝试保留这些资源在原CHM文件中的目录结构和文件命名规则,以便用户能够识别和利用这些资源。 5. **完美重建.HHP工程文件**: HHP文件是CHM文件的项目文件,包含了编译CHM文件所需的所有元数据和结构信息。软件可以重建这些文件,使用户在提取资源之后能够重新编译CHM文件,保持原有的文件设置。 6. **多种反编译方式供用户选择**: 提供了不同的反编译选项,用户可以根据需要选择只提取某些特定文件或目录,或者提取全部内容。 7. **支持批量操作**: 在软件的注册版本中,可以进行批量反编译操作,即同时对多个CHM文件执行反编译过程,提高了效率。 8. **作为CHM电子书的阅读器**: 软件还具有阅读CHM电子书的功能,这是一个附加特点,允许用户在阅读过程中直接提取所需的文件。 9. **与资源管理器无缝整合**: 表明ChmDecompiler能够与Windows的资源管理器集成,使得用户可以在资源管理器中直接使用该软件的功能,无需单独启动程序。 #### 标签说明 10. **Chm电子书批量反编译器**: 这是软件的简短标签,用于标识软件的功能类型和目的,即批量反编译CHM电子书。 #### 文件名称列表说明 11. **etextwizard.cdsetup.exe**: 这是一个安装程序的文件名,带有.exe扩展名,表明它是一个可执行文件。这可能是用户安装ChmDecompiler软件的安装包。 12. **说明_Readme.html**: 这是一个包含说明文档的HTML文件,通常包含软件的安装指南、使用方法、常见问题解答等。用户应该在安装或使用软件之前仔细阅读该文档。 综合来看,ChmDecompiler是一款功能强大的工具软件,它可以处理CHM电子书的反编译需求,支持多种反编译方式,同时提供方便的用户界面和功能集成,极大地降低了用户进行电子书资料恢复或二次编辑的难度。此外,软件的安装程序和说明文档也遵循了行业标准,方便用户使用和理解。
recommend-type

【数据融合技术】:甘肃土壤类型空间分析中的专业性应用

# 摘要 数据融合技术作为一种集成多源数据信息的方法,在土壤类型空间分析中发挥着关键作用。本文介绍了数据融合技术的基本概念及其理论基础,阐述了数据预处理、同步整合及冲突解决等关键技术,并详细描述了甘肃土壤类型数据准备的流程,包括数据采集、质量评估、空间化处理及融合实践准备。通过具体案例分析,展示了数据融合在土壤类型空间分布分析、土壤质量评估及土壤保护规划中的应用。同时,文
recommend-type

redistemplate.opsForValue()返回值

<think>嗯,用户想知道RedisTemplate.opsForValue()方法的返回值类型。首先,我需要回忆一下Spring Data Redis的相关知识。记得RedisTemplate提供了不同数据结构的操作类,比如opsForValue对应字符串类型。opsForValue()方法返回的是一个ValueOperations对象,这个对象负责操作字符串类型的数据。 接下来,我需要确认返回类型的具体信息。根据官方文档,ValueOperations是一个接口,它定义了set、get等方法。当用户调用RedisTemplate.opsForValue()时,实际上会返回一个实现该接口
recommend-type

ktorrent 2.2.4版本Linux客户端发布

标题:“ktorrent”指的是一个流行的BitTorrent客户端软件,通常运行在类Unix操作系统上,特别是在Linux系统中。BitTorrent是一种点对点(P2P)文件共享协议,它允许用户之间共享文件,并且使用一种高效的“分片”下载技术,这意味着用户可以从许多其他用户那里同时下载文件的不同部分,从而加快下载速度并减少对单一源服务器的压力。 描述:提供的描述部分仅包含了重复的文件名“ktorrent-2.2.4.tar.gz”,这实际上表明了该信息是关于特定版本的ktorrent软件包,即版本2.2.4。它以.tar.gz格式提供,这是一种常见的压缩包格式,通常用于Unix-like系统中。在Linux环境下,tar是一个用于打包文件的工具,而.gz后缀表示文件已经被gzip压缩。用户需要先解压缩.tar.gz文件,然后才能安装软件。 标签:“ktorrent,linux”指的是该软件包是专为Linux操作系统设计的。标签还提示用户ktorrent可以在Linux环境下运行。 压缩包子文件的文件名称列表:这里提供了一个文件名“ktorrent-2.2.4”,该文件可能是从互联网上下载的,用于安装ktorrent版本2.2.4。 关于ktorrent软件的详细知识点: 1. 客户端功能:ktorrent提供了BitTorrent协议的完整实现,用户可以通过该客户端来下载和上传文件。它支持创建和管理种子文件(.torrent),并可以从其他用户那里下载大型文件。 2. 兼容性:ktorrent设计上与KDE桌面环境高度兼容,因为它是用C++和Qt框架编写的,但它也能在非KDE的其他Linux桌面环境中运行。 3. 功能特点:ktorrent提供了多样的配置选项,比如设置上传下载速度限制、选择存储下载文件的目录、设置连接数限制、自动下载种子包内的多个文件等。 4. 用户界面:ktorrent拥有一个直观的图形用户界面(GUI),使得用户可以轻松地管理下载任务,包括启动、停止、暂停以及查看各种统计数据,如下载速度、上传速度、完成百分比等。 5. 插件系统:ktorrent支持插件系统,因此用户可以扩展其功能,比如添加RSS订阅支持、自动下载和种子管理等。 6. 多平台支持:虽然ktorrent是为Linux系统设计的,但有一些类似功能的软件可以在不同的操作系统上运行,比如Windows和macOS。 7. 社区支持:ktorrent拥有活跃的社区,经常更新和改进软件。社区提供的支持包括论坛、文档以及bug跟踪。 安装和配置ktorrent的步骤大致如下: - 首先,用户需要下载相应的.tar.gz压缩包文件。 - 然后,使用终端命令解压该文件。通常使用命令“tar xzvf ktorrent-2.2.4.tar.gz”。 - 解压后,用户进入解压得到的目录并可能需要运行“qmake”来生成Makefile文件。 - 接着,使用“make”命令进行编译。 - 最后,通过“make install”命令安装软件。某些情况下可能需要管理员权限。 在编译过程中,用户可以根据自己的需求配置编译选项,比如选择安装路径、包含特定功能等。在Linux系统中,安装和配置过程可能会因发行版而异,有些发行版可能通过其包管理器直接提供对ktorrent的安装支持。
recommend-type

【空间分布规律】:甘肃土壤类型与农业生产的关联性研究

# 摘要 本文对甘肃土壤类型及其在农业生产中的作用进行了系统性研究。首先概述了甘肃土壤类型的基础理论,并探讨了土壤类型与农业生产的理论联系。通过GIS技术分析,本文详细阐述了甘肃土壤的空间分布规律,并对其特征和影响因素进行了深入分析。此外,本文还研究了甘肃土壤类型对农业生产实际影响,包括不同区域土壤改良和作物种植案例,以及土壤养分、水分管理对作物生长周期和产量的具体影响。最后,提出了促进甘肃土壤与农业可持续发展的策略,包括土壤保护、退化防治对策以及土壤类型优化与农业创新的结合。本文旨在为