利用DDPM生成CIFAR数据集
时间: 2025-05-24 10:57:29 浏览: 23
### 使用DDPM生成CIFAR数据集图像
扩散概率模型(Diffusion Probabilistic Models, DDPMs)是一种强大的生成模型,能够通过一系列加噪和去噪的过程生成高质量的数据。对于CIFAR数据集这样的小型彩色图像集合,可以采用标准的DDPM架构来完成任务。
以下是基于PyTorch的一个简单示例代码框架,用于说明如何使用DDPM生成CIFAR数据集中的图像:
#### 数据预处理
为了训练DDPM模型,首先需要加载并标准化CIFAR数据集。这一步骤通常涉及将像素值缩放到[-1, 1]范围以便于模型收敛[^3]。
```python
import torch
from torchvision import datasets, transforms
def load_cifar_data():
transform = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.5,), (0.5,))
])
train_dataset = datasets.CIFAR10(root='./data', train=True, download=True, transform=transform)
test_dataset = datasets.CIFAR10(root='./data', train=False, download=True, transform=transform)
train_loader = torch.utils.data.DataLoader(train_dataset, batch_size=64, shuffle=True)
test_loader = torch.utils.data.DataLoader(test_dataset, batch_size=64, shuffle=False)
return train_loader, test_loader
```
#### 定义扩散过程
扩散过程的核心是定义前向加噪步骤以及对应的反向去噪网络结构。这里我们提供了一个简单的UNet作为去噪网络的基础[^4]。
```python
import torch.nn as nn
class UNet(nn.Module):
def __init__(self, channels_in=3, base_channels=128):
super().__init__()
self.encoder = nn.Sequential(
nn.Conv2d(channels_in, base_channels, kernel_size=3, padding=1),
nn.ReLU(inplace=True),
nn.Conv2d(base_channels, base_channels*2, kernel_size=3, stride=2, padding=1), # Downsample
nn.ReLU(inplace=True)
)
self.middle = nn.Sequential(
nn.Conv2d(base_channels*2, base_channels*2, kernel_size=3, padding=1),
nn.ReLU(inplace=True)
)
self.decoder = nn.Sequential(
nn.Upsample(scale_factor=2, mode='nearest'), # Upsample
nn.Conv2d(base_channels*2, base_channels, kernel_size=3, padding=1),
nn.ReLU(inplace=True),
nn.Conv2d(base_channels, channels_in, kernel_size=3, padding=1)
)
def forward(self, x_t, timesteps=None):
encoded_x = self.encoder(x_t)
mid_output = self.middle(encoded_x)
output = self.decoder(mid_output)
return output
```
#### 训练与采样逻辑
在实际应用中,还需要编写具体的训练循环和采样脚本。这些部分会涉及到时间步长`t`的设计及其嵌入方式[^4]。
```python
device = 'cuda' if torch.cuda.is_available() else 'cpu'
model = UNet().to(device)
optimizer = torch.optim.Adam(model.parameters(), lr=1e-3)
train_loader, _ = load_cifar_data()
for epoch in range(epochs):
model.train()
total_loss = 0
for step, (images, _) in enumerate(train_loader):
images = images.to(device)
# Sample noise to add to the images.
noise = torch.randn_like(images).to(device)
timesteps = torch.randint(0, T, size=(len(images),)).long().to(device)
noisy_images = q_sample(noise=noise, t=timesteps, original_image=images)
predicted_noise = model(noisy_images, timesteps)
loss = F.mse_loss(predicted_noise, noise)
optimizer.zero_grad()
loss.backward()
optimizer.step()
total_loss += loss.item()
avg_loss = total_loss / len(train_loader)
print(f"Epoch {epoch} average loss: {avg_loss}")
```
其中 `q_sample()` 函数负责按照指定的时间步数执行正向扩散操作[^4]。
#### 结果评估与可视化
最后,在验证阶段可以通过多次迭代调用逆扩散过程得到清晰的新样本图像,并保存下来供后续分析。
```python
@torch.no_grad()
def sample(model, image_shape, num_samples=T):
samples = torch.randn(num_samples, *image_shape).to(device)
for i in reversed(range(T)):
t = torch.full((num_samples,), i, dtype=torch.long, device=device)
residual = model(samples, t)
samples -= beta[i].sqrt() * residual
return samples.clamp(-1., 1.)
generated_images = sample(model=model, image_shape=(3, 32, 32))
grid_img = make_grid(generated_images[:25], nrow=5, normalize=True)
plt.imshow(grid_img.permute(1, 2, 0).cpu())
plt.show()
```
以上即是一个完整的流程概述,具体参数调整需依据实验效果而定。
---
阅读全文
相关推荐



















