这个报错是为什么C:\Users\QwQ\PyCharmMiscProject\.venv\Scripts\python.exe D:\funasr_test\main5.py Notice: ffmpeg is not installed. torchaudio is used to load audio If you want to use ffmpeg backend to load audio, please install it by: sudo apt install ffmpeg # ubuntu # brew install ffmpeg # mac funasr version: 1.2.4. Check update of funasr, and it would cost few times. You may disable it by set `disable_update=True` in AutoModel You are using the latest version of funasr-1.2.4 Downloading Model to directory: C:\Users\QwQ\.cache\modelscope\hub\iic\speech_seaco_paraformer_large_asr_nat-zh-cn-16k-common-vocab8404-pytorch 2025-03-06 11:43:40,181 - modelscope - WARNING - Using branch: master as version is unstable, use with caution Downloading Model to directory: C:\Users\QwQ\.cache\modelscope\hub\iic\speech_fsmn_vad_zh-cn-16k-common-pytorch 2025-03-06 11:43:42,850 - modelscope - WARNING - Using branch: master as version is unstable, use with caution Downloading Model to directory: C:\Users\QwQ\.cache\modelscope\hub\iic\punc_ct-transformer_cn-en-common-vocab471067-large 2025-03-06 11:43:43,568 - modelscope - WARNING - Using branch: master as version is unstable, use with caution Building prefix dict from the default dictionary ... DEBUG:jieba:Building prefix dict from the default dictionary ... Loading model from cache C:\Users\QwQ\AppData\Local\Temp\jieba.cache DEBUG:jieba:Loading model from cache C:\Users\QwQ\AppData\Local\Temp\jieba.cache Loading model cost 0.378 seconds. DEBUG:jieba:Loading model cost 0.378 seconds. Prefix dict has been built successfully. DEBUG:jieba:Prefix dict has been built successfully. Sliding Window Attention is enabled but not implemented for `sdpa`; unexpected results may be encountered. ERROR:root:模型加载失败: Some modules are dispatched on the CPU or the disk. Make sure you have enough GPU RAM to fit the quantized model. If you want to dispatch the model on the CPU or the disk while keeping these modules in 32-bit, you need to set `llm_int8_enable_fp32_cpu_offload=True` and pass a custom `device_map` to `from_pretrained`. Check https://huggingface.co/docs/transformers/main/en/main_classes/quantization#offload-between-cpu-and-gpu for more details. Traceback (most recent call last): File "D:\funasr_test\main5.py", line 101, in _load_model self.model = AutoModelForCausalLM.from_pretrained( ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "C:\Users\QwQ\PyCharmMiscProject\.venv\Lib\site-packages\transformers\models\auto\auto_factory.py", line 564, in from_pretrained return model_class.from_pretrained( ^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "C:\Users\QwQ\PyCharmMiscProject\.venv\Lib\site-packages\transformers\modeling_utils.py", line 262, in _wrapper return func(*args, **kwargs) ^^^^^^^^^^^^^^^^^^^^^ File "C:\Users\QwQ\PyCharmMiscProject\.venv\Lib\site-packages\transformers\modeling_utils.py", line 4262, in from_pretrained hf_quantizer.validate_environment(device_map=device_map) File "C:\Users\QwQ\PyCharmMiscProject\.venv\Lib\site-packages\transformers\quantizers\quantizer_bnb_4bit.py", line 103, in validate_environment raise ValueError( ValueError: Some modules are dispatched on the CPU or the disk. Make sure you have enough GPU RAM to fit the quantized model. If you want to dispatch the model on the CPU or the disk while keeping these modules in 32-bit, you need to set `llm_int8_enable_fp32_cpu_offload=True` and pass a custom `device_map` to `from_pretrained`. Check https://huggingface.co/docs/transformers/main/en/main_classes/quantization#offload-between-cpu-and-gpu for more details. 进程已结束,退出代码为 1
时间: 2025-06-10 19:07:09 浏览: 17
<think>嗯,用户遇到了一个Python程序报错,我需要仔细看看错误信息。首先,用户运行了一个使用funasr的脚本,报错信息是关于模型加载失败的。错误提示说有些模块被分配到CPU或磁盘,建议检查GPU内存是否足够,或者设置特定的参数。
首先,我需要理解错误的原因。错误来自transformers库的量化模块,具体是bnb_4bit的量化器。用户可能在加载一个量化模型时,GPU内存不足,导致部分模块被转移到CPU或磁盘。这时候需要调整参数,比如启用fp32 CPU卸载或者自定义device_map。
接下来,看看用户代码里的模型加载部分。根据报错的Traceback,用户使用了AutoModelForCausalLM.from_pretrained方法,可能加载的是一个大模型,比如LLM。错误提示建议设置llm_int8_enable_fp32_cpu_offload=True,并传递自定义的device_map。
用户的环境方面,使用的是Windows系统,PyCharm项目,虚拟环境。可能用户的GPU显存不够,无法完全加载量化后的模型。需要确认用户的GPU是否可用,显存大小,以及是否正确安装了CUDA等依赖。
解决方案方面,可能需要调整模型加载的参数,如添加load_in_8bit或load_in_4bit,设置device_map为auto,并启用fp32 CPU卸载。另外,检查模型是否支持量化,或者尝试使用较小模型。如果GPU显存不足,可能需要升级硬件,或者调整代码在CPU上运行,但这样可能会影响性能。
另外,用户之前的funasr模型下载可能没问题,但后面的因果语言模型加载出了问题。需要分开处理这两个部分的问题,可能用户同时在使用ASR模型和另一个生成模型,导致显存不足。
最后,建议用户检查CUDA环境,确认torch是否支持GPU,并监控显存使用情况。如果问题依旧,可能需要更详细的代码审查和硬件信息。</think>这个错误是由于GPU显存不足导致模型无法完全加载到显存中,部分模块被转移到CPU或磁盘。以下是分步解释和解决方案:
$$
\begin{aligned}
\text{问题根源} &\rightarrow \text{GPU显存不足} \\
\text{错误类型} &\rightarrow \text{量化模型加载失败} \\
\text{解决方案} &\rightarrow \text{调整模型加载参数}
\end{aligned}
$$
**详细解决步骤:**
1. **检查模型量化配置**
- 确保代码中加载模型时正确使用量化参数:
```python
model = AutoModelForCausalLM.from_pretrained(
model_name,
load_in_4bit=True, # 启用4bit量化
device_map="auto", # 自动分配设备
llm_int8_enable_fp32_cpu_offload=True # 启用CPU卸载
)
```
2. **设置显存优化参数**
- 添加以下参数组合尝试:
```python
torch_dtype=torch.float16,
low_cpu_mem_usage=True
```
3. **验证GPU资源**
- 在Python中运行检查:
```python
import torch
print(torch.cuda.is_available()) # 应输出True
print(torch.cuda.get_device_name(0)) # 显示GPU型号
print(torch.cuda.mem_get_info()) # 显示可用显存
```
4. **调整device_map策略**
- 创建自定义设备映射(示例):
```python
device_map = {
"transformer.wte": 0,
"transformer.h": "auto",
"transformer.ln_f": "cpu"
}
```
5. **备选解决方案**
- 如果仍失败,尝试以下方法:
```python
# 方法1:完全禁用量化
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.float16)
# 方法2:使用CPU模式(极慢)
model = AutoModelForCausalLM.from_pretrained(model_name, device_map="cpu")
```
**数学解释显存需求:**
假设原始模型参数为$N$,使用4bit量化后:
$$
\text{显存需求} = \frac{N \times 4}{8} + \text{元数据开销}
$$
当可用显存$M < \text{显存需求}$时,就会出现上述错误。
建议使用以下命令监控显存使用:
```bash
nvidia-smi --query-gpu=memory.used --format=csv -l 1
```
阅读全文
相关推荐













