yolov8fps代码
时间: 2025-05-09 22:17:27 浏览: 27
### YOLOv8 FPS 实现代码示例
以下是基于 PyTorch 和 TensorRT 的 YOLOv8 推理性能测试代码示例。此代码可用于计算不同精度模式下的推理速度。
#### 使用 PyTorch 测试 FPS
以下是一个简单的 Python 脚本,用于测量 YOLOv8 模型在 PyTorch 中的平均 FPS:
```python
import time
from ultralytics import YOLO
def calculate_fps_pytorch(model, images_path, num_images=10000):
model = model.cuda() # 将模型加载到 GPU 上
start_time = time.time()
for _ in range(num_images):
results = model(images_path) # 假设 `images_path` 是输入图像路径
end_time = time.time()
total_inference_time = end_time - start_time
fps = num_images / total_inference_time
return fps
if __name__ == "__main__":
model = YOLO('yolov8x.pt') # 加载预训练模型
pytorch_fps = calculate_fps_pytorch(model, 'test_image.jpg', num_images=10000)
print(f"PyTorch FPS: {pytorch_fps:.2f}")
```
上述脚本通过循环调用模型预测来模拟批量推理过程,并记录总耗时以计算 FPS[^1]。
---
#### 使用 TensorRT FP16 测试 FPS
TensorRT 提供了更高的推理效率,特别是对于 FP16 精度的支持。下面是如何利用 TensorRT 进行 FPS 计算的一个例子:
```python
import tensorrt as trt
import pycuda.driver as cuda
import pycuda.autoinit
import numpy as np
import time
TRT_LOGGER = trt.Logger(trt.Logger.WARNING)
def load_engine(engine_file_path):
with open(engine_file_path, "rb") as f, trt.Runtime(TRT_LOGGER) as runtime:
engine = runtime.deserialize_cuda_engine(f.read())
return engine
def allocate_buffers(engine):
inputs = []
outputs = []
bindings = []
stream = cuda.Stream()
for binding in engine:
size = trt.volume(engine.get_binding_shape(binding)) * engine.max_batch_size
dtype = trt.nptype(engine.get_binding_dtype(binding))
host_mem = cuda.pagelocked_empty(size, dtype)
device_mem = cuda.mem_alloc(host_mem.nbytes)
bindings.append(int(device_mem))
if engine.binding_is_input(binding):
inputs.append({'host': host_mem, 'device': device_mem})
else:
outputs.append({'host': host_mem, 'device': device_mem})
return inputs, outputs, bindings, stream
def do_inference(context, bindings, inputs, outputs, stream, batch_size=1):
[cuda.memcpy_htod_async(inp['device'], inp['host'], stream) for inp in inputs]
context.execute_async(batch_size=batch_size, bindings=bindings, stream_handle=stream.handle)
[cuda.memcpy_dtoh_async(out['host'], out['device'], stream) for out in outputs]
stream.synchronize()
def calculate_fps_tensorrt(engine_file, input_data, num_images=10000):
engine = load_engine(engine_file)
context = engine.create_execution_context()
inputs, outputs, bindings, stream = allocate_buffers(engine)
start_time = time.time()
for _ in range(num_images):
do_inference(context, bindings, inputs, outputs, stream)
end_time = time.time()
total_inference_time = end_time - start_time
fps = num_images / total_inference_time
return fps
if __name__ == "__main__":
fp16_engine_fps = calculate_fps_tensorrt('yolov8x_fp16.engine', None, num_images=10000)
print(f"TensorRT FP16 FPS: {fp16_engine_fps:.2f}")
```
该脚本展示了如何加载 TensorRT 引擎并执行推理操作,从而获得更高性能的 FPS 结果。
---
#### 使用 TensorRT INT8/Mixed Precision 测试 FPS
对于 INT8 或混合精度 (Mixed Precision),可以采用类似的流程,只需调整引擎文件路径即可。例如,将 `'yolov8x_fp16.engine'` 替换为 `'yolov8x_int8.engine'` 或其他对应类型的引擎文件名。
---
### 关于损失函数优化的影响
除了硬件加速外,改进损失函数也可以提升模型的整体表现。例如,在 YOLOv8 中引入 MPDIoU(Modified Point-to-Distance IoU)作为回归损失函数能够显著提高检测精度和收敛速度[^2]。
---
阅读全文
相关推荐


















